Prioritized multi-objective optimization of the flight performance of a SuperSonic Business Jet (SSBJ)

(Courstesy of Dassault Aviation)

Fifteen sizing parameters defining a generic geometry of a Super Sonic Business Jet (SSBJ) all subject to interval bounds (see Table 1 below) have been optimized concurrently to maximize flight performance in terms of mass at take-off (to be minimized), range (to be maximized), approach speed (to be reduced) under a bound constraint on take-off distance. This optimization was conducted within the ANR Project "OMD" on multi-disciplinary optimization. The generic geometry was also utilized in the European Project HISAC.

Physical model: Breguet's laws permitting to calculate analytically the aircraft flight performance in terms of 15 sizing variables subject to interval bounds (software by courtesy of Dassault Aviation).

symbol	significance	lower bound	upper bound
(X_i)	(unit)	$X_{i,\min}$	$X_{i,\max}$
Z	cruise altitude (m)	8000	18500
xmach	cruise Mach number	1.6	2.0
S	wing reference surface (m^2)	100	200
phi0w	wing leading-edge sweep angle $(^{o})$	40	70
phi100w	wing trailing-edge sweep angle $(^{o})$	-10	20
xlw	wing taper ratio	0.05	0.50
t_cw	wing relative thickness	0.04	0.08
phi0t	vertical-tail leading-edge sweep angle $(^{o})$	40	70
phi100t	vertical-tail trailing-edge sweep angle $(^{o})$	0	10
xlt	vertical-tail taper ratio	0.05	0.50
t_ct	vertical-tail relative thickness	0.05	0.08
dfus	fuselage diameter (m)	2.0	2.5
wfuel	fuel mass (kg)	$15,\!000$	40,000
alpha	landing maximum angle of attack $(^{o})$	10	15
xfac	mlw/tow, landing to take-off mass ratio $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$	0.85	0.95

Table 1: Physical design variables in the flight-mechanics test-case and their specified bounds

Optimization objective via 'Prioritized multi-objective optimization method":

- 1. First phase: minimize take-off mass and maximize range subject to a bound constraint on take-off distance by Pareto Archived Evolutionary Strategy (PAES); elect a Pareto-optimal solution \mathbf{x}_{A}^{\star} .
- 2. Second phase: construct a continuum of Nash equilibria as a path originating from \mathbf{x}_A^{\star} tangent to the above Pareto front (in function space) to reduce approach speed via the MGDA software platform (https://mgda.inria.fr).

Result: reduced approach speed while quasi maintaining the mass-range Pareto optimality¹.

Left: Primary mass-range Pareto front and five continua of Nash equilibria (abscissa: mass in kg; ordinate: -range in m); right: reduced approach speed along the green continuum path.

¹Ref.: Prioritized optimization by Nash games : towards an adaptive multi-objective strategy , J.-A. Désidéri and R. Duvigneau, ESAIM: Proceedings and Surveys, EDP Sciences, 2021. https://hal.inria.fr/hal-03430912