
Ordered Read Write Locks for Multicores and
Accelarators

Mariem Saied

INRIA & ICube
Strasbourg, France

mariem.saied@inria.fr

Mariem Saied ORWL for Multicores and Accelerators

ORWL, Ordered Read-Write Locks

An inter-task synchronization model for data-oriented parallel
algorithms

A lock mechanism that can handle data-dependencies
between threads

A new API for resource centric parallel programming

ORWL particularly targets iterative computations

Mariem Saied ORWL for Multicores and Accelerators

ORWL, Ordered Read-Write Locks

Features
A waiting queue with FIFO policy for each resource
Distinction between write blocks (exclusive) and read
blocks (inclusive)
An explicit association of a task with application data
Distinction between post and acquire
Distinction between locks and lock handles

Mariem Saied ORWL for Multicores and Accelerators

ORWL, Ordered Read-Write Locks

Typical Sequence
Request : Insert a request in the waiting queue of the
resource
Acquire : When it becomes necessary, the process is
blocked until the resource is acquired
Release : The resource is released to grant access to
other requests

Library specific to iterative computations
With a release, post a new request on the handle of the
resource for the next iteration

Mariem Saied ORWL for Multicores and Accelerators

ORWL, Ordered Read-Write Locks

Properties
deadlock-freeness
liveness
equity
expressiveness

Mariem Saied ORWL for Multicores and Accelerators

ORWL, Ordered Read-Write Locks

Data layout
Data split into blocks
Each block is considered as an ORWL data location
One POSIX thread is associated to each block.

Optimized layout
Enhanced version of block-layout with well-defined
boundary relation between blocks
A main task that performs the computation is defined
The export of frontier data is ensured via sub-tasks.

Mariem Saied ORWL for Multicores and Accelerators

ORWL, Initialization phase

Requirement to define the access scheme between tasks
and resources and to attribute initial priorities in the FIFO
The description of the principle structure of the program is
explicit and static

A simplified initialization usage mode adapted to iterative
computing algorithms is suggested :

All resources and their access scheme are specified in an
initial phase of the application.

The access scheme implicitely synchronizes the tasks
during the computation phase.

Subsequent computation phases are guaranteed to be
deadlock-free and fair

Mariem Saied ORWL for Multicores and Accelerators

Thesis Goals

Build an abstracted execution platform for ORWL relying on VMKit

Automate the specification of the access relation between
tasks and resources and optimised attribution of initial
priorities
Step-wise transformation of ORWL to build upon specific
VMKit features
Improve ORWL in the context of multicores in particular on
NUMA architectures.
Benchmarking the implementations by means of rigurous
experiments.

Mariem Saied ORWL for Multicores and Accelerators

Followed Approach

Define the domain
Design the DSL
respecting domain
semantics
Concepts to be
included : FIFOs, ...
Define tasks for each
iteration
Tasks priorities
Task/Resource

Define a Virtual Machine based on VMKit

Design and implement a DSL

Define Specific Benchmarks for ORWL

Mariem Saied ORWL for Multicores and Accelerators

ORWL Benchmark types

ORWL Benchmarks

HPC Benchmarks :
Matrix Processing

LINPACK
(Livermore 23)

Data-flow graphs
Benchmarks

MapReduce
Benchmarks

Mariem Saied ORWL for Multicores and Accelerators

State of the art {Domain Specific Languages }

Bossa : Framework enabling the implementation, deploying and
management of process scheduler hierarchies.

includes DSL for schedular implementation and verification
provides high level abstractions :

process attributes, process states, process lists and events.
Choices in the the design and implementation of the DSL :

Absence of pointers and impossiblity of defining infinite
loops in order to provide safety guarantees
Choice of JIT compiler in order to guarantee flexible and
efficient implementation for Bossa.

Lawall, Julia L., Gilles Muller, and Hervé Duchesne. "Invited application paper : language design for implementing

process scheduling hierarchies." Proceedings of the 2004 ACM SIGPLAN symposium on Partial evaluation and

semantics-based program manipulation. ACM, 2004.

Mariem Saied ORWL for Multicores and Accelerators

State of the art {MapReduce, Metis }

MapReduce
Programming model for data parallel programs hiding
synchronization and parallel task management
Intended for applications that can fit in a pair of Map and
Reduce functions.

Three phases : Map, Reduce, Merge.

Metis
MapReduce library for multicore processors

Compromise intermediate data structure : a hash table
with a b+tree in each entry
Appropriate for applications wich have a large number of
intermediate key/value pairs and a low amount of
computation

Mao, Yandong, Robert Morris, and M. Frans Kaashoek. "Optimizing MapReduce for multicore architectures."

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Tech. Rep. 2010.

Mariem Saied ORWL for Multicores and Accelerators

State of the art {Data Flow Graphs }

X-Stream : Edge-centric Graph Processing using Streaming
Partitions

edge-centric system
relies on sequential streaming rather than index random
access
based on the scatter-gather programming model
processing in-memory and out-of-core graphs on a
single-shared memory machine

Roy, Amitabha, Ivo Mihailovic, and Willy Zwaenepoel. "X-Stream : edge-centric graph processing using streaming

partitions." Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.

Mariem Saied ORWL for Multicores and Accelerators

State of the art {Data Flow Graphs }

Naiad : A Timely Dataflow System

Timely dataflow model
Timely dataflow model

Computational model based on a directed graph
Each message is labeled with timestamp : recognition of
data input epochs + loop iterations

Naiad : A prototype distributed implementation of timely
dataflow model

A Naiad cluster : Number of processes hosting workers
Data exchange betweeen workers : Shared Memory
Message exchange between processes : TCP connections

Murray, Derek G., et al. "Naiad : a timely dataflow system." Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles. ACM, 2013.

Mariem Saied ORWL for Multicores and Accelerators

Questions or Suggestions ?

Mariem Saied ORWL for Multicores and Accelerators

