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Iterative algorithms
Synchronization requirements

Design a control and communication tool

O Locks with read-write (inclusive-exclusive) semantics

Q A predicable scheduling semantic:

avoid deadlocks liveness
progress uniformly equity
control operation order reproducibility
© Control overhead shouldn’t dominate resource utilization efficiency
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Resource centered computing
Resource centered computing

Everything is resource

data: input, output, temporaries
hardware: CPU, memory (L1, L2, RAM), GPU, communication links

software: specialized functions, data transformations

Desired properties for each operation

feasibility: resources are available

consistency: resources are in defined states

performance: computations don’t step on each other

Access to resources is regulated through a FIFO
dead lock free: check at compile time or startup

homogeneous: all “operations” should get equal share

simple: easy to use
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Resource centered computing
Existing tools

o designed for either parallel computing (threads, atomic ops)
or distributed computing (MPI)

o local copying between buffers (MPI)

o separation of control and data (mutex)

o modification order is scheduling dependent

o lock order is either arbitrary or priority based (threads)

o atomic operations are limited to word-sized data (or inefficient)
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Resource centered computing
Software Stack

Parallel and distributes applications

Scientific computing libraries

Directive-based parallel languages

ORWL.: Low level parallel lang.
C & high level & libs
parallel extension & lib. (Pthreads, CUDA....)
ORWL runtime Runtime

(O}

Distributed and heterogeneous resources
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An adaptative tool for resource control

ORWL, Ordered Read-Write Locks

o FIFO-policy based waiting queue

o A distinction between request and acquire operations

o A distinction between locks (as opaque objects) and lock-handles (as
user interfaces acting on locks).

o A distinction into exclusive or write locks and inclusive or read locks.

The typical sequence for an access is

request acquire release
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An adaptative tool for resource control
ORWL: the task model

decomposition of an execution

Task is a logical unit of execution
It describes a set of computations that belong together from
an application point of view, example:

manipulation of a matrix block in one iteration step

Operation is a specific computation that a task has to perform on a
particular resource, examples:
o the computation that is to be performed on a block of
the matrix
o the update to the boundary information that the task
has to perform
o a collective operation to verify the quality of the result
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An adaptative tool for resource control
ORWL: the resource model

identifiable resources: unity of localization, data and control
Each resource in ORWL has

location a “primary” task and unique ID that identifies the resource:

ORWL LOCATION(taskID, locationID)

associated data a binary (untyped) data with a given size:
The application controls size (orwl_scale) and contents.

abstract There is no off-limits interface to control the data directly,
only several competing “handles” to the same location.

quantifiable resources: relaxed variant

we only need “one of many” for a computation: CPU, L1 cache, L2 cache,
blocks of RAM
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An adaptative tool for resource control
ORWL: schematic task view

_~ Taski
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An adaptative tool for resource control

ORWL: inner computation loop

for (size t orwl phase = 0; orwl phase < maxPhases; ++orwl phase) {

}

// computation operation
ORWL SECTION(&myBlockComp) {
doublex data = orwl_ write_map(&myBlockComp);
ORWL SECTION(&IneighBound) {
double constx IData = orwl_read map(&IneighBound);
// do the real computation here
block _computation(n, data, m, IData);
}
}

// update operation
ORWL_SECTION(&myBlockUpd) {
double constx data = orwl read map(&myBlockUpd);
ORWL_SECTION(&myBound) {
doublex bData = orwl write _map(&myBound);
update _boundary(m, bdata, n, data);
}
}
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An adaptative tool for resource control
ORWL: properties

Model for iterative computation

o deadlock-free

@ homogeneous progression of tasks

Implementation
o transparent use on multi-core or cluster
o build on top of the C11 thread model
o type-generic interfaces
o OpenMP compatible
o CUDA compatible
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Experiments
Experimental Setting

Dense matrix multiplication

A common framework implemented with ORWL, block-cyclic MM.

Three compute kernels, work seamlessly together:
o Hand crafted legacy code
o BLAS/ATLAS dgemm optimized for the target architecture
o CUBLAS for GPU computations
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Experiments

Experimental Setting

pastel cluster Grid5000 platform
o up to 60 processors, 180 cores

lemans multicore ICube lab
o 24 cores at 800 MHz
cameron cluster SUPELEC Metz

o 16 nodes, each 6 cores at 3.2 GHz and 8 GiB of memory

o per node 12 cores hyperthreaded, but only 6 L2 caches
o per node 1 NVIDIA GeForce GTX580 with 512 CUDA cores and 1.5
GiB

o 10 Gigabit Ethernet interconnection network
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Experiments
lemans, 24 core
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Experiments
cameron, constant sized problem
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Experiments
cameron, maximum sized problem
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Experiments

pastel, up to 60 processors 180 cores
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Experiments

cameron, maximum size problem, hybrid, including GPU
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Conclusions

A new Synchronization Tool

Ordered Read-Write Locks

o simple usage for critical sections

o proactive announcement of requirements

alternating resource allocation in iterative computations
provably deadlock free

offline copy between remote hosts

zero copy between threads

almost perfect computation/communication overlap
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weak scaling
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proactive announcement of requirements

alternating resource allocation in iterative computations
provably deadlock free

offline copy between remote hosts

zero copy between threads

almost perfect computation/communication overlap

weak scaling

Questions? jens.gustedt@inria.fr
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Conclusions
Supplement: Execution of iterative tasks

Evolution rule

Q Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

O Release requests (current iteration)

FIFO
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