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Introduction

Density Growth

e Increasing number of Cores per
chipset

o Decreasing memory per Core

Memory access is a critical
bottleneck.

Managing resources (device, Core,
NUMA node) use improves data
locality and performance.
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Problem Statement

Identify Bottlenecks
Map Tasks to Resources
State of Art

dot product

for i < 0..n
result < result + arraya[i] * arrayg|i]

e Memory bound:
n multiplications, log(n) +
additions
2 % n read operations

e L1 cache conflicts (left side)
might be a bottleneck

e |t may be better to use a single
core under a memory node (L1
here).
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Problem Statement Identify Bottlenecks
Map Tasks to Resources

State of Art
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Problem Statement

Identify Bottlenecks

Map Tasks to Resources
State of Art

e A set of task
e The hardware topology

Map tasks to hardware resources.

e Identify bottlenecks in applications.

e Find efficient pattern of processus placement according to
bottlenecks.

e Map applications tasks to resources according to those
patterns.
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Problem Statement Identify Bottlenecks

Map Tasks to Resources
State of Art

State of Art

Placement Strategies

e TreeMatch[5]: Process placement based on topology and
communication pattern

Scotch,Metis[7]: Graph partitioners

Charm++[6]: Dynamic load balancing runtime

StarPUJ[1], Xkaapi[4]: Task oriented API & Runtime, to
optimize resources use.

e and maaaaany others . ..

— Balance between explicit instructions and transparency.
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hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

Experiment Tools

2. Experiment Tools
hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping
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Experiment Tools hwloc: Getting Information about the Architecture
P ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

hwloc|2]

hardware locality

e Portable API

e Gather and walk the system
hierarchical topology

e Bind threads to CPU’s and
memory components

Figure : Istopo on an Intel Xeon E5-2650
8/20 Denoyelle, Goglin, Gustedt, Jeannot



hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

Experiment Tools

ORWL[3]
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e Low overhead Figure : Gflop/s achieved on a constant

size problem (5670 % 5670 matrices of
double precision data) using only the
CPU cores of Cameron cluster.

9/20 Denoyelle, Goglin, Gustedt, Jeannot



hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

Experiment Tools

BLAS, LAPACK

e Exploiting different kind of bottlenecks

e Widespread benchmark
e Optimized library used in many scientific applications

e Multiple implementations

NAS Parallel Benchmark

e Effects on communication-bound applications

e Both contiguous and random memory access

e Benchmarks derived from computational fluid dynamics
e Needs to be reimplemented with ORWL
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Protocol

Protocol Assumptions

3. Protocol
Protocol
Assumptions
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Protocol

Protocol Assumptions

e ORWL builtin measure tools

3 use cases

e compute-bound (Blas 3)
e memory-bound (Blas 1)

e communication-bound

Requires a fine separation in tasks

Multiple resource (core, NUMA, ...) ordering.
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Protocol

Protocol Assumptions

e One thread per task

e Several task per processing unit is better to avoid time loss
while waiting for locks.

e Communication: TreeMatch + Bind near NIC.
e Compute: Bind near the same memory node.

e Memory: Bind single PU above a big cache.
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Observations

4. Observations
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Observations

Machine (32GB)

Socket P#0 (32GB)

l NUMANode P#0 (16GB) ‘
l L3 (6144KB) ‘
l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘
l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16KB) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7

l PU P#0 I l PU P#4 I l PU P#8 I l PU P#12 I l PUP#16 I l PU P#20 I l PU P#24 I l PU P#28 I
l NUMANode P#1 (16GB) ‘
l L3 (6144KB) ‘
l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘
l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7

l PU P#32 I l PU P#36 I l PU P#40 I l PU P#44 I l PU P#48 I l PU P#52 I l PU P#56 I l PU P#60 I
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1 use case

e AMD Opteron(TM) Processor 6272 (64 Cores)
e initialization, ddot, reduce
e 128 tasks

Early Result

e Successful task binding

e Several tasks per CPU is better
e Binding 1 PU per L2 improves performance
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Observations

ddot with ORWL framew ork (128 tasks, acml impl)
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Conclusion and Future Work

Conclusion

In this use case: simple resource restriction improves performance.

e Multiply use cases

o hardware
e binding
e application

e Identify bottlenecks in heterogeneous applications.
e Find an efficient algorithm (transparency).

e Eventually build a framework.
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Conclusion and Future Work
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