MINH-QUAN DAO

Email: minh-quan.dao@inria.fr

EDUCATION

École Centrale de Nantes (ECN)

Nantes, France

PhD in Robotics

2020 - 2023

 Thesis: Toward Solving Occlusion and Sparsity in Deep Learning-Based 3D Object Detection Through Collaborative Perception

Master of Control and Robotics

2018 - 2020

GPA: 3.80/4.00 (Ranked 1)

Ho Chi Minh City University of Technology (HCMUT)

Ho Chi Minh City, Vietnam

Bachelor of Engineering in Mechatronics Engineering

GPA: 7.82/10.00 (Ranked 3)

08/2012 – 12/2017

COMPETENCIES

Postdoc (Full time)

• Scientific: object detection, multi-sensor fusions, multi-object tracking

• Programming: PyTorch, Python, C++

SELECTED WORK & TEACHING EXPERIENCE

Institut national de recherche en sciences et technologies du numérique (INRIA)

Valbonne, France

12/2023 - Present

- Developing a V2X cooperative perception method for autonomous vehicles with a focus on accurate detection of vulnerable road users
- Developing label-efficient methods for LiDAR-based object detection
- Collaborating with AVE Lab of KAIST (Korea) on building object detection methods based on 4D Radar
- Building a collaborative perception dataset in collaboration with the Australian Centre for Robotics and the ML Core Lab of Cornell University

Australian Centre for Robotics (ACFR)

Sydney, Australia

Visiting researcher (Full time)

05/2023 - 08/2023

- Integrated RGB cameras and LiDARs to build a roadside unit that currently deployed at an intersection of Sydney
- Developed a collaborative perception method for 3D object detection that outperformed the state-of-the-art in terms of performance-bandwidth tradeoff

Département Automatique et Robotique, École Centrale de Nantes (ECN)

Nantes, France

Teaching Assistant (Part-time)

10/2020 - 11/2023

- Developed lab materials (documents + codes in Python), instructed students during lab sessions, and graded their work in the following courses of the Master's degree in Advanced Robotics offered at ECN: Computer Vision, AI for Robotics, Advanced Visual Geometry, Autonomous Vehicles.
- Co-supervised the thesis entitled "Deep learning-based automatic UAV detection and tracking using embedded fisheye cameras" with Prof. Vincent Frémont and Dr. Julian Erskine

HONORS & AWARDS

- Admitted to study MS program in Advanced Robotics at École Centrale de Nantes (Fall 2018) with Centrale Nantes Elite Scholarship
- AmCham Scholarship granted by the American Chamber of Commerce in Vietnam (2017)
- The Third Prize in the National Mechanics Olympiad (2016)

PUBLICATIONS

Journals

- [1] **Minh-Quan Dao**, Julie Stephany Berrio, Vincent Frémont, Mao Shan, Elwan Héry, Stewart Worrall, "Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection", IEEE Transaction on Intelligent Transportation System (2024)
- [2] Minh-Quan Dao, and Frémont, V., A Two-Stage Data Association Approach for 3D Multi-Object Tracking, Sensors, MDPI, 2021

Conferences

- [3] **Minh-Quan Dao,** Holger Caesar, Julie Stephany Berrio, Mao Shan, Stewart Worrall, Vincent Frémont, and Ezio Malis. "Label-Efficient 3D Object Detection For Road-Side Units." IEEE Intelligent Vehicles Symposium (IV), South Korea, 2024.
- [4] **Minh-Quan Dao**, Vincent Frémont, Elwan Héry, "Aligning Bird-eye View representation of Point Cloud Sequences using Scene Flow", IEEE Intelligent Vehicles Symposium (IV), US, 2023
- [5] **Minh-Quan Dao**, Elwan Héry, Vincent Frémont, "Attention-based Proposals Refinement for 3D Object Detection", IEEE Intelligent Vehicles Symposium (IV), Germany, 2022
- [6] Haixin Sun, **Minh-Quan Dao**, Vincent Frémont, "3D-FlowNet: Event-based optical flow estimation with 3D representation", IEEE Intelligent Vehicles Symposium (IV), Germany, 2022
- [7] **Minh-Quan Dao**, D. Lanza, V. Frémont, "End-to-End Deep Neural Network Design for Short-term Path Planning," 11th IROS Workshop on Planning, Perception, Navigation for Intelligent Vehicles (PPNIV), 2019
- [8] Quan Minh Dao, Vu Thai Anh Tran, Cong Tran Thanh Vu, Quan Tuong Vo, "A study on cascade design for CPG-based controller of a planar snake robot," 2017 IEEE Conference on Systems, Process, and Control (ICSPC), Malaysia, 2017
- [9] Quan Minh Dao, Quan Tuong Vo, "Design of a CPG-based close-loop direction control system for lateral undulation gait of snake-like robots," IEEE International Conference on Advanced Technology for Communications (ATC), Vietnam, 2017

Under review

- [10] Katie Z Luo*, Minh-Quan Dao*, Zhenzhen Liu*, Mark Campbell, Wei-Lun Chao, Kilian Q Weinberger, Ezio Malis, FREMONT Vincent, Bharath Hariharan, Mao Shan, Stewart Worrall, Julie Stephany Berrio Perez, "Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X Collaboration". Submitted to CVPR 2025
- [11] Seung-Hyun Song, Dong-Hee Paek, **Minh-Quan Dao**, Ezio Malis, Seung-Hyun Kong, "A Novel Multi-Teacher Knowledge Distillation for Real-Time Object Detection using 4D Radar". Submitted to IEEE RA-L in December 2024
- [12] **Minh-Quan Dao**, Ezio Malis, "A Novel Framework For Robust Collaborative Perception Against Adversarial Agents". Submitted to IEEE Intelligent Vehicles Symposium (IV) 2025