Resource Centered Computation with
Ordered Read-Write Locks

Jens Gustedt Stéphane Vialle
INRIA & ICube SUPELEC
Strasbourg, France Metz, France

collaboration with:
Pierre-Nicolas Clauss, Emmanuel Jeanvoine

ToEd oy
i Grig’5000
Supélec Wik

Lo 1ICU3E

INRIA project lab MULTICORE
Large scale multicore virtualization for performance scaling and portability

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 1/ 21

Iterative algorithms

Outline

@ Iterative algorithms

o
o
(%)
o

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 1/ 21

Iterative algorithms

lterative application

Properties Design

o Discrete data space blocks of data e

o Local computation

local addressing o

o lterative computation common loop e

» Out-of-core computation synchronize comm and comp e

LINPACK example: Livermore Kernel 23

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 2/ 21

Iterative algorithms

Local view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 3/ 21

Iterative algorithms
Local view of an iterative task

|

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 3/ 21

Iterative algorithms
cal view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

.

Iterative algorithms
Local view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 3/ 21

Iterative algorithms
Local view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 3/ 21

Iterative algorithms
ocal view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

Iterative algorithms
al view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

Iterative algorithms
ew of an iterative task

|
]

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

Il

Iterative algorithms
iew of an iterative task

.
-

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

Il

Iterative algorithms
view of an iterative task

.
-

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

.

Iterative algorithms
cal view of an iterative task

Resource Centered Computation with Ordered Read-Write Locks 3/ 21

.

Iterative algorithms
Synchronization requirements

Design a control and communication tool

O Locks with read-write (inclusive-exclusive) semantics

Q A predicable scheduling semantic:

avoid deadlocks liveness
progress uniformly equity
control operation order reproducibility
© Control overhead shouldn’t dominate resource utilization efficiency

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 4/ 21

Resource centered computing

Outline

o

© Resource centered computing

o
(%)
o

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 4/ 21

Resource centered computing
Resource centered computing

Everything is resource

data: input, output, temporaries
hardware: CPU, memory (L1, L2, RAM), GPU, communication links

software: specialized functions, data transformations

Desired properties for each operation

feasibility: resources are available

consistency: resources are in defined states

performance: computations don’t step on each other

Access to resources is regulated through a FIFO
dead lock free: check at compile time or startup

homogeneous: all “operations” should get equal share

simple: easy to use

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 5/ 21

Resource centered computing
Existing tools

o designed for either parallel computing (threads, atomic ops)
or distributed computing (MPI)

o local copying between buffers (MPI)

o separation of control and data (mutex)

o modification order is scheduling dependent

o lock order is either arbitrary or priority based (threads)

o atomic operations are limited to word-sized data (or inefficient)

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 6/ 21

Resource centered computing
Software Stack

Parallel and distributes applications

Scientific computing libraries

Directive-based parallel languages

ORWL.: Low level parallel lang.
C & high level & libs
parallel extension & lib. (Pthreads, CUDA....)
ORWL runtime Runtime

(O}

Distributed and heterogeneous resources

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 7/ 21

An adaptative tool for resource control

Outline

o
o

© An adaptative tool for resource control

(%)
o

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 7/ 21

An adaptative tool for resource control

ORWL, Ordered Read-Write Locks

o FIFO-policy based waiting queue

o A distinction between request and acquire operations

o A distinction between locks (as opaque objects) and lock-handles (as
user interfaces acting on locks).

o A distinction into exclusive or write locks and inclusive or read locks.

The typical sequence for an access is

request acquire release

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 8/ 21

An adaptative tool for resource control
ORWL: the task model

decomposition of an execution

Task is a logical unit of execution
It describes a set of computations that belong together from
an application point of view, example:

manipulation of a matrix block in one iteration step

Operation is a specific computation that a task has to perform on a
particular resource, examples:
o the computation that is to be performed on a block of
the matrix
o the update to the boundary information that the task
has to perform
o a collective operation to verify the quality of the result

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 9/ 21

An adaptative tool for resource control
ORWL: the resource model

identifiable resources: unity of localization, data and control
Each resource in ORWL has

location a “primary” task and unique ID that identifies the resource:

ORWL LOCATION(taskID, locationID)

associated data a binary (untyped) data with a given size:
The application controls size (orwl_scale) and contents.

abstract There is no off-limits interface to control the data directly,
only several competing “handles” to the same location.

quantifiable resources: relaxed variant

we only need “one of many” for a computation: CPU, L1 cache, L2 cache,
blocks of RAM

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 10/ 21

An adaptative tool for resource control
ORWL: schematic task view

_~ Taski
Handles
== 3

N

theBound

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 11/ 21

An adaptative tool for resource control

ORWL: inner computation loop

for (size t orwl phase = 0; orwl phase < maxPhases; ++orwl phase) {

}

// computation operation
ORWL SECTION(&myBlockComp) {
doublex data = orwl_ write_map(&myBlockComp);
ORWL SECTION(&IneighBound) {
double constx IData = orwl_read map(&IneighBound);
// do the real computation here
block _computation(n, data, m, IData);
}
}

// update operation
ORWL_SECTION(&myBlockUpd) {
double constx data = orwl read map(&myBlockUpd);
ORWL_SECTION(&myBound) {
doublex bData = orwl write _map(&myBound);
update _boundary(m, bdata, n, data);
}
}

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 12/ 21

An adaptative tool for resource control
ORWL: properties

Model for iterative computation

o deadlock-free

@ homogeneous progression of tasks

Implementation
o transparent use on multi-core or cluster
o build on top of the C11 thread model
o type-generic interfaces
o OpenMP compatible
o CUDA compatible

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 13/ 21

Experiments

Outline

o
o

@ Experiments

o

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 13/ 21

Experiments
Experimental Setting

Dense matrix multiplication

A common framework implemented with ORWL, block-cyclic MM.

Three compute kernels, work seamlessly together:
o Hand crafted legacy code
o BLAS/ATLAS dgemm optimized for the target architecture
o CUBLAS for GPU computations

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 14/ 21

Experiments

Experimental Setting

pastel cluster Grid5000 platform
o up to 60 processors, 180 cores

lemans multicore ICube lab
o 24 cores at 800 MHz
cameron cluster SUPELEC Metz

o 16 nodes, each 6 cores at 3.2 GHz and 8 GiB of memory

o per node 12 cores hyperthreaded, but only 6 L2 caches
o per node 1 NVIDIA GeForce GTX580 with 512 CUDA cores and 1.5
GiB

o 10 Gigabit Ethernet interconnection network

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 15/ 21

Experiments
lemans, 24 core

10
w
a
Ke)
O
ideal speedup
1 measurement ----+---
1 2 4 6 8 12 16 20 24

ORWL tasks

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 16/ 21

Experiments
cameron, constant sized problem

I I | I I I
Ideal perf .
MPI+OpenMP ---+--
ORWL ----X----

Gflop/s

[
1 23 45 6 7 8 9101112131415 16

Number of nodes

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 17/ 21

Experiments
cameron, maximum sized problem

Gflop/s

Resource Centered Computation with Ordered Read-Write Locks

3250
3000
2750

2500

2250
2000
1750
1500
1250
1000
750
500
250
0

I I I I I | I I I

L Ideal perf - GPU ———
| MPI+OpenMP - GPU ---%--:
ORWL - GPU --- -+
Ideal perf - CPU

1 23 45 6 7 8 9101112131415 16

Number of nodes

Jens Gustedt

18/ 21

Experiments

pastel, up to 60 processors 180 cores

'60 X 4 cores ———"
30 x 4 cores
1e+03 15 x 4 cores
- 8 x 4 cores -
- 2 x 4 cores
L. 1x4cores =@ .
- bandwidth limit = e e
w B : ; i
g
(=D 1e+02 E—
1e+01 pmv*
1e+03 1e+04 1e+05

matrix side
Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 19/ 21

Experiments

cameron, maximum size problem, hybrid, including GPU

3500 — T T T T T T T 1
3250 + ORWL-HYB-XL —&— . i . . .7
3000 + ORWL -HYB-L ---m-- | S
2750 | ORWL—GPU-L ERRE O LN : :

2500 | QRWL - CPU - L bt

2250
2000 -
1750 -
1500 -
1250 |-
1000
750
500
250

Gflop/s

1 23 45 6 7 8 9101112131415 16

Number of nodes
Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 20/ 21

Conclusions

Outline

o
o
o
(%)
o

Conclusions

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 20/ 21

Conclusions

A new Synchronization Tool

Ordered Read-Write Locks

o simple usage for critical sections

o proactive announcement of requirements

alternating resource allocation in iterative computations
provably deadlock free

offline copy between remote hosts

zero copy between threads

almost perfect computation/communication overlap

© 6 606 6 o o

weak scaling

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions

A new Synchronization Tool

Ordered Read-Write Locks

o simple usage for critical sections

o
o
o
Qo
Qo
Qo
Qo

proactive announcement of requirements

alternating resource allocation in iterative computations
provably deadlock free

offline copy between remote hosts

zero copy between threads

almost perfect computation/communication overlap

weak scaling

Questions? jens.gustedt@inria.fr

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

Q Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

O Release requests (current iteration)

FIFO

Boococooooocoooo
[y

Booocooooooooo
N

Boococooooocoocoo
w

Booocooooooooo
-

resource locations Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

Q Acquire all requests (current iteration)
Q Post new requests (next iteration)

O Compute

O Release requests (current iteration)
S
L

598,

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)

O Compute

O Release requests (current iteration)
S
L

L

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

O Release requests (current iteration)

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

O Release requests (current iteration)

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

dda

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)

O Compute

O Release requests (current iteration)

|
i

/253,

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

O Release requests (current iteration)

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

O Release requests (current iteration)

Ly Ly Ly L5 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

.

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

Q0 ¢
oH O]

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

=

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)

O Compute

Q Release requests (current iteration)

1]

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

1 QL
O] oM

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

1 O-C1

O]

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)
O Compute

Q Release requests (current iteration)

:

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

Conclusions
Supplement: Execution of iterative tasks

Evolution rule

O Acquire all requests (current iteration)
Q Post new requests (next iteration)

O Compute

Q Release requests (current iteration)

|
i

/253,

Ly Ly Ly L3 Ly

Resource Centered Computation with Ordered Read-Write Locks Jens Gustedt 21/ 21

	Iterative algorithms
	Resource centered computing
	An adaptative tool for resource control
	Experiments
	Conclusions

