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Iterative algorithms

Iterative application

Properties Design
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• Discrete data space blocks of data •

• Local computation local addressing •

• Iterative computation common loop •

• Out-of-core computation synchronize comm and comp •

LINPACK example: Livermore Kernel 23
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Iterative algorithms

Local view of an iterative task

Block of a Matrix
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Iterative algorithms

Local view of an iterative task

Computing
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Local view of an iterative task

Waiting
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Iterative algorithms

Synchronization requirements

Design a control and communication tool
1 Locks with read-write (inclusive-exclusive) semantics
2 A predicable scheduling semantic:

avoid deadlocks liveness

progress uniformly equity

control operation order reproducibility

3 Control overhead shouldn't dominate resource utilization e�ciency
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Resource centered computing

Resource centered computing

Everything is resource

data: input, output, temporaries

hardware: CPU, memory (L1, L2, RAM), GPU, communication links

software: specialized functions, data transformations

Desired properties for each operation

feasibility: resources are available

consistency: resources are in de�ned states

performance: computations don't step on each other

Access to resources is regulated through a FIFO

dead lock free: check at compile time or startup

homogeneous: all �operations� should get equal share

simple: easy to use
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Resource centered computing

Existing tools

designed for either parallel computing (threads, atomic ops)
or distributed computing (MPI)

local copying between bu�ers (MPI)

separation of control and data (mutex)

modi�cation order is scheduling dependent

lock order is either arbitrary or priority based (threads)

atomic operations are limited to word-sized data (or ine�cient)
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Resource centered computing

Software Stack
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An adaptative tool for resource control

ORWL, Ordered Read-Write Locks

Properties

FIFO-policy based waiting queue

A distinction between request and acquire operations

A distinction between locks (as opaque objects) and lock-handles (as
user interfaces acting on locks).

A distinction into exclusive or write locks and inclusive or read locks.

The typical sequence for an access is

request acquire release
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An adaptative tool for resource control

ORWL: the task model

decomposition of an execution

Task is a logical unit of execution
It describes a set of computations that belong together from
an application point of view, example:

manipulation of a matrix block in one iteration step

Operation is a speci�c computation that a task has to perform on a
particular resource, examples:

the computation that is to be performed on a block of
the matrix
the update to the boundary information that the task
has to perform
a collective operation to verify the quality of the result
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An adaptative tool for resource control

ORWL: the resource model

identi�able resources: unity of localization, data and control

Each resource in ORWL has

location a �primary� task and unique ID that identi�es the resource:

ORWL_LOCATION(taskID, locationID)

associated data a binary (untyped) data with a given size:
The application controls size (orwl_scale) and contents.

abstract There is no o�-limits interface to control the data directly,
only several competing �handles� to the same location.

quanti�able resources: relaxed variant

we only need �one of many� for a computation: CPU, L1 cache, L2 cache,
blocks of RAM
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An adaptative tool for resource control

ORWL: schematic task view
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An adaptative tool for resource control

ORWL: inner computation loop

f o r ( s i z e_t orwl_phase = 0 ; orwl_phase < maxPhases ; ++orwl_phase ) {

// computat ion o p e r a t i o n
ORWL_SECTION(&myBlockComp ) {

double∗ data = orwl_write_map(&myBlockComp ) ;
ORWL_SECTION(& lne ighBound ) {

double const ∗ lData = orwl_read_map(& lne ighBound ) ;
// do the r e a l computat ion he r e
block_computation (n , data , m, lData ) ;

}
}

// update o p e r a t i o n
ORWL_SECTION(&myBlockUpd ) {

double const ∗ data = orwl_read_map(&myBlockUpd ) ;
ORWL_SECTION(&myBound) {

double∗ bData = orwl_write_map(&myBound ) ;
update_boundary (m, bdata , n , data ) ;

}
}

}
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An adaptative tool for resource control

ORWL: properties

Model for iterative computation

deadlock-free

homogeneous progression of tasks

Implementation

transparent use on multi-core or cluster

build on top of the C11 thread model

type-generic interfaces

OpenMP compatible

CUDA compatible
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Experiments

Experimental Setting

Dense matrix multiplication

A common framework implemented with ORWL, block-cyclic MM.

Three compute kernels, work seamlessly together:

Hand crafted legacy code

BLAS/ATLAS dgemm optimized for the target architecture

CUBLAS for GPU computations
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Experiments

Experimental Setting

pastel cluster Grid5000 platform

up to 60 processors, 180 cores

lemans multicore ICube lab

24 cores at 800 MHz

cameron cluster SUPÉLEC Metz

16 nodes, each 6 cores at 3.2 GHz and 8 GiB of memory

per node 12 cores hyperthreaded, but only 6 L2 caches

per node 1 NVIDIA GeForce GTX580 with 512 CUDA cores and 1.5
GiB

10 Gigabit Ethernet interconnection network
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Experiments

lemans, 24 core

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 16/ 21



Experiments

cameron, constant sized problem
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Experiments

cameron, maximum sized problem
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Experiments

pastel, up to 60 processors 180 cores
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Experiments

cameron, maximum size problem, hybrid, including GPU
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Conclusions

A new Synchronization Tool

Ordered Read-Write Locks

simple usage for critical sections

proactive announcement of requirements

alternating resource allocation in iterative computations

provably deadlock free

o�ine copy between remote hosts

zero copy between threads

almost perfect computation/communication overlap

weak scaling

Questions? jens.gustedt@inria.fr
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Conclusions

Supplement: Execution of iterative tasks

Evolution rule
1 Acquire all requests (current iteration)
2 Post new requests (next iteration)
3 Compute
4 Release requests (current iteration)
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