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Complex networks

e Relational data modeled using graphs:
— Computer science: web, the Internet, email, P2P, ...
— Social sciences: friendships, collaborations, ...
— Biology: neurons, proteins interactions, food chain, ...

— Linguistics, transportation, ...
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Need for specific algorithms?

e Sjze:
— Internet = Millions of machines
e More to come with the internet of objets

— Facebook = over 1 billion users with 130 friends in average
— Web = Google accounts for 10715 distinct URLs

e |[tis not trivial to:
— Store the networks in main memory
— Do some computation

e Another definition of hard problems:

— Anything over (and including) n?
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Examples

e Diameter of a graph:
— Highest shortest distance between any two nodes
— Theoretical complexity: O(n.m)
— Approximation (without proof) using upper and lower bound in O(m)

e Count the number of triangles of a graph:
— Naive approach O(n3)
— O(m.n2) if the degree distribution is a power law with exponent a

®
@
. . o :
e Community detection: e o
— NP-hard in general (using most classical definitions) P =)
— Can be computed in “linear time” on real networks LV

e How to take into account properties of complex networks?
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Common properties/questions

e Most complex networks share many topological properties:
— Low average distance / small world effect
— Heterogeneous degrees / scale free networks
— Clustering / variation of density and communities
— Frequent motifs / triangles or more complex subgraphs

e Many similar studies on these networks:
— Measurements + metrology
— Description, modeling, simulation
— Diffusion of information
— Efficient algorithms design
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COMMUNITY DETECTION
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o P
i .l- v L}
[Vixssg | e . .
¢« ° " Various | e
' b ALl { _ 0
WA TR fil 7 ? ' . 47 Postdocs

Students




Modularity definition

More links than expected in each group

1 c d32 c S dS 2
-3 w )2 3

s=1

e |s: number of links within s
L : total number of links

e (Q: are groups more dense than expected?
— Can tell whether a graph is modular or not.
— Can also compare algorithms efficiency.
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One example

Graph with 16 nodes:
— How many partitions?
— How many connected partitions?
— How many optimal partition (using modularity)?
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One example

Graph with 16 nodes:
— How many partitions? Around 10 billions (Bell number)
— How many connected partitions? 44484
— How many optimal partition (using modularity)? 1
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Louvain method —an example

Initially: isolated
nodes
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Louvain method —an example
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Louvain method —an example

Only neighbors are
considered
Modularity gain is
computed for each
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Louvain method —an example

Pass 1 — Iteration 1
insert O in c[3]
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Louvain method —an example

Pass 1 — Iteration 1
insert O in c[3]
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Louvain method —an example

Pass 1 — Iteration 1
insert 0 in c[3]
insert 1 in c[4]
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Louvain method —an example

Pass 1 — Iteration 1
insert O in c[3]
insert 1 in c[4]
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Louvain method —an example

Pass 1 — Iteration 1
insert O in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
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Louvain method —an example

Pass 1 — Iteration 1
insert O in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
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Louvain method —an example

Pass 1 — Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
insert 3 in c[0]
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Louvain method —an example

Pass 1 — Iteration 1
insert O in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
insert 3 in c[0]
insert 4 in c[1]
insert 5 in c[7]
insert 6 in c[11]
insert 7 in c[5]
insert 8 in c[15]
insert 9 in c[12]
insert 10 in c[13]
insert 11 in c[10,13]
insert 12 in c[9]
insert 13 in c[10,11]
insert 14 in c[9,12]
insert 15 in c[8]
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Louvain method —an example

Pass 1 — Iteration 2
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Louvain method —an example

Pass 1 — Iteration 2
insert O in c[4]
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Louvain method —an example

After 4 iterations,
local maxima is
reached
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Louvain method —an example
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Louvain method — an example




Experimental results (time)

Karate Arxiv Internet Web Belgian Web Web
nd.edu Phone Calls UK-2005 Webbase01
n=34/m=77 | 9k/24k 70k/351k 325k/1M 2.5M/6.3M 39M / 783M 118M/1B
Newman 0s 3.65 7995 50345
Girvan
Clauset Moore
Pons Os 3.3s 575s 6666s
Latapy
Wakita
Tsurumi Os Os 8s 52s 1279s (3days)
(expected)
Os Os <1s <1s 47s 252s 469s
Louvain
3 passes 5 passes 5 passes 5 passes 5 passes 4 passes 5 passes

N

p *

UPMC
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Experimental results (Q)

Karate Arxiv Internet Web Belgian Web Web
nd.edu Phone Calls UK-2005 Webbase01
n=34/m=77 9k/24k 70k/351k 325k/1M 2.5M/6.3M 39M / 783M 118M/1B
Newman
Girvan 0.38 0.772 0.692 0.927
Clauset Moore
Pons
Latapy 0.42 0.757 0.729 0.895
Wakita
Tsurumi
(expected)
0.42 0.813 0.781 0.935 0.769 0.979 0.984
Louvain
3 passes 5 passes 5 passes 5 passes 5 passes 4 passes 5 passes

<

N

p *

UPMC
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COMMUNITY DETECTION
THROUGH CONSENSUS
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Consensual communities

For a given graph:
— Many high quality partitions
— Are there similarities between these partitions?

Preliminary results:
— Use Louvain method:

e Non deterministic -> # partitions.
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Principe

e Foragiven graph:
— Many high quality partitions
— Are there similarities between these partitions?

e Preliminary results:
— Use Louvain method:
e Non deterministic -> # partitions.
— Similarity graph :

e Proximity = similarities between
partitions.
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Consensual communities

For a given graph:
— Many high quality partitions
— Are there similarities between these partitions?

Preliminary results:
— Use Louvain method:
e Non deterministic -> # partitions.
— Similarity graph :

e Proximity = similarities between
partitions.

— Threshold on the proximity.
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Proportion de paires de sommets

Existence of consensual communities

e |n real data, many similarities
e Notinrandom graphs
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Impact locality

e Removal of one single node

e |mpact on the community structure vs distance:

— Communities: poorly related to distance

— Consensual communities: lower impact and more related to distance

bp

Average impact
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EGOCENTERED COMMUNITIES
PARAMETER FREE MEASURE

JWBC 2013
CompleNet 2013
SNAM 2014

Joint work with
Maximilien Danisch
Bénédicte Le Grand
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Egocentered communities
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Carryover opinion

Principle: information may be trapped in communities

e Proximity measure based on opinion dynamics
— Node of interest have a constant opinion of 1
— Each node takes the average opinion of its neighbors

e Similar to random walk approaches

— But parameter-free and fast convergence

X, =MX, AVERAGING
X —mi

x, =X 2min(X)  pESCALING
| —min(X,)

Xl =1 RESETTING
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Carryover opinion - examples

e Proximity measure based on opinion dynamics

— Plateaux structure appears which corresponds to communities
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Carryover - limitations

e More than one community containing the node:
— Communities at different scales

— Overlapping communities

'

<

SCORE

— Cotton Township,Switzerland County, Indiana
— JNCO
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Egocentered communities
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Egocentered communities
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Egocentered communities
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Bi-egocentered communities

Torii school + Folk wrestling = Sumo

(350 first nodes of sumo contains 337 of the minimum)
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Methodology to find all communities

1. Select candidate nodes
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1.

Methodology to find all communities

Select candidate nodes

—  Pick a random sample of intermediate nodes

—  Size of the sample / computation time
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Methodology to find all communities

1. Select candidate nodes
2. Compute bi-egocentered communities

—  Minimum of the two scores
— Keep nodes before the sharp decrease (if any)

10° . ; 10 ; ;
— Chess Boxing = Chess Boxing
== Chessboard == Achi, Nagano

10" F ==  MIN: Chess notation [{ 107 £y == MIN: Morabaraba 3
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Methodology to find all communities

1. Select candidate nodes
2. Compute bi-egocentered communities
3. Clean output: merge similar and remove unigue communities
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MORE PROBLEMS
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Bipartite decomposition

Many networks are naturally bipartite
— One-mode projection : top nodes -> cliques
— Model to generate random bipartite graph

Reverse operation :
— Compute cligues -> bipartite graph
— Covering of the graph by cliques?

O Y
Lp
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Tripartite decomposition

e Real cligues are not randomly overlapping
— How to estimate/compute this overlapping
— Compute non trivial bipartite cliques

e (Can be used for different, yet related, problems

— Overlapping between consensual communities?
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Counting triangles

e 41.652.230 nodes, 1.202.513.046 links, 34.824.916.864 triangles
— Hadoop, 1636 nodes: 423 mn
— GraphChi (Mac Mini, 8Go RAM): 60 mn

— PowerGraph 64 nodes x 8 cores: 1.5 mn
e http://www.bigdatarepublic.com/author.asp?section id=2840&doc id=269178

— Sequential computation (ML algo) 10 Go: 59 mn
e http://www-rp.lip6.fr/~latapy/Triangles/

e Basic principles:
— For a node v, considering all pairs of neighbors is costly if v has high
degree => start with low degree nodes

— High and low degrees nodes can be considered separately

épasser s frontiéees
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http://www.bigdatarepublic.com/author.asp?section_id=2840&doc_id=269178
http://www-rp.lip6.fr/%7Elatapy/Triangles/
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