Modélisation par Processus Gaussiens

> Notations
Computer code f : RP — R
Inputs x = (21,...,: P) e RP
Output  y(x)
Observations (X, y'i)izl.‘”_’n

=> learning sample X, = [x¥,... xT

2 Model: Output seen as realization of stationary Gaussian process
Y (x) = fo(x) + W(x)

with :
* fo the mean function or trend fo(x) = S Bifi(x) = F(x)

= W(x)a stationary centred Gaussian process (E[/W(x)] = O ) with variance
o 2 and correlation function R:

Cov(W(x),W(x)) = ¢(x,x") = 0?R(x-x)



= Joint distribution for the sample locations X, and a new location x*

[Y(X;),Y ()]~ N (F j( = k(x*)]
¢ )L\ X ~ ’
f,00 k() o2

with Fy = [f(x1)..... f(x,)]" the vector of the mean function at sample locations

Y. g the covariance matrix at sample locations Xs
k(x*) the covariance vector between x and sample locations Xs

> Conditional distribution
Y () ry, ~ N (1(x9),52(x%))
H(x®) = E[Y (9[Y (X ) = Y] = £, () + k(x) T (Y — Fy)
avec{&’z(x*) =Var[Y (x9)|)Y (X ) =Y 1= 02— k(x*)" = k(x*)
The conditional mean u(x*) serves as the predictor at location x *

The conditional variance 62(x*) serves as the prediction variance



2 Maximum likelihood estimators for the hyperparameters

Correlation parameters, called hyperparameters, ¢» and R denoted as R,

Provided that v is known, regression parameters obtained by generalized least
square estimator :

5 —1 —1 T p—1
B = (FR;'F) T FIRY,

MLE estimator of o2 is deduced
7 = 1Y, - FA)TR; (Y, - Fuf)

n
Estimation of hyperparameters consists in solving the minimization problem :

Y* = arg nb}n o2 det(Rw)Tll



Surrogate model validation

» Validation of metamodel accurracy

*»Study of residuals computed:
= on atest sample
= Or by cross validation

*Predictivity coefficient Q%:
- Q% estimated by cross validation on practical cases

01 an: [I?(x“) )— Y(")]2 YO = y(x®)

2

i=1 n ;.

Closer to one the Q? better the accuracy.

Y( Xy )=Y_

output on
observed data

] GP metamodel prediction

by cross validation



