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1.1 What is an inverse problem

1.1.1 Direct or inverse

Direct problem is close to “modelling”. In that case, we have (or we are developping)
a (mathematcial, numerical) model of our system. This model has input parameters,
which we know fairly well. We are interested in the outputs produced by the model. The
following diagram describes a direct problem :

3



Inverse methods and data assimilation 2017-2018

Inverse problem do the reverse! In that case we also have a model (which should be
fairly accurate), but now the input parameters are not well known (because of measuring
errors, or because we cannot measure them directly, e.g., if they are di cult to access).
However, some outputs corresponding to the unknown inputs can be measured. Inverse
problem aims to combine the model equations and the outputs to infer the poorly known
inputs, according to the diagram :

Famous examples are :

Problem Partial observation
Input parameters to be in-
fered

Sherlock Holmes
Observable consequences
and clues

What really happened !

Medical imaging
External measurements on
the body surface

Tissue properties and diag-
nosis (bone, liquid, tumor,
...)

Numerical
Weather Predic-
tion

Physical observations of the
atmosphere and ocean

Initial condition to produce
a weather forecast

1.1.2 Inverse methods and data assimilation

Inverse methods allow to combine optimally all sources of information available about a
given (physical, biological, chemical, ...) system:
• mathematical equations (physical laws or the biological processes, ...);
• observations (measures of real experiments);
• error statistics (observation errors, model errors, ...).

These sources of information are usually heterogeneous: different nature, varying quality
and quantity.

In geosciences, inverse methods are often called data assimilation. Historically, the idea
was to estimate the initial state of the atmosphere, in order to produce weather forecasts.
Today, it has many applications, not only initial state estimation (parameter estimation,
physical law parameterisation, numerical parameter estimation, unknown forcing sources
estimation...). It is also used in many application domains, not only weather forecasting
(oceanography, oil drill, seismology, energy, medicine, biology, glaciology, agronomy, con-
struction industry, ...).

These problems are not straightforward. The most commonly encountered issues are:
• complex systems (coupled systems, non linear laws, poorly known phenomenons,

...);
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• indirect/sparse (in space/time)/noisy observations;
• ill-posed problem (underdetermined - not enough observations, overdetermined -

redundant and contradictory observations).

1.2 A simple example

This example will introduce the BLUE (Best Linear Unbiased Estimation), which is a
statistical estimation method, to solve a very simple least square problem.
The example writes this way: suppose that we have two observations y1 = 1 and y2 = 2
of un unknown quantity x. We aim to estimate x as a function of the observations.

1.2.1 Naive method

We formulate the problem as a simple least square problem:

Find x as the minimizer of (x− 1)2 + (x− 2)2

The solution is easilly found and gives the estimator x̂ = 3/2.

This solution presents several shortcomings:

1. The result is sensitive to unit changes. Imagine that we now have y1 = 1 a measure
of x and y2 = 4 a measure of 2x (in another unit), then we should minimize (x −
1)2 + (2x − 4)2, and the estimator now is x̂ = 9/5. → Some kind of normalisation
is required.

2. The result is insensitive to the accuracy of the measurement instrument, the esti-
mator is the same even if y1 is more accurate than y2.

1.2.2 Statistical formalisation

Let us denote yi = x+ ei for i = 1, 2. The observation errors ei are assumed to be:

• unbiased (with 0 mean): E(ei) = 0 for i = 1, 2

• with known variances: Var(ei) = σ2
i for i = 1, 2

• uncorrelated: Cov(e1, e2) = 0 (or E(e1e2) = 0)

We now look for a linear estimation, which is unbiased and with minimal variance. It
is called the BLUE (Best Linear Unbiased Estimator):

x̂ = α1y1 + α2y2

The unbiased hypothesis is E(x̂− x) = 0, it follows easily that α1 + α2 = 1. We can then
compute the variance of x̂:

Var(x̂) = α2
1σ

2
1 + (1− α1)

2σ2
2 (1.1)
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We can that compute the estimation x̂, which minimises the variance, and then compute
Var(x̂). We find:

α1 =
σ2
2

σ2
1 + σ2

2

x̂ =
σ2
2y1 + σ2

1y2
σ2
1 + σ2

2

Var(x̂) =

(
1

σ2
1

+
1

σ2
2

)−1
(1.2)

1.2.3 Remarks

First, we can show that we obtain the same result if we look for the minimizer of the cost
function

J(x) =
1

2

(
(x− y1)2

σ2
1

+
(x− y2)2

σ2
2

)
(1.3)

This is still a least square problem, but the BLUE enables us to rationalise the choice of
a normalisation in the cost function J . This normalisation solves both issues of sensitivity
to units and measure accuracy.
Moreover, the concavity of J gives a measure of the estimator accuracy, as we have:

J ′′(x) =
1

σ2
1

+
1

σ2
2

=
1

Var(x̂)
(1.4)

If we consider that y1 = xb is a first estimation of x (which we will call the background)
and y2 = y is an independant observation, then we can rewrite x̂ as

x̂ = xb +
σb

2

σ2 + σb2
(y − xb)

The value y − xb is called innovation, it contains the new information brought by y with
respect to xb. The equation above can be summed up as

x̂ = background + something× innovation

.

1.2.4 Data assimilation methods

There exist two families of data assimilation (DA) methods: statistical methods (we
compute the BLUE directly) and variational methods (minimisation of the cost function
J). Of course, in 1D as in the example, these methods seem similar, but we will see that
in multi dimensional cases (multi = 106) they are pretty different:

• (Bayesian) probabilistic methods: we treat x as a random variable, and try to
compute the probability density of the state knowing the set of observations. It
sometimes ends to estimate x̂ as x̂ = background + gain matrix × innovation, so
we have to compute the gain matrix. It is a huge matrix involving covariances for
background and observations (as everything is vectorial, covariances are -very large-
matrices).

• variational methods: we look for x̂ as J(x̂) = minx J(x). As x lives in a very high
dimensional space, minimisation is not easy, and many methods exist (Newton, quasi
Newton, other gradient methods, stochastic methods like simulated annealing, ...).

6



Inverse methods and data assimilation 2017-2018

Common advantages and drawbacks of these methods:

• under some (restrictive) hypotheses they lead to the same result;

• under the same (restrictive) hypotheses they are optimal (ie. both lead to the
optimal solution of the least squares problem);

• common issues:

– in case of non-linearities the optimality and equivalence between the methods
are lost;

– curse of dimensionality (huge matrix sizes, impossible to compute or even store
them in memory);

– errors statistics are required but unknown.
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1.3 Exercises

Complete the calculations of this chapter (§1.2):
1. Prove that α1 + α2 = 1 using E(x̂− x) = 0.
2. Prove formula (1.1) for the variance.
3. Prove formula (1.2)
4. Prove that x̂ is the minimizer of (1.3).
5. Prove (1.4).

1.4 Solutions

Complete the calculations of this chapter (§1.2):
1. Prove that α1 + α2 = 1 using E(x̂− x) = 0.

Sol. x̂− x = α1y1 + α2y2 − x = (α1 + α2 − 1)x+ α1e1 + α2e2 then

E(x̂− x) = (α1 + α2 − 1)E(x) + α1E(e1) + α2E(e2))

= (α1 + α2 − 1)E(x) = 0

We then have α1 + α2 = 1, or α2 = 1− α1.

2. Prove formula (1.1) for the variance.
Sol.

Var(x̂) = E((x̂− x)2) = E((α1e1 + α2e2)
2)

= α2
1E(e21) + 2α1α2E(e1e2) + α2

2E(e22)
= α2

1σ
2
1 + α2

2σ
2
2

= α2
1σ

2
1 + (1− α1)

2σ2
2

3. Prove formula (1.2)
Sol. Var(x̂) is a quadratic function of α1. To look for a minimum we look for the
critical point (zero of the derivative), and we find the expression of α1. Then

x̂ =

1
σ2
1
y1 + 1

σ2
2
y2

1
σ2
1

+ 1
σ2
2

Remaining eqs are straightforward.
4. Prove that x̂ is the minimizer of (1.3).

Sol. Straightforward, compute the derivative of J .
5. Prove (1.4).

Sol. Straightforward.

8



2

Elements of probability and statistics

Chapter outline

2.1 Events and probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Real random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Discrete variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Continuous variables . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Expectation, variance and covariance . . . . . . . . . . . . . . . . 12

2.3 Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Normal (Gaussian) distribution . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 The Gaussian univariate distribution. . . . . . . . . . . . . . . . . 13

2.4.2 The Gaussian multivariate distribution. . . . . . . . . . . . . . . . 13

2.5 (Hidden) Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Hidden Markov chain . . . . . . . . . . . . . . . . . . . . . . . . 15

9



Inverse methods and data assimilation 2017-2018

2.1 Events and probability

Random experiment. A random experiment is mathematically described by:

• the set Ω of all possible outcomes of an experiment, the result of which cannot be
perfectly anticipated;

• the subsets of Ω, called events;

• a probability function, P: a numerical expression of a state of knowledge. P is such
as, for any disjoint events A and B:

0 ≤ P(A) ≤ 1,

P(Ω) = 1,

P(A ∪B) = P(A) + P(B)

Independance. Two events A and B are said to be independant if:

P(A ∩B) = P(A)P(B)

Conditional probability. When the two events A and B are not independent, know-
ing that B has occurred changes our state of knowledge on A. This reads:

P(A|B) =
P(A ∩B)

P(B)

2.2 Real random variables

The outcome of a random experiment is called a random variable. A random variable
can be either an integer number (e.g., a die cast) or a real number (e.g., the lifetime of a
electric light bulb), in this case we call them discrete or continuous random variables. We
will denote by X a random variable and x its realization. Bold symbol will be associated
to vectors.

2.2.1 Discrete variable

X is defined on a finite set X , e.g. X = {1, ..., N} or X = N, ie the ensemble of values of
X is discrete: (xi)i∈X and the law of X is given by the probabilities

P(X = xi) = pi ∈ [0, 1], with
∑

pi = 1

Cumulative distribution function.

FX(x) = P(X ≤ x)

It is an increasing function, such that F (−∞) = 0, F (+∞) = 1 and we have

P (X ∈]a, b]) = FX(b)− FX(a)

For discrete random variables, FX is a piecewise-constant function.
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Conditional probability. Let X and Y be two random variables taking values in finite
sets X and Y , we define the conditional law of X knowing Y by :

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=

P(X = x, Y = y)∑
x′∈X P(X = x′, Y = y)

Independance Two random variables X and Y are independant when

P(X = x, Y = y) = P(X = x)P(Y = y)

then, we have :
P(X = x|Y = y) = P(X = x)

Bayes theorem From the definition of the conditional probability, we can deduce
the Bayes formula :

P(X = x|Y = y) =
P(Y = y|X = x)P(X = x)

P(Y = y)

2.2.2 Continuous variables

Here, the set X is no longer supposed to be finite, e.g. X = R. X is said to have a
probability density function (pdf) if and only if there exists a unique function pX : R→ R+

such that

∀x ∈ R, FX(x) =

∫ x

−∞
pX(x) dx

In this case, pX is continuous, differentiable and we have:∫
X
pX(x) dx = 1 and P(X ∈]a, b]) =

∫ b

a

pX(x) dx.

Joint, marginal and conditional pdf Let X and Y be two random variables, living
in X and Y .

• pX,Y (x, y) is called the joint density.

• the (density of) the marginal law of X is

pX(x) =

∫
Y
pX,Y (x, y) dy

• the conditional density of X knowing Y = y denoted by pX|Y (x|y) is defined by :

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

Bayes theorem The Bayes theorem writes :

pX|Y (x|y) =
pY |X(y|x) pX(x)

pY (y)
=

pY |X(y|x) pX(x)∫
X pY |X(y|x) pX(x) dx
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2.2.3 Expectation, variance and covariance

(Note: the mean is also called expected value or expectation, mathematical expectation,
EV, or first moment)

A pdf is rarely known completely. Generally, only some properties are determined and
handled. The two main properties are the expectation and the variance.

expectation The expectation of a random variable X is

E(X) =< X >=


∫ +∞

−∞
x pX(x) dx if X is continuous∑

i∈I

xi pi if X is discrete

variance The variance (also called second central moment) is

Var(X) = E
(
[X − E(X)]2

)
=


∫ +∞

−∞
(x− E(x))2 pX(x) dx if X is continuous∑

i∈I

(xi − E(x))2 pi if X is discrete

We also have
Var(X) = E(X2)− E(X)2 = σ2(X)

The standard deviation is the square root σ(X) of the variance.

covariance Let X and Y be two random variables, we define their covariance as

Cov(X, Y ) = E [(X − E(X)).(Y − E(Y ))]

and their linear correlation coefficient

ρ(X, Y ) =
Cov(X, Y )

σXσY

If X and Y are independent then Cov(X, Y ) = 0, but the converse is false in general.

2.3 Random vectors

Real random vectors (denoted by bold symbol) are vectors which components are real
random variables: X = (X1, ..., XN) where Xi is a real random variable. The pdf of a
vector is the joint pdf of its real components.

The expectation vector is the vector formed with the expected values of the real
components:

E(X) = (E(Xi))i=1..N

12



Inverse methods and data assimilation 2017-2018

The second moment of the distribution is the covariance matrix. If X denotes the random
vector, the covariance matrix is defined by

Cov(X) = E
[
(X− E(X)) (X− E(X))T

]
.

A covariance matrix is symmetric, positive. The terms on the diagonal are the variances
of the vector components. The non-diagonal terms are covariances.

2.4 Normal (Gaussian) distribution

2.4.1 The Gaussian univariate distribution.

The random variable X has a Gaussian (or normal) distribution with parameters µ and
σ2, which is noted X ∼ N (X;µ, σ2), when

pX(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.

The Gaussian distribution possesses some very nice properties, in particular:

• it is a natural distribution for signal noises;

• the parameters µ and σ2 of the distribution are the expectation and the variance,
respectively;

• if x1 ∼ N (x1;µ1, σ
2
1) and x2 ∼ N (x2;µ2, σ

2
2) are two independent variables, then

x1 + x2 is also Gaussian and z = x1 + x2 ∼ N (z;µ1 + µ2, σ
2
1 + σ2

2);

• if a is a real number and x ∼ N (x;µ, σ2), then z = ax ∼ N (z; aµ, a2σ2).

2.4.2 The Gaussian multivariate distribution.

The random vector X of size n has a Gaussian (or normal) distribution with parameters
µ and P, which is noted X ∼ N (X;µ,P), when

pX(x) =
1

(2π)n/2|P|1/2
exp

[
−1

2
(x− µ)TP−1(x− µ)

]
.

µ and P are the expectation and the covariance matrix of X, respectively. |P| denotes
the determinant of P. The component of X are said to be jointly Gaussian.

We have the following results:

X ∼ N (X;µ,P) ⇒ Z = (AX + Y) ∼ N (Z; Aµ+ Y,APAT )

X ∼ N (X;µ,P) ⇒ Z = P−1/2(X− µ) ∼ N (Z; 0, I)
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From joint to marginal and conditional distributions

Let the vector Z = [XTYT ]T be normally distributed according to

Z =

[
X
Y

]
∼ N

(
Z;

[
a
b

]
,

[
A C
CT B

])
where C is the (non-symmetric) cross-covariance matrix between X and Y which has as
many rows as the size of x and as many columns as the size of y. then the marginal
distributions are:

X ∼ N (X; a,A)

Y ∼ N (Y; b,B)

and the conditional distributions are:

X|Y ∼ N (X; a + CB−1(Y − b),A−CB−1CT ) (2.1)

Y|X ∼ N (Y; b + CTA−1(X− a),B−CTA−1C) (2.2)

From conditional to joint and marginal distributions

Let X and Y have the Gaussian distributions :

X ∼ N (X;m,P) Y|X ∼ N (Y; HX,R)

the the joint distribution is :

Z =

[
X
Y

]
∼ N

(
Z;

[
m

Hm

]
,

[
P PHT

HP HPH + R

])
and the marginal is :

Y ∼ N (Y; Hm,HPHT + R) (2.3)

Product of two Gaussian functions

the product of two Gaussian functions is another Gaussian function (although no
longer normalized). in particular,

N (X; a,A) N (X; b,B) ∝ N (X; c,C) (2.4)

where
C = (A−1 + B−1)−1

c = CA−1a + CB−1b
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2.5 (Hidden) Markov chain

2.5.1 Markov chain

Let un consider a state process X = {Xk}k≥0 taking its values in a continuous state space
X . We will use the following notation :

X0:K = [X0, . . . ,XK ]

The law of the process X = {Xk}k≥0 is defined through the laws pX0:k
(x0:k) for all

k ≥ 0. We have the following general result :

pX0:k
(x0:k) = pX0(x0)× pX1|X0(x1|x0)

× pX2|X0:1(x2|x0:1) . . . pXk|X0:k−1
(xk|x0:k−1) (2.5)

The process is said to be Markovian when

pXk|X0:k−1
(xk|x0:k−1) = pXk|Xk−1

(xk|xk−1)

meaning that the probability of each subsequent state depends only on what was the
previous state. Knowing the present, we can forget the past to predict the future.

We then have

pX0:k
(x0:k) = pX0(x0)

k∏
l=1

pXl|Xl−1
(xl|xl−1)

A Markov process is then entirely defined with its initial density pX0(x0) and the
transition density pXl|Xl−1

(xl|xl−1).

2.5.2 Hidden Markov chain

Let us consider a couple of processes : the state process X = {Xk}k≥0, taking its value
in the state space X ; and the observation process Y = {Yk}k≥1, taking its value in the
observation space Y . The couple (X,Y) is said to be a hidden Markov chain if

• X is a Markov chain, of initial law pX0(x0) and transition law pXk|Xk−1
(xk|xk−1).

• knowing the state, the observation are independent (property of conditional inden-
pendance), meaning

pY1:K |X0:K
(y1:K |x0:K) =

K∏
k=1

pYk|Xk
(yk|xk)

pYk|Xk
(yk|xk) is called the likelihood.
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nX0 nX1 n nXk−1 nXk

~
Y1

~ ~
Yk−1

~
Yk

Figure 2.1: Hidden Markov chain. X’s are states. Y’s are observations.

Hence, a hidden Markov process in defined though :

• the state space X

• the observation space Y

• the initial density pX0(x0)

• the transition density pXk|Xk−1
(xk|xk−1)

• the likelihood pYk|Xk
(yk|xk)

We can write :

pX0:K ,Y1:K
(x0:K ,y1:K) = pX0(x0)

K∏
k=1

pYk|Xk
(yk|xk) pXk|Xk−1

(xk|xk−1)

16



3

Ingredients of data assimilation

Chapter outline

3.1 State, evolution and model error . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Observations, mapping and error . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Two points of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Variational approach . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

17



Inverse methods and data assimilation 2017-2018

3.1 State, evolution and model error

Let be the state of the system we aim at estimating be modelled by a variable x, living
in the state space X

Here are considered dynamical models, i.e. models that compute the time evolution of
the simulated state. Let xk and xk+1 be the vectors modelling the state at two consecutive
times, k being a time index. They are related by a causality link:

xk+1 =Mk→k+1(xk) + εmk+1 (3.1)

For example, in oceanography we could have

xk = (U1,k, U2,k, ..., Un,k, V1,k, V2,k, ..., Vn,k, T1,k, ..., Tn,k, S1,k, ..., Sn,k)

where Ui,k, Vi,k are the horizontal velocity of the oceanic currents on every point i of the
spatial grid at time k, and Ti,k, Si,k are the values of temperature and salinity on these
points at time k. The modelMk→k+1 would then be one time-step of the resolution of the
Navier-Stokes equations (+ temperature and salinity diffusion and transport equations).

The model error εmk accounts for the errors in the numerical model (e.g., misrepresen-
tation of physical processes) and for the errors due to the discretization. The actual value
of this error is not known, it is thus considered as a random variable. we suppose that
this error is of zero mean E(εmk ) = 0, and has a covariance matrix Cov(εmk ) = Qk. Finally,
the model errors are independent in time, meaning Cov(εmk ε

m
l ) = 0 ∀k 6= l.

Finally, to calculate the evolution of the state vector by means of equation (3.1), it
is essential to have an estimate xb, called background or a priori estimate, of the initial
state x0. The background error εb (difference between the background and the true value
of the initial state) is supposed to be of zero mean E(εb) = 0 and its covariance matrix
is Cov(εb) = Pb. We also suppose that the background error is independent of the model
error Cov(εbεmk ) = 0

In a statistical framework, the state sequence is modelled as a random sequence
X = {Xk}k≥0, whose realisations are denoted x = {xk}k≥0. The evolution law (3.1)
is then modelled through the density pXk|Xk−1

(xk|xk−1). The density of the initial state
is pX0(x0).

3.2 Observations, mapping and error

The system x is observed through a set of observations modelled by a variable y. The
observation vector live in the observation space Y .The mapping between the state space
and the observation space is done thanks to the so-called observation operator H.

Let us suppose that the observations are local in time (that is to say correspond to
the state of the system at a given time) and are available at times coinciding with time
steps of the model, i.e. y = {yk}k≥1.
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The observations may be spoiled by instrumental and/or numerical error. We get the
following equation:

yk = Hk(xk) + εok (3.2)

where Hk is the local observation operator. εok accounts for the observation error at time
k. The actual value of this error is not known, it is thus considered as a random variable.
We suppose that it is of zero mean E(εok) = 0, and has a covariance matrix Cov(εok) = Rk.
Moreover, we make the following noise independence assumptions : Cov(εol ε

o
k) = 0 ∀k 6= l

; Cov(εokε
b) = 0 ; Cov(εokε

m
k ) = 0.

In a statistical framework, the observation sequence is modelled as a random sequence
Y = {Yk}k≥1t, whose realisations are denoted y = {yk}k≥1. The mapping between
observations and states is then modelled through the likelihood pYk|Xk

(yk|xk).

3.3 Two points of view

Data assimilation is the process by which observational data are fused with scientific
information. At this stage, we therefore have several sources of information on the system
we are interested in :

• observations y and associated mapping H

• an evolution model M

• a background xb of the state of the system at an initial moment (which therefore
of course allows, by propagating it by the model M, to have a draft of the whole
trajectory of the system)

From this information, data assimilation methods aim at obtaining the “best possible
estimate” x̂ or xa (also called analysis or analyzed value) of x. All the diversity of
approaches will come from the precise meaning that one will give to this expression.
Thus, when one speaks of estimating the vector x, is one trying to determine the state
of the system as a set of physical variables whose value is sought, or more generally as
an estimation of a random vector ? And in the latter case, do we look for its complete
probability law, or more simply some of its characteristics (mean, mode, covariance matrix
...)? Similarly, the adjective “best” naturally refers to a notion of optimality with respect
to a certain criterion. Again, many choices are possible to formalize such a criterion.

3.3.1 Variational approach

A first translation of the previous problem, namely to find the best possible estimate,
consists in defining a functional quantifying a discrepancy between the state of the system
x and the two available sources of information, i.e. the background xb and the observations
y. We then look for the optimal state xa, also called analysis, which minimizes this
functional. This is the so-called variational approach to data assimilation.

xa = min
x
J(x)
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where J(x) is a cost function defined to measure the misfit between available information
(background and observation) and model.

In the simple stationnary case we have:

J(x) = J b(x) + Jo(x)

• J b(x) stands for the a priori term

J b(x) =
1

2
‖x− xb‖2P−1

b

where we used the notation ‖x‖2A = xTAx to denote the norm associated to the
scalar product defined by the symetric positive definite matrix A.

• Jo(x) stands for the data term

Jo(x) =
1

2
‖H(x)− y‖2R−1

In the general case we aim at estimating the trajectory x = [x0,x1, . . . ,xK ] by
minimizing the cost function

J(x) = J b(x) + Jq(x) + Jo(x)

• J b(x) stands for the a priori term

J b(x) =
1

2
‖x0 − xb‖2P−1

b

• Jo(x) stands for the data term

Jo(x) =
1

2

K∑
k=1

‖Hk(xk)− yk‖2R−1
k

• Jq(x) stands for the model term

Jq(x) =
1

2

K∑
k=1

‖xk −Mk−1→k(xk−1)‖2Q−1
k

When the cost function has been set, then the problem is entirely defined, and so is
its solution. The “physical” part lies in the definition of J , the choice of the covariance
matrices, the background, etc. Finding the solution once the cost function has been
defined is “only” technical work.

3.3.2 Bayesian approach

The Bayesian paradigm provides a coherent probabilistic approach for combining infor-
mation, and thus is an appropriate framework for data assimilation. In that case, the
problem is modelling using a hidden Markov state process X = {Xk}k≥0 of transition law
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pXk|Xk−1
(xk|xk−1). This probability density models the evolution of the state process.

The set of observations Y = {Yk}k≥1, are supposed conditionally independent given the
state sequence. The conditional probability pYk|Xk

(yk|xk) describes the likelihood of the
observations.

recap : fundamental rules of estimation theory

The two fundamental rules of estimation theory are:
Bayes’ rule,

pX|Y(x|y) =
pY|X(y|x)pX(x)

pY(y)
(3.3)

and the marginalisation rule:

pY(y) =

∫
pX,Y(x,y)dx =

∫
pY|X(y|x)pX(x)dx (3.4)

needed densities

• The initial density is :
X0 ∼ N (X0;xb,Pb)

where Pb is the background error covariance matrix.

• The transition law pXk|Xk−1
(xk|xk−1) is obtained by translating the density of εmk

by Mk−1→k(xk−1). It is generally assumed that the model errors follow a white
Gaussian noise, meaning that they are independent of each others, and

εmk ∼ N (εmk ; 0,Qk)

In that case, we have

Xk|Xk−1 ∼ N (Xk;Mk−1→k(Xk−1),Qk)

where Qk is the model error covariance matrix.

• The likelihood pYk|Xk
(yk|xk) is obtained with a translation of the density εok by

Hk(xk). It is generally assumed that the observation errors follow a white Gaussian
noise, meaning that they are independent of each others (model and observation
errors are also supposed independent), and

εok ∼ N (εok; 0,Rk)

In that case, we have
Yk|Xk ∼ N (Yk;Hk(Xk),Rk)

where Rk is the observation error covariance matrix.
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Optimal filter The purpose of data assimilation is to estimate states based on ob-
servations. This problem can take many forms, so we will focus on the filtering problem
only, which consists in finding the pdf of Xk given past and present observations, Y1:k.
This conditional pdf is pXk|Y1:k

(xk|y1:k). A Bayesian recursive solution known as optimal
filter is constituted by two interleaved steps:

pXk−1|Y1:k−1
(xk−1|y1:k−1)

forecast−−−−−−−−−−−→
pXk|Xk−1

(xk|xk−1)
pXk|Y1:k−1

(xk|y1:k−1)
analysis−−−−−−−−→

pYk|Xk
(yk|xk)

pXk|Y1:k
(xk|y1:k)

• Assuming pXk−1|Y1:k−1
(xk−1|y1:k−1) known, the prediction step, also called forecast

step relying on the dynamic equation enables making a first approximation of the
next state given all available information:

pXk|Y1:k−1
(xk|y1:k−1) =

∫
pXk|Xk−1

(xk|xk−1) . pXk−1|Y1:k−1
(xk−1|y1:k−1) dxk−1 (3.5)

• During the analysis (or update) step, the introduction of the new observation Yk =
yk corrects this first approximation

pXk|Y1:k
(xk|y1:k) =

pYk|Xk
(yk|xk) pXk|Y1:k−1

(xk|y1:k−1)∫
pYk|Xk

(yk|xk) pXk|Y1:k−1
(xk|y1:k−1) dxk

(3.6)

Due to their huge dimension, a direct computation of these two integrals can not be
realized in a general case. Indeed, defining a computational formulation of the two sums
constitutes the key point to solve in filtering problems. As detailled in the following
chapter, In the case of linear Gaussian models, the Kalman filter gives the optimal solu-
tion in terms of a recursive expression of mean and covariance of the Gaussian filtering
distribution pXk|Y1:k

(xk|y1:k).
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3.4 Exercises

Prove the equations of the optimal filter (§3.3.2):
1. Prove eq. (3.5)
2. Prove eq. (3.6)

3.5 Solutions

Prove the equations of the optimal filter (§3.3.2):

1. Prove eq. (3.5)
Sol. Two rules are needed here :
(a) the marginalisation rule (3.4)
(b) the following conditional independence from the Markov property :

pXk|Xk−1,Y1:k−1
(xk|xk−1,y1:k−1) = pXk|Xk−1

(xk|xk−1)

2. Prove eq. (3.6)
Sol. Start by writing

pXk|Y1:k
(xk|y1:k) = pXk|Yk,Y1:k−1

(xk|yk,y1:k−1)

Then three rules are needed here :
(a) An extension of the Bayes rule :

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)

(b) the marginalisation rule (3.4)
(c) the following conditional independence from the Markov property :

pYk|Xk,Y1:k−1
(yk|xk,y1:k−1) = pYk|Xk

(yk|xk)
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4.1 Algorithm

Let us consider a hidden Markov chain (X,Y) whose evolution is described by the fol-
lowing model with additive Gaussian noises:{

Xk =Mk−1→k(Xk−1) + εmk
Yk = Hk(Xk) + εok,

(4.1)

where the following assumptions are made:

• The initial state X0 is Gaussian, of expectation xb (background) and covariance Pb

• The model Mk−1→k and the observation operator Hk are supposed to be linear,
thus we will use the matrices notations, respectively Mk−1,k and Hk

• model errors εmk and observation errors εok are white Gaussian noises, of zero mean
and of respective covariance Qk et Rk. They are supposed to be mutually indepen-
dent and independent of the initial condition.

Then this system can be written as : :
X0 ∼ N (X0;xb,Pb)
Xk|Xk−1 ∼ N (Xk; Mk−1,k Xk−1,Qk)
Yk|Xk ∼ N (Yk; Hk Xk,Rk)

(4.2)

Because of the linearity of the model and observation equations, and as the initial
condition is supposed to be Gaussian, the filtering distribution pXk|Y1:k

(xk|y1:k) is also
Gaussian. The Kalman filter (Kalman and Bucy, 1961) gives the equation to compute the
optimal filter seen in the previous chapter. It is sequential and decomposed in 2 steps:
forecast and analysis (or observational update)

pXk−1|Y1:k−1
(xk−1|y1:k−1) = N (xk−1;x

a
k−1,P

a
k−1) (4.3)

forecast

y
pXk|Y1:k−1

(xk|y1:k−1) = N (xk;x
f
k ,P

f
k) (4.4)

analysis

y
pXk|Y1:k

(xk|y1:k) = N (xk;x
a
k,P

a
k) (4.5)

4.1.1 Forecast step

Let us suppose that the Gaussian pdf pXk−1|Y1:k−1
(xk−1|y1:k−1) is known through the mean

xak−1 and the covariance matrix Pa
k−1. The forecast step provides pXk|Y1:k−1

(xk|y1:k−1) (i.e.

expression of xfk and Pf
k) using the first step of the optimal filter, eq. (3.5).
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We can show that

Xk|Y1:k−1 ∼ N (Xk ; Mk−1,k xak−1 , Mk−1,kP
a
k−1M

T
k−1,k + Qk−1)

then,

Xk|Y1:k−1 ∼ N (Xk ; xfk , Pf
k)

xfk = E[Xk|Y1:k−1 = y1:k−1] = Mk−1,k xak−1

Pf
k = E[(Xk − xfk)(Xk − xfk)

T |Y0:k−1 = y0:k−1] = Mk−1,kP
a
k−1M

T
k−1,k + Qk−1

4.1.2 Analysis step

At time k, pXk|Y1:k−1
(xk|y1:k−1) is known through the mean xfk , the covariance matrix Pf

k,
and the assumption of a Gaussian distribution. The analysis step consists in updating
this pdf using the observation yk available at time k, and find pXk|Y1:k

(xk|y1:k). This
is done using Bayes’ rule. Notation f in superscript is used because this comes from a
previous forecast, as shown in the previous section. Since both state and observation are
from time k here, the time index is dropped for conciseness in this section.

Starting with:

pXk|Y1:k−1
(xk|y:k−1)

1

(2π)n/2|Pf
k |1/2

exp

[
−1

2
(xk − xfk)

T Pf
k

−1
(xk − xfk)

]

pYk|Xk
(yk|xk) =

1

(2π)n/2|Rk|1/2
exp

[
−1

2
(yk −Hkxk)

T Rk
−1 (yk −Hkxk)

]
Then Bayes’rule provides the posterior pdf with (3.6). Using (2.4) (here normalized),

we have
pXk|Y1:k

(xk|y1:k) = N (xk ; xak , Pa
k)

with

xak = E[Xk|Y1:k = y1:k] = Pa
k

[
Pf
k

−1
xfk + HT

kR−1k yk

]
Pa
k = E[(Xk − xak)(Xk − xak)

T |Y0:k = y0:k] =
[
Pf
k

−1
+ HT

kR−1k Hk

]−1
With the help of the Sherman-Morrison-Woodbury (SMW) formula:

[A + UDV]−1 = A−1 −A−1U[D−1 + VA−1U]−1VA−1

we can also write :

Kk = Pf
k HT

k (Rk + HkP
f
kH

T
k )−1

Pa
k = (I−KkHk)P

f
k

xak = xfk + Kk(yk −Hkx
f
k)
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4.2 Synthesis

The Kalman filter is initialized with a background state vector xb and the associated error
covariance matrix Pb. The assimilation sequence is performed according to the Kalman
filter equations:

Initialization: xb and Pb

Forecast step:
pXk|Y1:k−1

(xk|y1:k−1) = N (xk;x
f
k ,P

f
k) (4.9)

xfk = Mk−1,k xak−1 (4.10a)

Pf
k = Mk−1,k Pa

k−1 MT
k−1,k + Qk−1 (4.10b)

Analysis step:
pXk|Y1:k

(xk|y1:k) = N (xk;x
a
k,P

a
k) (4.11)

Kk = Pf
k HT

k (Rk + HkP
f
kH

T
k )−1 (4.12a)

Pa
k = (I−KkHk)P

f
k (4.12b)

xak = xfk + Kk(yk −Hkx
f
k) (4.12c)

where exponents f and a mean respectively forecast and analysis. Kk is called the
Kalman gain and (yk −Hkx

f
k) is the innovation.
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4.3 Exercices

4.3.1 Proof - first version

1. Prove the forecast step (4.9), using result (2.3)

2. Prove the analysis step (4.11), using results (3.6) and (2.4).

4.3.2 Innovation process

The innovation process denotes the pieces of information added by Yk, not contained in
Y1:k−1:

Ik = Yk − E[Yk|Y1:k−1 = y1:k−1]

1. prove that Ik = Yk −Hk xfk

2. prove that Ik = Hk(Xk − xfk) + εok

3. deduce that E(Ik) = 0 and Cov(Ik) = Hk Pf
k HT

k + Rk

4. deduce from item 2 that E[(Xk − xfk)I
T
k ] = Pf

k HT
k

4.3.3 Proof - second version

We can prove the Kalman equations, without using the results (2.3) and (2.4). As we are in
a Gaussian case, we need to prove the recursive equations to calculate the expectations and
covariances xfk = E[Xk|Y0:k−1 = y0:k−1], Pf

k = E[(Xk − xfk)(Xk − xfk)
T |Y0:k−1 = y0:k−1],

xak = E[Xk|Y0:k = y0:k], Pa
k = E[(Xk − xak)(Xk − xak)

T |Y0:k = y0:k].

1. Prove (4.10a)

2. Prove (4.10b)

3. Prove (4.12a) , (4.12b) , (4.12c) using results from the Innovation process exercice.
The proof is not straightforward at all. It is enough if you make sure that you
understand the solution.

4.3.4 Special cases

Write the Kalman filter algorithm for the following special cases:

1. There is no observation. Comment.

2. Observations are perfect: we assume that their quality is perfect (Rk = 0) and that
Hk is invertible.

3. x is a scalar, model Mk is the identity matrix, Hk as well, and the error statistics
Rk and Qk are constant over time. We denote R = r2 the scalar 1-d matrix of

observation error covariance, and similarly Pf
k = σfk

2
, Pa

k = σak
2, and Q = q2.
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(a) give the equations of the Kalman filter in that situation
(b) study also the asymptotic behaviour of the analysis error variance σak

2 for
k → +∞ (use a fix-point).

(c) what is then the asymptotics for xa?

4.4 Limitations of the Kalman filter

4.4.1 Definition of covariance matrices, filter divergence

If the input statistical information is mis-specified, the filtering system may come to
underestimate the state error variances P. For exemple, if Q is underestimated, too
much confidence is then given to the state estimation and the effects of the analyses are
then minimized. In the extreme case, observations are simply rejected. This is a filter
divergence.
Very often filter divergence is quite easy to diagnose: state error variances are small and
the time sequence of innovations is biased. But it is not always simple to correct. The
main rule to follow is not to underestimate model errors. If possible, it is better to use
an adaptive scheme to tune them online.

4.4.2 Nonlinearity and large dimension

One limitation of the straightforward implementation of the Kalman filter is the problem
dimension. In oceanography or meteorology, models generally involve several millions
(very often tens of millions, even hundreds of millions sometimes) of variables. Let us call
n the number of variables. A state covariance matrix is then n× n. With the dimensions
considered, the storage of such matrix is obviously impossible. One standard solution is
rank reduction. Another strategy is to rely on the Ensemble Kalman filter that is de-
scribed next chapter.

Nonlinearity of the dynamics or the mapping observation operator poses two problems
to the Kalman filter. First, the transposed models are not defined. Then, nonlinearity
destroys gaussianity of statistics. On way to proceed with nonlinearity is given by the
extended Kalman filter detailed here (Mk−1,k and Hk denote the tangent linear models

of Mk−1→k and Hk respectively, applied to respectively xak−1 and xfk):

Initialization: xb and Pb

Forecast step:
pXk|Y1:k−1

(xk|y1:k−1) = N (xk;x
f
k ,P

f
k)

xfk = Mk−1→k(x
a
k−1)

Pf
k = Mk−1,k Pa

k−1 MT
k−1,k + Qk−1
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Analysis step:
pXk|Y1:k

(xk|y1:k) = N (xk;x
a
k,P

a
k)

Kk = Pf
k HT

k (Rk + HkP
f
kH

T
k )−1

Pa
k = (I−KkHk)P

f
k

xak = xfk + Kk(yk −Hk(x
f
k))

However, this algorithm is valid only for weakly nonlinear models. Otherwise, one may
rely on the Ensemble Kalman filter (of only the dynamics is non linear and the gaussianity
assumptions holds) or on the particle filter (if the dimension is not too large)

4.5 Exercice - Extended Kalman Filter

Let us consider the Lorentz model

dx

dt
= σ(y − x)

dy

dt
= ρx− y − xz

dz

dt
= −βz + xy

(4.15)

This system is a non-linear differential system of order 1. Using the following parameters,
σ = 10, β = 8

3
, ρ = 28.0, it gives rise to a chaotic system. the solution is seen to orbit

around two equilibrium points giving two ’regimes’.
We aim at performing data assimilation. We assume our model is inaccurate, and

the initial condition is not perfectly known. To mimic this, we assimilate observations
extracted from a reference simulation into an unperfect model ( with ρ = 29 ) initialized
with unperfect conditions : the background is set to (3,−3, 21). We consider the case
where all variables (x, y and z) are observed at all times. Write the Extended Kalman
filter algorithm for that data assimilation problem. Write it again, in the case where only
variable x is observed.
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4.6 Solutions

4.6.1 Proof - first version

1. result given by (2.3) and identification ( Y is xk, X is xk−1)
2. remarking that :

(y −Hx)TR−1(y −Hx) = (xTHT − yT )R−1(y −Hx)

= (xTHT − yT )HT−1HTR−1HH−1(Hx− y)

= (xT − yTHT−1)HTR−1H(x−H−1y)

= (x−H−1y)THTR−1H(x−H−1y)

then we proceed by identification with :

a = H−1y A = HTR−1H

b = xfk B = Pf
k

4.6.2 Innovation process

1.

Ik = Yk − E[Yk|Y1:k−1 = y1:k−1]

= Yk − E[HkXk + εok|Y1:k−1 = y1:k−1]

= Yk −Hkx
f
k

2.

Ik = Yk −Hkx
f
k

= HkXk + εok −Hkx
f
k

3.

Cov(Ik) = E[IkI
T
k ]

= E[(Hk(Xk − xfk) + εok)(Hk(Xk − xfk) + εok)
T ]

then we develop: = Hk Pf
k HT

k + Rk

we use the hypothesis that the forecast error and the observation error are decorre-
lated

4.

E[(Xk − xfk)I
T
k ] = E[(Xk − xfk)(Hk(Xk − xfk) + εok)

T ]

= Pf
k HT

k

by developping and using decorrelated rules.

31



Inverse methods and data assimilation 2017-2018

4.6.3 Proof - second version

il faut re-ecrire la preuve en ajoutant le conditionnement sur les mesures dans les covari-
ances - ca devrait marcher exactement pareil

1. (4.10a): forecast from the model and the previous analysis.

xfk = E[Xk|Y1:k−1 = y1:k−1]

= E[Mk−1,k Xk−1 + εmk |Y1:k−1 = y1:k−1]

= Mk−1,k E[Xk−1|Y1:k−1 = y1:k−1] + E[εmk−1|Y1:k−1 = y1:k−1]

= Mk−1,k xak−1

2. (4.10b):

Pf
k = E[(Xk − xfk)(Xk − xfk)

T ]

= E[(Mk−1,k(Xk−1 − xak−1) + εmk−1) (′′)T ]

then we develop: = Mk−1,kP
a
k−1M

T
k−1,k + E[εmk−1ε

m T
k−1 ]

+ Mk−1,kE[(Xk−1 − xak−1)ε
m T
k−1 ] + E[εmk−1(Xk−1 − xak−1)

T ]MT
k−1,k

we use the hypothesis that the analysis error and the model error are decorrelated

Pf
k = Mk−1,kP

a
k−1M

T
k−1,k + Qk−1

3.

xak = E[Xk|Y1:k = y1:k]

= xfk + E[Xk − xfk |Y1:k = y1:k]

= xfk + E[Xk − xfk |Y1:k−1 = y1:k−1, Ik = ik]

= xfk + E[Xk − xfk |Ik = ik]

then

Xk − xak = (Xk − xfk)− (xak − xfk)

= (Xk − xfk)− E[Xk − xfk |Ik = ik]

so that

Pa
k = E[(Xk − xak)(Xk − xak)

T ]

= E[((Xk − xfk)− E[Xk − xfk |Ik = ik])(
′′)T ]

We therefore need to calculate the expectation and variance of Xk − xfk |Ik = ik.

Using results from the exercice on the innovation process, the vector (Xk − xfk , Ik)
is Gaussian of mean 0 and covariance:(

Pf
k Pf

k HT
k

Hk PfT
k Hk Pf

k HT
k + Rk

)
then using (2.1), we can deduce

Pa
k = Pf

k −Pf
k HT

k (Hk Pf
k HT

k + Rk)
−1Hk PfT

k
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which proves (4.12a) and (4.12b). and finally

xak = xfk + E[Xk − xfk |Ik = ik]

= xfk + Pf
k HT

k (Hk Pf
k HT

k + Rk)
−1(yk −Hkx

f
k)

which proves (4.12c). Youhou, it’s done !!

4.6.4 Special cases

4. Without observations, the Kalman filter consists only of the forecast equation
(4.10a) (4.10b), In particular (except very special cases), the error always increases.

5. With perfect obs the equation for Kk is simpler: Kk = H−1k , then we find Pa
k = 0,

and finally xak = H−1k yk, Pf
k = Qk. We trust the data completely, the forecast error

is just the model error.

6. (a) We denote R = r2 the scalar 1-d matrix of observation error covariance, and

similarly Pf
k = σfk

2
, Pa

k = σak
2, and Q = q2. Then, as M = H = id. we have :

• (4.10a) : xfk = xak−1

• (4.10b) : σfk
2

= σak−1
2 + q2

• the kalman gain equation (4.12a) is kk =
σf
k

2

(σf
k

2
+r2)

• (4.12b) : σak
2 =

σf
k

2
r2

σf
k

2
+r2

= kkr
2

• (4.12c) : xak = xfk + kk(yk − xfk)

(b) asymptotic for σak
2: we have the recursive equation

σak
2 =

σfk
2
r2

σfk
2

+ r2

using (4.10b) we get

σak
2 =

(σak−1
2 + q2)r2

σak−1
2 + q2 + r2

for k →∞ we have σak → σa∞ where σa∞
2 = X is the solution of the fixed point

equation

X =
(X + q2)r2

(X + q2 + r2

equivalent to X2 + q2X − q2r2 = 0.

whose positive solution is X = σa∞
2 =

−q2+
√
q4+4q2r2

2
.
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(c) for xa, using kk =
σa
k
2

r2
and xfk = xak−1 we then have xak = xak−1 +

σa
k
2

r2
(yk− xak−1),

and for large time we have

xak = (1− σa∞
2

r2
)xak−1 +

σa∞
2

r2
yk
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As seen in the previous chapter, the Kalman filter solves the optimal filter by given
explicit recursive expressions of the two first moments of the pdfs. This is optimal only in
the linear Gaussian case. What happens if the models are nonlinear and / or the pdfs non
Gaussian? The Kalman filter is no more optimal and, more importantly, can easily fail
the estimation process. Other approaches must be used, relying on sampling strategies.
Then come the Ensemble Kalman filter and the particle filter. They work sequentially
in the spirit of the Kalman filter, but unlike the latter, they handle an ensemble of
states (members or particles) which distribution approximates the pdf of the true state,
eventually Gaussian if one is using the ensemble Kalman filter.

5.1 Monte Carlo principle and sampling1

The idea of Monte Carlo simulation is to draw an i.i.d. set of samples {x(i)}i=1...N from a
target density pX(x) defined on a high-dimensional space. These N samples can de used
to approximate the target density with the following empirical point mass function

pX(x) ≈ 1

N

N∑
i=1

δx(i)(x), (5.1)

where δx(i)(x) denotes the delta-Dirac mass located at δx(i) .

Then we will be able to approximate integrals such that:

I[f(x)] =

∫
X
f(x) pX(x) ≈ 1

N

N∑
i=1

f(x(i))

When pX(x) has standard form, e.g Gaussian, it is straightforward to sample from it
using available routines. However, when this is not the case, we need to introduce more
sophisticated techniques. Most of the sampling methods to sample from pX(x) are based
on the following principles :

1. choose a distribution qX(x) from which it is easy to obtain samples. This distribu-
tion is called the importance distribution or proposal

2. compensate the errors due to the sampling from the wrong distribution
3. The sampling quality increases with the number of samples (the ideal is N →∞)

1This section is largely inspired from An Introduction to MCMC for Machine Learning, C Andrieu,
N de Freitas, A Doucet, M. I. Jordan
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5.1.1 Rejection sampling

Rejection sampling is based on the previous principles.The following assumptions are
made :
• the easy-to-sample proposal distribution qX(x) satisfies pX(x) ≤ M qX(x) with
M <∞
• we are able to evaluate pX(x) for all x

rejection sampling : generate N i.i.d. samples {x(i)}1=1...N de pX(x)

• i = 0
• while i 6= N do

1. generate a realisation x(i) from qX(x)
2. generate a realisation u from U(0,1)
3. if

u <
pX(x(i))

M qX(x(i))

then accept x(i) and increment i; otherwise reject the

sample.

The drawbacks of this method are the following. First, It is not always possible to
find a value M that is valid for the whole space X . Second, the acceptance probability of
a sample is proportional to 1/M thus the method is intractable in high dimension when
M is large.

5.1.2 Importance sampling

Importance sampling (IS) is an alternative to rejection sampling. The good thing is that
the hypothese on the existence of M is removed. Again, we suppose that we know how
to generate samples from a importance function qX(x) such that pX(x) > 0⇒ qX(x) > 0

By remarking the following equality :

I[f(x)] =

∫
X

f(x) pX(x) dx =

∫
X

f(x)
pX(x)

qX(x)
qX(x) dx

we can deduce that we can sample x(i) from qX and use the ration pX(x(i))

qX(x(i))
to compensate

the error made. and

pX(x) ≈ 1

N

N∑
i=1

w̃(i)δx(i)(x), (5.2)
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IS : generate N i.i.d. weighted samples {x(i), w̃(i)}1=1...N

approximating pX(x(i))

Importance sampling

• Generate N samples {x(i)}i=1:N from qX(x)

• Associate to each sample its normalised importance weight

w̃(i) =
w(i)∑N
j=1w

(j)
whith w(i) =

pX(x(i))

qX(x(i))

5.2 The Ensemble Kalman Filter (EnKF)

Let us start with the Ensemble Kalman Filter (EnKF). As we have seen in the previous
chapter, when the model and/or observation operators are non linear, one may rely on
the Extended Kalman Filter. However, in high dimensional applications, the EKF cannot
be implemented due to the high cost associated with the construction of the evolved
covariance matrix. Besides, the implementation of the EKF relies on the local linear
tangent which leads to neglect the nonlinear effects. Efficient ensemble techniques have
been devised specifically for that purpose. They are mainly defined through replacing the
forecast mean and covariance matrix by an empirical expression of the ensemble mean
and covariance matrix.

The structure of the EnKF is the same as the Kalman filter, i.e. it works in two
phases, forecast and analysis. But, here, the pdfs are represented by a sample (called the
ensemble) of states (the members). In the forecast phase, the ensemble is propagated by
the nonlinear dynamics. This ensemble of samples allows computing an approximation
of the error covariance matrix. The analysis step is computed in Kalman’s fashion: the
analysis equations are applied to each member of the ensemble. For consistency with
the observation error covariance matrix, the observations used need to be noised accord-
ingly. All the other statistical information necessary to the BLUE is calculated from the
ensemble.

The algorithm version presented here is called the stochastic Ensemble Kalman filter.
Let N be the number of members in the ensemble, and i a member index running from 1
to N .

Initialization: x
a(i)
0 = xb + εb with εb ∼ N (0,Pb)
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Forecast step:

x
f(i)
k =Mk−1→k(x

a(i)
k−1)

x̄f =
1

N

N∑
i=1

x
f(i)
k

Pf
k =

1

N − 1

N∑
i=1

(
x
f(i)
k − x̄f

)(
x
f(i)
k − x̄f

)T

Analysis step:

Pf
kH

T
k =

1

N − 1

N∑
i=1

(
x
f(i)
k − x̄f

)(
Hk(x

f(i)
k )−Hk(x̄

f )
)T

HkP
f
kHk

T =
1

N − 1

m∑
i=1

(
Hk(x

f(i)
k )−Hk(x̄

f )
)(
Hk(x

f(i)
k )−Hk(x̄

f )
)T

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1

y
(i)
k = yk + εo(i) with εo(i) ∼ N (0,Rk)

x
a(i)
k = x

f(i)
k + Kk(y

(i)
k −Hk(x

f(i)
k )

In this version of the algorithm, no model error is assumed. If the model is imperfect,
the integration scheme needs to be adjusted to account for the stochastic noise : the cloud
of possible states is generated from a randomization of the dynamics or of its parameters.

5.2.1 How to make it works in very high dimensions ?

Let us suppose that we have a data assimilation problem coming from geophysics, where
the state to be estimed is represented by thousands of unknowns living on a discretisation
grid (exemple fig 5.1)
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Figure 5.1: exemple of a discretisation grid for an atmospheric model

5.2.1.1 Localization

With the presented EnKF, the problem of storing the state covariance matrix, mentionned
in section 4.4.2, is solved. “Only” N state vectors are stored. In the standard EnKF,
the inversion of the innovation error covariance matrix is still required to compute the
Kalman gain. The dimension of this matrix is s× s, s being the number of observations.
In real problems, s may easily become of the order of a few hundred, which makes the
inversion prohibitive. The usual strategy to tackle this problem is to localize the analysis,
i.e., to consider, for the correction at one grid point, only the observations present within
a limited region in the close environment. Thus, the Kalman gain is different and must
be recomputed for each grid point. But the local innovation error covariance matrix is
of low dimension and its inversion is possible. Localization is a very important aspect in
high dimensional Kalman filtering.

Localization is not only useful to compute the Kalman gain in the EnKF. It also
prevents corrections due to distant observations. Such corrections are due to significant
correlations between distant grid points. But these correlations are very often due more
to the effect of subsampling rather than real physical and statistical reasons.

5.2.1.2 Inflation

Even when the analysis is made local, the error covariance matrices are still evaluated
with an ensemble of limited size. This often leads to sampling errors, that can accumulate
in time and lead to the filter divergence. One way around is to inflate the error covariance
matrix by a given factor:

Pa = λ2Pa

Such a trick can also be applied to Pf

Many more elements on Ensemble Kalman filters can be found in chapter 6 of the
book Data assimilation - Methods, Algorithms, and Applications, M. Asch, M. Bocquet,
M. Nodet, ed. Siam, 2016.
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5.3 Particle filter

As the EnKF computes the two first moments of the distributions, it still relies on Gaus-
sian assumptions. What happens if both models are nonlinear and the pdfs are non-
Gaussian ? Then the Kalman filter and extensions are non longer optimal and can easily
fail the estimation process. Another approach must be used. A promising candidate is
the particle filter.

The idea behind particle filtering is very simple. These techniques propose to im-
plement recursively an approximation of the complete density pX0:k|Y1:k

(x0:k|y1:k) by N

samples x
(i)
0:k, following Importance sampling strategy (see section 5.1.2). This approxi-

mation consists in a finite weighted sum of N Diracs centered on hypothesized locations
in the state space – called particles, (members of the ensemble in the EnKF jargon) – of

the initial system x0. At each particle x
(i)
0:k (i = 1 : N) is assigned a weight w

(i)
k describing

its relevance. This approximation can be formulated with the following expression:

pX0:k|Y1:k
(x0:k|y1:k) ≈

∑
i=1:N

w̃
(i)
k δx(i)

0:k
(x0:k)

The IS principle tells us that if the samples x
(i)
0:k were drawn from an importance

density qX0:k|Y1:k
(x0:k|y1:k), the weightw are defined by :

w(i)∑N
j=1w

(j)
with w

(i)
k =

pX0:k|Y1:k
(x

(i)
0:k|y1:k)

qX0:k|Y1:k
(x

(i)
0:k|y1:k)

(5.3)

5.3.1 Towards a sequential algorithm

Assuming that the approximation of pX0:k−1|Y1:k−1
(x0:k−1|y1:k−1) is known, we aim at de-

signing a recursive algorithm to approximate pX0:k|Y1:k
(x0:k|y1:k). To do so, we have to

make the following assumption on the importance density :

qX0:k|Y1:k
(x0:k|y1:k) = qXk|X0:k−1,Y1:k

(xk|x0:k−1,y1:k) qX0:k−1|Y1:k−1
(x0:k−1|y1:k−1)

Then one can obtain samples x
(i)
0:k ∼ qX0:k|Y1:k

(x0:k|y1:k) by augmenting each of the

existing samples x
(i)
0:k−1 ∼ qX0:k−1|Y1:k−1

(x0:k−1|y1:k−1) with the new state

x
(i)
k ∼ qXk|X0:k−1,Y1:k

(xk|x0:k−1,y1:k). To maintain a consistent sample, the importance
weights are updated according to a recursive evaluation as the new measurement yk
becomes available :

w̃
(i)
k ∝ w̃

(i)
k−1

pYk|Xk
(yk|x(i)

k ) pXk|Xk−1
(x

(i)
k |x

(i)
k−1)

qXk|X0:k−1,Y1:k
(x

(i)
k |x

(i)
0:k−1,y1:k)

,
∑
i=1:N

w̃
(i)
k = 1. (5.4)

Limiting ourself to these two steps for updating the swarm of particles induces an
increase over time of the weight variance. In practice, this degeneracy problem makes the
number of significant particles decreases dramatically over time implying an impoverish-
ment of the estimate. From time to time, it is thus necessary to perform a resampling
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step. This procedure aims at removing particles with weak normalized weights, and multi-
plying particles associated to strong weights, as soon as the number of significant particles
is too small. Consequently, resampled particles tend to be concentrated in areas where
important features exist. The decision to perform or not a resampling step may be de-
pending on a value called the effective sample size ESS, whose value i slow if the sample
is impoverished :

ESS =
N∑

i(w̃
(i)
k )2

These three main steps (sampling / calculation of the importance weights / resam-
pling) constitute the general framework of particle filtering. Let N be the number of
particules, and i a member index running from 1 to N .

Initialisation Generate N samples {x(i)
0 }i=1...N and set w

(i)
0 = 1

N

Importance sampling
• À Generate N samples {x(i)

k }i=1...N from qXk|X0:k−1,Y1:k
(xk|x(i)

0:k−1,y1:k)

• Set x
(i)
0:k = (x

(i)
0:k−1x

(i)
k )

• Á Associate to each sample its normalised importance weight {w̃(i)
k } using (5.4)

Resampling Â [ If N∑
i(w̃

(
ki))

2
< ε ]

• Generate N new samples among {x(i)
0:k} depending on their probabilities given by

the weights {w̃(i)
k }

• Set w̃
(i)
k = 1

N

5.3.2 Choice of the importance density

Historically, the first proposed particle filter including a resampling step has been built
with the following rules:

(a) to set the importance function to the evolution law, i.e.

qXk|X0:k−1,Y1:k
(xk|x(i)

0:k−1,y1:k) = pXk|Xk−1
(xk|x(i)

k−1)

(b) to proceed the resampling step at each iteration.
This scheme corresponds to the Bootstrap particle filter.

It is clear that adding a resampling procedure improves the quality of the estimates
by reducing the degeneracy problem. However, unnecessary resampling may introduce
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its own challenge as samples with higher probability may be oversampled, and regions
corresponding to secondary modes of the filtering distribution may be not well explored.
Another strategy whose aim is to reduce the degeneracy problem consists in using an
optimal importance function which minimizes the variance of the weights conditioned
upon x0:k−1 and z1:k. It is then possible to prove that choosing:

qXk|X0:k−1,Y1:k
(xk|x(i)

0:k−1,y1:k) = pXk|Xk−1,Yk
(xk|x(i)

k−1,yk)

corresponds to this optimal choice (which is rarely possible in practice).
The choice of the importance function is of crucial importance for the quality of the

particle filter estimates. As a consequence, the goal of more recent approaches is to design
efficient importance functions approximating as closely as possible the optimal one, and
to guide the particles in high likelihood areas. These approaches aim also at introducing
the measurements into the sampling step.

5.4 Particle filter and high dimension

The particle filter is very efficient for highly nonlinear models but with low dimension-
ality. The number of required particles typically increases with the system state space
dimension. Designing particle filters for data assimilation in high dimension space is still
an active research topic.

5.5 Exercices

1. Prove the weight update equation (5.4) from (5.3)
2. What is the weight update in the case of Bootstrap particle filter ?
3. What is the weight update in the case of optimal importance function ?

5.6 Solution

1. Prove the weight update equation (5.4) from (5.3)
Let us remark that :

pX0:k|Y1:k
(x0:k|y1:k)

= pX0:k|Y1:k
(x0:k|y1:k−1,yk)

=
pX0:k,Yk|Y1:k−1

(x0:k,yk|y1:k−1)

pYk|Yk−1
(yk|yk−1)

∝ pYk|X0:k,Y1:k−1
(yk|x0:k,y1:k−1) pX0:k|Y1:k−1

(x0:k|y1:k−1)

∝ pYk|Xk
(yk|xk) pXk|X0:k−1,Y1:k−1

(xk|x0:k−1,y1:k−1) pX0:k−1|Y1:k−1
(x0:k−1|y1:k−1)

∝ pYk|Xk
(yk|xk) pXk|Xk−1

(xk|xk−1) pX0:k−1|Y1:k−1
(x0:k−1|y1:k−1)
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then, we have :

w
(i)
k =

pX0:k|Y1:k
(x

(i)
0:k|y1:k)

qX0:k|Y1:k
(x

(i)
0:k|y1:k)

∝
pYk|Xk

(yk|x(i)
k ) pXk|Xk−1

(x
(i)
k |x

(i)
k−1) pX0:k−1|Y1:k−1

(x
(i)
0:k−1|y1:k−1)

qXk|X0:k−1,Y1:k
(xk|x(i)

0:k−1,y1:k) qX0:k−1|Y1:k−1
(x

(i)
0:k−1|y1:k−1)

∝ w̃
(i)
k−1

pYk|Xk
(yk|x(i)

k ) pXk|Xk−1
(x

(i)
k |x

(i)
k−1)

qXk|X0:k−1,Y1:k
(x

(i)
k |x

(i)
0:k−1,y1:k)

2. What is the weight update in the case of Bootstrap particle filter ?

qXk|X0:k−1,Y1:k
(xk|x(i)

0:k−1,y1:k) = pXk|Xk−1
(xk|x(i)

k−1)

w
(i)
k ∝ w̃

(i)
k−1

pYk|Xk
(yk|x(i)

k ) pXk|Xk−1
(x

(i)
k |x

(i)
k−1)

qXk|X0:k−1,Y1:k
(x

(i)
k |x

(i)
0:k−1,y1:k)

∝ w̃
(i)
k−1pYk|Xk

(yk|x(i)
k )

as a resampling step is performed at each iteration, w̃
(i)
k−1 = 1

N
∀i so

w
(i)
k ∝ pYk|Xk

(yk|x(i)
k )

3. What is the weight update in the case of optimal importance function ?

qXk|X0:k−1,Y1:k
(xk|x(i)

0:k−1,y1:k) = pXk|Xk−1,Yk
(xk|x(i)

k−1,yk)

We have :

pXk|Xk−1,Yk
(xk|x(i)

k−1,yk) =
pYk,Xk,Xk−1

(yk,x
(i)
k ,x

(i)
k−1)

pYk,Xk−1
(yk,x

(i)
k−1)

and

pYk|Xk
(yk|x(i)

k ) pXk|Xk−1
(x

(i)
k |x

(i)
k−1) =

pYk,Xk,Xk−1
(yk,x

(i)
k ,x

(i)
k−1)

pXk−1
(x

(i)
k−1)

w
(i)
k ∝ w̃

(i)
k−1

pYk|Xk
(yk|x(i)

k ) pXk|Xk−1
(x

(i)
k |x

(i)
k−1)

qXk|X0:k−1,Y1:k
(x

(i)
k |x

(i)
0:k−1,y1:k)

∝ w̃
(i)
k−1

pYk,Xk−1
(yk,x

(i)
k−1)

pXk−1
(x

(i)
k−1)

∝ w̃
(i)
k−1 pYk|Xk−1

(yk|x(i)
k−1)
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6.1 Differential calculus

6.1.1 Directional derivative

Definition 6.1 Let f : E → R. We call Gateaux derivative, or directional derivative,
of f at point a ∈ E in direction d ∈ E

∂f

∂d
(a) = f̂ [a](d) = lim

α→0

f(a + αd)− f(a)

α

Examples:

• partial derivatives
∂f

∂xi
are directional derivatives in the direction of the members of

the canonical basis (d = ei)

∂f

∂xi
(a) = lim

α→0

f(a + αei)− f(a)

α

• Let f(x, y) = 2x2 + xy + y2 and d = (1, 2).

∂f

∂d
(x, y) = lim

α→0

f(x+ α, y + 2α)− f(x, y)

α
= lim

α→0
6x+ 5y + 8α = 6x+ 5y

6.1.2 Fréchet derivative, gradient, jacobian

Definition 6.2 Let E be a Hilbert space. Let f be a function from E to R. We say that
f is Fréchet differentiable at point a ∈ E if there exists pa ∈ E such that

f(a + d) = f(a) + 〈pa,d〉+ o(‖d‖) ∀d ∈ E (6.1)

Then pa is called the derivative or the gradient of f in a, denoted ∇f(a).

Definition 6.3 The function d → 〈∇f(a),d〉 is a linear application called differential
function or tangent linear function of f at point a.

Examples:

• In finite dimension (E = Rn), the gradient of f in a is simply

∇f(a) =


∂f

∂x1
(a)

...
∂f

∂xn
(a)


• For the previous exemple f(x, y) = 2x2 + xy + y2, we have

∇f(x, y) =

(
4x+ y
x+ 2y

)
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Very important property:
if the gradient exists, then the directional derivative in direction d is

∂f

∂d
(a) = f̂ [a](d) = 〈∇f(a),d〉 (6.2)

Examples:
• Going back to f(x, y) = 2x2+xy+y2. Its directional derivative in direction d = (1, 2)

is 6x+ 5y and its gradient is ∇f(x, y) =

(
4x+ y
x+ 2y

)
so we can verify that

〈∇f(x, y),d〉 =

(
4x+ y
x+ 2y

)
.

(
1
2

)
= (4x+ y) + 2(x+ 2y) = 6x+ 5y =

∂f

∂d
(x, y)

Definition 6.4 Let E and F be two Hilbert spaces. Let f be a function from E to F (not
necessary R). We call differential of f at point a ∈ E the linear function F[a], defined by:

f(a + d) = f(a) + F[a](d) + o(‖d‖) ∀d ∈ E (6.3)

When E and F are of finite dimension, for exemple f from Rn to Rp, F[a](d) = F[a]d,
where F[a] is the Jacobian matrix of f at point a (also called linear tangent operator).

f : Rn −→ Rp

x −→

 f1(x1, . . . , xn)
...

fp(x1, . . . , xn)

 F[a] =


∂f1
∂x1

(a) . . .
∂f1
∂xn

(a)

...
...

∂fp
∂x1

(a) . . .
∂fp
∂xn

(a)


.

6.2 Optimisation algorithm

We consider the following problem:

Problem 6.5 Find the minimum x∗:

J(x∗) = min
x∈Rn

J(x)

6.2.1 When J has a quadratic form

Let A be a p× n matrix, of rank n (p ≥ n), and b a vector of Rp. Let N be a symmetric
positive definite matrix of size p× p. Let the function J of Rn in R defined by

J(x) = ‖Ax− b‖2N = (Ax− b)TN(Ax− b)

J has a quadratic form. It is minimum for

x∗ = (ATN A)−1ATNb (6.4)
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6.2.2 Descent algorithms

For more complex function J , descent algorithms can be used for minimisation. The
minimisation algorithms start at a point x(0) and build a sequence of points x(k) which is
meant to converge to a local minimum. x(0) must be in the basin of attraction of the local
minimum. At step k of the algorithm, we determine a direction dk which is characteristic
of the method. This direction is used to define the next point of the sequence

x(k+1) = x(k) + αkdk such that J(x(k+1)) < J(x(k))

• dk ∈ Rn is the direction descent at iteration k,

• αk ∈ R is the descent step at iteration k.

There exist many methods, each one corresponding to a specific choice of αk ands dk, for
exemple :

• gradient method: dk = −∇J(x(k))

• Newton method: dk = [∇2J(xk)]
−1∇J(xk)

where ∇2J(xk) is the Hessian matrix of J .

• conjugate gradient: dk = −∇J(x(k)) + dk−1
‖∇J(x(k))‖2

‖∇J(x(k−1))‖2

• etc.

One important point here is to notice that they all need an estimation of the gradient
value ∇J(x(k)). This is detailled next section

6.2.3 Getting the gradient is not always obvious

if the size N of the state variable is very small (< 10), ∇J can be easily estimated by the
computation of growth rates:

∇J(x) =


∂J

∂x1
(x)

...
∂J

∂xN
(x)

 '
 [J(x + α e1)− J(x)] /α

...
[J(x + α eN)− J(x)] /α

 (6.5)

This calculation requires N + 1 run of the model, that can be prohibitif in actual appli-
cations like meteorology / oceanography where N = [u] = O(106 − 109). Alternatively,
the adjoint method provides a very efficient way to compute ∇J . It will be introduced in
the next chapter ... but let’s do some exercices first.
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6.3 Exercices

exercice 1

Let A be a p× n matrix, of rank n (p ≥ n), and b a vector of Rp. Let the function J of
Rn in R defined by

J(x) = ‖Ax− b‖2 = (Ax− b)T (Ax− b)

1. Compute the directional derivative of J in x in direction d = δx
2. Deduce the gradient of J
3. Deduce the expression of x∗ = minx J(x)

exercice 2

Let A be a p× n matrix, of rank n (p ≥ n), and b a vector of Rp. Let N be a symmetric
positive definite matrix of size p× p. Let the function J of Rn in R defined by

J1(x) = ‖Ax− b‖2N = (Ax− b)TN(Ax− b)

1. Deduce the gradient of J1 from the result of exercice 1.
2. Deduce the expression of x∗ = minx J1(x)

exercice 3

Let X and Y be two Hilbert spaces and 〈., .〉X , 〈., .〉Y the associated scalar products. Let
x ∈ X, y ∈ Y and d ∈ X. Let g an application from X to Y differentiable. We define f
from X to R by

f(x) = ‖g(x)− y‖2

1. Compute the directional derivative of f in x in direction d = δx
2. Deduce its gradient.

6.4 Solutions

exercice 1

J(x + α δx)− J(x) = (A(x + α δx)− b)T (A(x + α δx)− b)− (Ax− b)T (Ax− b)
= α

(
(A δx)T (Ax− b) + (Ax− b)TA δx

)
+ α2 (A δx)TA δx

Then lim
α→0

J(x + α δx)− J(x)

α
= (A δx)T (Ax− b) + (Ax− b)TA δx.

The 2 terms in the sum are equal (they are real numbers), so :

Ĵ [x](δx) = 2 (Ax− b)TA δx
= 2 〈Ax− b,A δx〉
= 2

〈
AT (Ax− b), δx

〉
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And, using (6.2), Ĵ [x](δx) = 〈∇J(x), δx〉 we can deduce:

∇J(x) = 2 AT (Ax− b) (6.6)

J is quadratic, and admits a unique minimum x∗, such that ∇J(x∗) = 0.

∇J(x∗) = 0⇔ ATAx∗ = ATb

ATA is a square matrix of size n and rank n and is inversible. Therefore

x∗ = (ATA)−1ATb (6.7)

exercice 2

N is a symmetric positive definite matrix, so we can write N = N1/2N1/2 where N1/2 is
also a symmetric positive definite matrix of size p× p. Then

J1(x) = (Ax− b)TN(Ax− b)
= (Ax− b)TN1/2N1/2(Ax− b)
= (N1/2Ax−N1/2b)T (N1/2Ax−N1/2b)

We are brought back to (7.5), by replacing A by N1/2A and b by N1/2b. Then:

∇J1(x) = 2 (N1/2A)T (N1/2Ax−N1/2b)

= 2 ATN1/2N1/2(Ax− b)

= 2 ATN(Ax− b)

and (6.7) becomes
x∗ = (ATNA)−1ATNb

exercice 3

We use (6.3)
g(x + αδx) = g(x) + αG[x]δx + o(α)

where G[x] is the jacobian of g in x, that is a linear application from X to Y . Then it is
similar as exercice 1 and the result is ∇f(x) = 2GT

[x](g(x)− y).
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Let us recall that Data assimilation is the process by which observational data are
fused with scientific information. Several sources of information may be available on the
system we are interested in :

• observations y and associated mapping H
• an evolution model M
• a background xb of the state of the system at an initial moment (which therefore

of course allows, by propagating it by the model M, to have a draft of the whole
trajectory of the system)
• all associated errors

In the two previous chapter, we have been interested in the Bayesian approach to the
problem, deducing from the optimal filter the Kalman filter, the Ensemble Kalman filter
and the particle filter.

Let us know turn to the variational approach. As explained in §3.3.1 finding the
best possible estimate can be done through the definition of a functional quantifying a
discrepancy between the state of the system x and the two available sources of information,
i.e. the background xb and the observations y. We then look for the optimal state xa,
also called analysis, which minimizes this functional.

xa = min
x
J(x)

where J(x) is a cost function defined to measure the misfit between available information
(background and observation) and model.

7.1 Expression of the cost function J

In the general case we aim at estimating the trajectory x = [x0,x1, . . . ,xK ] by
minimizing the cost function

J(x) = J b(x) + Jq(x) + Jo(x)

• J b(x) stands for the a priori term,

J b(x) =
1

2
‖x0 − xb‖2P−1

b

The notation ‖x‖2A = xTAx is used to denote the norm associated to the scalar
product defined by the symetric positive definite matrix A.
• Jo(x) stands for the data term

Jo(x) =
1

2

K∑
k=1

‖Hk(xk)− yk‖2R−1
k

• Jq(x) stands for the model term

Jq(x) =
1

2

K∑
k=1

‖xk −Mk−1→k(xk−1)‖2Q−1
k
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When the cost function has been set, then the problem is entirely defined, and so is its
solution. The “physical” part lies in the definition of J , the choice of the covariance
matrices, the background, etc. Finding the solution once the cost function has been
defined is “only” technical work.

With a perfect model In practice, in the variational framework, the model is almost
always supposed to be perfect. In that case, the term Jq is equal to 0 ; and the problem
of estimating x is brought back to a proper estimation of the initial condition x0, with

J(x0) = J b(x0) + Jo(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2

K∑
k=1

‖Hk(M0→k(x0))− yk‖2R−1
k

(7.1)

In the simple stationary case we have:

J(x0) = J b(x0) + Jo(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2
‖H(x0)− y‖2R−1

7.1.1 link with the Bayesian approach

Finding the minimum of the cost function J(x0) as in (7.1) (i.e. with a perfect model) is
equivalent to find the maximum of the probability distribution pX0|Y1:k

(x0|y1:k):

pX0|Y1:k
(x0|y1:k) ∝ pY1:k|X0(y1:k|x0) pX0(x0)

with

pY1:k|X0(y1:k|x0) =
K∏
k=1

pYk|X0(yk|x0)

=
K∏
k=1

pYk|Xn(yk|xn =M0→k(x0)) (7.2)

Now by making the assumptions that X0 ∼ N (X0;xb,Pb) and Yk|Xk ∼ N (Yk;Hk Xk,Rk),
we get:

pX0|Y1:k
(x0|y1:k) ∝ exp

(
−1

2
‖x0 − xb‖2P−1

b
+

1

2

K∑
k=1

‖Hk(M0→k(x0))− yk‖2R−1
k

)

i.e. pX0|Y1:k
(x0|y1:k) ∝ exp−J(x0).
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7.2 Minimising J

7.2.1 One minimum, several minima ?

We will consider the case where the cost function is composed of 2 terms, J b and Jo. J b

has the good property of being convex ; whereas the nature of Jo depends on the nature
of the operator H and M.
• If H and M are linear. Considering only Jo, the optimisation problem can be un-

derdetermined, if the number of observations is lower than the size of the unknown.
Adding J b leads the problem to be well posed. The cost function is quadratic.
• If H andM are non both linear, Jo is no longer convex, and may admit several local

minima. Adding J b ease the problem by regularising it but without fundamentaly
changing it.

7.2.2 Introduction to the adjoint method

Previously seen optimisation methods require the computation of ∇J . If the dependance
of J on the control variable x is complex and/or indirect, this computation can be com-
plicated. Numerically, we can still use growth rate approximations. But this allows only
to compute one directional derivative, and we would need to do this for each component
of the gradient. If the dimension of the state is large, it will be costful. In practical
applications, it is usually impossible to do so, e.g., in oceanography and meteorology, the
initial state space dimension is larger than 107.

Let us take the case for J has the following form :

J(x) =
1

2

K∑
k=1

‖Gk(x)− yk‖2R−1
k

=
1

2

K∑
k=1

(Gk(x)− yk)
T R−1k (Gk(x)− yk)

Let us give the expression of the directionnal derivative of J in x. Denoting by
x̃ = x + α δx, we have

J(x + α δx)− J(x)

α
=

1

2α

K∑
k=1

(Gk(x̃)− yk)
T R−1k (Gk(x̃)− yk)

−(Gk(x)− yk)
T R−1k (Gk(x)− yk)

=
1

2

K∑
k=1

(
Gk(x̃)− Gk(x)

α

)T
R−1k (Gk(x̃)− yk)

+
1

2

K∑
k=1

(Gk(x)− yk)
T R−1k

(
Gk(x̃)− Gk(x)

α

)
=

K∑
k=1

(
Gk(x̃)− Gk(x)

α

)T
R−1k (Gk(x̃)− yk)

Using (6.3), we have

Gk(x̃) = Gk(x) + α Gk[x] δx + o
(
‖δx‖2

)
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where Gk[x] is the jacobian matrix of Gk at point x. Then,

lim
α→0

Gk(x̃)− Gk(x)

α
= Gk[x]δx (7.3)

and

Ĵ [x](δx) =
K∑
k=1

(Gk[x]δx)T R−1k [Gk(x)− yk] (7.4)

Ĵ [x](δx) = δxT
∑K

k=1 GT
k[x] R

−1
k (Gk(x)− yk)

= < δx ,

K∑
k=1

GT
k[x] R

−1
k (Gk(x)− yk) >

And, using (6.2), Ĵ [x](δx) = 〈∇J(x), δx〉 = 〈δx,∇J(x)〉 we can deduce:

∇J(x) =
K∑
k=1

GT
k[x] R

−1
k (Gk(x)− yk) (7.5)

GT
k[x] is called the adjoint operator, and corresponds to the transpose of the Jacobian of
Gk at point x.

7.2.3 The adjoint operator

Let us take as exemple :

J(x0) =
1

2

K∑
k=1

‖Gk(x0)− yk‖2R−1
k

with

Gk(x0) = Hk(M0→k(x0)) = Hk ◦M0→k(x0) = Hk ◦Mk−1→k ◦ · · · ◦M0→1(x0)

Let us notice that each application ofMk−1→k corresponds to the integration of the model,
wich can be a big peace of code for some application, e.g. oceanography or meteorology.
Then

∇J(x0) =
K∑
k=1

GT
k[x0]

R−1k (Gk(x0)− yk) (7.6)

Denoting by Hk, respectively Mk−1,k the jacobian of Hk, respectively Mk−1→k, for all k,
we have

Gk[x0] = Hk[xk] Mk−1,k[xk−1] . . .M0,1[x0]

where xk = M0→k(x0) results from the model integration. Then the adjoint operator
writes

GT
k[x0]

= MT
0,1[x0]

. . .MT
k−1,k[xk−1]

HT
k[xk]

It is important to notice that the adjoint operator implies a reverse operation in time.
At this point, it seems that an adjoint operator has to be apply for each elements of
the sum in (7.6). However, the interest in using this gradient formulae is the fact that
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computations can be factorised. Let us take the example of K = 3, and 3 observations
y1, y2 and y3:

∇J(x0) = GT
3[x0]

R−13 (G3(x0)− y3) + GT
2[x0]

R−12 (G2(x0)− y2) + GT
1[x0]

R−11 (G1(x0)− y1)

= MT
0,1[x0]

MT
1,2[x1]

MT
2,3[x2]

HT
3[x3]

R−13 (G3(x0)− y3)

+MT
0,1[x0]

MT
1,2[x1]

HT
2[x2]

R−12 (G2(x0)− y2)

+MT
0,1[x0]

HT
1[x1]

R−11 (G1(x0)− y1)

∇J(x0) = MT
0,1[x0][
MT

1,2[x1]{
MT

2,3[x2]
HT

3[x3]
R−13 (G3(x0)− y3) + HT

2[x2]
R−12 (G2(x0)− y2)

}
+HT

1[x1]
R−11 (G1(x0)− y1)

]
In order to ease the tangent and adjoint coding, several automatic differentiation tools are
available. They take as input your direct model code and create the tangent and adjoint
model (TAM) codes.

7.3 Algorithms in practice - Stationary case

Let us make the assumption that the model is stationary. Then x = x0 and the cost
function is :

J(x0) = J b(x0) + Jo(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2
‖H(x0)− y‖2R−1

7.3.1 Linear stationary case

As seen before, when H is linear, J has a quadratic form. Minimising J is a least-square
problem, for which we know the exact solution. the cost function is

J(x0) = J b(x0) + Jo(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2
‖Hx0 − y‖2R−1

by replacing A,b and N in (6.4) such as

A =

(
In
H

)
b =

(
xb

y

)
N =

(
P−1b 0
0 R−1

)
(7.7)

we get
xa = xb + (P−1b + HTR−1H)−1HTR−1(y −Hxb) (7.8)

With the help of the Sherman-Morrison-Woodbury formula, we can recognise the Kalman
filter update equation.

Let us also remark that in high dimensional problem, one may need the expression of
the gradient of the of J which is given by

∇J(x0) = P−1b (x0 − xb) + HTR−1(Hx0 − y) (7.9)
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7.3.2 Non linear stationary case: 3D-Var algorithm

Let us know consider the case when H is non-linear. For time depending problems,
the 3D-Var algorithm is a simplification of the full variational data assimilation scheme,
making the assumption that the model is stationary over the assimilation window. This
algorithm is more dedicated to stationary problems, however it has been used for long
(and still is) for non stationary problems but with large dimension. In that case, the
observations y although depending on time, are considered as observation of the initial
time.

Temps

X

Fenêtre d’assimilation

Prévision précédente

Prévision supposée

obs

obs

obs
obs

obs

Xa

Jobs

Jobs

Jobs

Jobs

Jobs

XbJ
b

Figure 7.1: 3D-var

The cost function of 3D-Var is:

J(x0) = J b(x0) + Jo(x0)

=
1

2
‖x0 − xb‖2P−1

b
+

1

2
‖H(x0)− y‖2R−1

The gradient of J is given by

∇J(x0) = P−1b (x0 − xb) + HT
[x0]

R−1(H(x0)− y)

where H[x0] is the Jacobian of H at x0.
The minimization algorithm is a gradient-descent iterative algorithm. It uses the fact

that ∇J is small enough as stopping criterion, in general a maximal number of iterations
imax is also given:
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3D-Var algorithm

• Initialisation : x0 = xb, i = 0

• While ‖∇J‖ > ε or i ≤ imax, do :

1. Compute J
2. Compute ∇J
3. Descent and update of x0

4. i = i+ 1

This type of analysis has been used operationally in meteorological weather services
in the 1990’s. In the 2000’s it has been replaced in many centres by the 4D-Var, a
generalisation of the 3D-Var that we shall discuss later.

7.4 Algorithms in practice - Non-stationary case

Let us now consider the case described in §7.1, with the model supposed to be perfect.
Then, the cost function is

J(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2

K∑
k=1

‖Hk(M0→k(x0))− yk‖2R−1
k

7.4.1 Linear non-stationary case

We first study the case where Hk and M are linear. Then :

M0→k(x0) = M0,k x0 = Mk−1,k . . .M1,2 M0,1 x0

J(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2

K∑
k=1

‖Hk Mk−1,k . . .M1,2M0,1x0 − yk‖2R−1
k

By using the following expressions in (7.7)

H =

 H1M0,1
...

HKM0,K

 y =

 y1
...

yK

 R−1 =


R−11 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 R−1K


we can use the previous result of the stationary case, and the expression of the minimum
of J is :

xa = xb +

[
P−1b +

K∑
k=1

MT
0,kH

T
kR−1k HkM0,k

]−1 K∑
k=1

MT
0,kH

T
kR−1k (yk −HkM0,kx

b)
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7.4.2 Non linear non stationary case: 4D-Var algorithm

4D-Var is a generalisation of 3D-Var to time-depending problems, with observations
spanned over a time-window. The model is supposed to be perfect so that the cost
function is written as a function of the initial state x0. The cost function is again (7.1).

J(x0) =
1

2
‖x0 − xb‖2P−1

b
+

1

2

K∑
k=1

‖Hk(M0→k(x0))− yk‖2R−1
k

The gradient of J is given by:

∇J(x0) = P−1b (x0 − xb) +
K∑
k=1

MT
0,1[x0]

. . .MT
k−1,k[xk−1]

HT
k[xk]

R−1k (Hk(M0→k(x0)− yk)

We will denote dk the innovation vector : dk = yk −Hk(M0→k(x0))

Temps

X

Fenêtre d’assimilation

Prévision précédente

Prévision corrigée

obs

obs

obs
obs

obs

Xa

Jobs

Jobs

Jobs

Jobs

Jobs

Xb

Jb

Figure 7.2: 4D-var
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4D-Var algorithm

• Initialisation: x0 = xb i = 0

• Do while ‖∇J‖ > ε or i ≤ imax:

1. Compute J and dk thanks to the model and the observation

operator :

dk = yk −Hk(M0→k(x0))

J(x0) = (x0 − xb)TP−1b (x0 − xb) +
K∑
k=1

dTkR
−1
k dk

2. Compute ∇J thanks to the adjoint models MT and the adjoint

observation operators HT in reverse mode:

∇J(x0) = P−1b (x0 − xb)

−
∑K

k=1 MT
0,1[x0]

. . .MT
k−1,k[xk−1]

HT
k[xk]

R−1k dk

3. Update x0 (descent step)

4. i = i+ 1

7.5 Exercices

1. prove equation (7.8)
2. prove equation (7.9)

7.6 Solutions

1. prove equation (7.8)
We use the facts that :

ATNA = P−1b + HTR−1H

and

ATNb = P−1b + HTR−1y = (P−1b + HTR−1H−HTR−1H)xb + HTR−1y

2. prove equation (7.9) Use the solutions of last week
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