
Improving Performance Through Task Locality

Nicolas Denoyelle, Brice Goglin,
Jens Gustedt, Emmanuel Jeannot

Inria / ENSEIRB-MATMECA / Université de Bordeaux

Runtime Team

March 16, 2014



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Overview

1. Problem Statement

2. Experiment Tools

3. Protocol

4. Observations

5. Conclusion and Future Work

1/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Core Density Growth
• Increasing number of Cores per
chipset

• Decreasing memory per Core

Memory access is a critical
bottleneck.
Managing resources (device, Core,
NUMA node) use improves data
locality and performance.

2/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Identify Bottlenecks
Map Tasks to Resources
State of Art

dot product
for i ← 0..n
result ← result + arrayA[i ] ∗ arrayB [i ]

• Memory bound:
n multiplications, log(n) +
additions
2 ∗ n read operations

• L1 cache conflicts (left side)
might be a bottleneck

• It may be better to use a single
core under a memory node (L1
here).

L3

L2

L1

PU0 PU1

L1

PU2 PU3

L2

L1

PU4 PU5

L1

PU6 PU7

3/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Identify Bottlenecks
Map Tasks to Resources
State of Art

4/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Identify Bottlenecks
Map Tasks to Resources
State of Art

Given
• A set of task
• The hardware topology

Map tasks to hardware resources.

Objectives
• Identify bottlenecks in applications.
• Find efficient pattern of processus placement according to
bottlenecks.

• Map applications tasks to resources according to those
patterns.

5/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Identify Bottlenecks
Map Tasks to Resources
State of Art

State of Art

Placement Strategies
• TreeMatch[5]: Process placement based on topology and
communication pattern

• Scotch,Metis[7]: Graph partitioners
• Charm++[6]: Dynamic load balancing runtime
• StarPU[1], Xkaapi[4]: Task oriented API & Runtime, to
optimize resources use.

• and maaaaany others . . .

→ Balance between explicit instructions and transparency.

6/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

1. Problem Statement
Identify Bottlenecks
Map Tasks to Resources
State of Art

2. Experiment Tools
hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

3. Protocol
Protocol
Assumptions

4. Observations

5. Conclusion and Future Work

7/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

hwloc[2]

hardware locality
• Portable API
• Gather and walk the system
hierarchical topology

• Bind threads to CPU’s and
memory components

Figure : lstopo on an Intel Xeon E5-2650
8/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

ORWL[3]

Ordered Read Write Lock
• Framework: (API + Runtime)
• Resource access management
• Task programming paradigme
• Low overhead Figure : Gflop/s achieved on a constant

size problem (5670 ∗ 5670 matrices of
double precision data) using only the
CPU cores of Cameron cluster.

9/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

BLAS, LAPACK
• Exploiting different kind of bottlenecks
• Widespread benchmark
• Optimized library used in many scientific applications
• Multiple implementations

NAS Parallel Benchmark
• Effects on communication-bound applications
• Both contiguous and random memory access
• Benchmarks derived from computational fluid dynamics
• Needs to be reimplemented with ORWL

10/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Protocol
Assumptions

1. Problem Statement
Identify Bottlenecks
Map Tasks to Resources
State of Art

2. Experiment Tools
hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

3. Protocol
Protocol
Assumptions

4. Observations

5. Conclusion and Future Work

11/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Protocol
Assumptions

Measuring Time
• ORWL builtin measure tools

3 use cases
• compute-bound (Blas 3)
• memory-bound (Blas 1)
• communication-bound

Requires a fine separation in tasks

Multiple resource (core, NUMA, . . . ) ordering.

12/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Protocol
Assumptions

• One thread per task
• Several task per processing unit is better to avoid time loss
while waiting for locks.

Bound
• Communication: TreeMatch + Bind near NIC.
• Compute: Bind near the same memory node.
• Memory: Bind single PU above a big cache.

13/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

1. Problem Statement
Identify Bottlenecks
Map Tasks to Resources
State of Art

2. Experiment Tools
hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

3. Protocol
Protocol
Assumptions

4. Observations

5. Conclusion and Future Work

14/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Machine (32GB)

Socket P#0 (32GB)

NUMANode P#0 (16GB)

L3 (6144KB)

L2 (2048KB)

L1 (16KB)

Core P#0

PU P#0

L1 (16KB)

Core P#1

PU P#4

L2 (2048KB)

L1 (16KB)

Core P#2

PU P#8

L1 (16KB)

Core P#3

PU P#12

L2 (2048KB)

L1 (16KB)

Core P#4

PU P#16

L1 (16KB)

Core P#5

PU P#20

L2 (2048KB)

L1 (16KB)

Core P#6

PU P#24

L1 (16KB)

Core P#7

PU P#28

NUMANode P#1 (16GB)

L3 (6144KB)

L2 (2048KB)

L1 (16KB)

Core P#0

PU P#32

L1 (16KB)

Core P#1

PU P#36

L2 (2048KB)

L1 (16KB)

Core P#2

PU P#40

L1 (16KB)

Core P#3

PU P#44

L2 (2048KB)

L1 (16KB)

Core P#4

PU P#48

L1 (16KB)

Core P#5

PU P#52

L2 (2048KB)

L1 (16KB)

Core P#6

PU P#56

L1 (16KB)

Core P#7

PU P#60

15/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

1 use case
• AMD Opteron(TM) Processor 6272 (64 Cores)
• initialization, ddot, reduce
• 128 tasks

Early Result
• Successful task binding
• Several tasks per CPU is better
• Binding 1 PU per L2 improves performance

16/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

17/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

Conclusion
In this use case: simple resource restriction improves performance.

Future Work
• Multiply use cases

hardware
binding
application

• Identify bottlenecks in heterogeneous applications.
• Find an efficient algorithm (transparency).
• Eventually build a framework.

18/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

References I

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier.
StarPU.

François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie
Furmento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and
Raymond Namyst.
hwloc: a Generic Framework for Managing Hardware Affinities in HPC
Applications.

Pierre-Nicolas Clauss and Jens Gustedt.
Iterative Computations with Ordered Read-Write Locks.

19/20 Denoyelle, Goglin, Gustedt, Jeannot



Introduction
Problem Statement

Experiment Tools
Protocol

Observations
Conclusion and Future Work

References II

Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and Bruno
Raffin.
XKaapi: A Runtime System for Data-Flow Task Programming on
Heterogeneous Architectures.

Emmanuel Jeannot, Guillaume Mercier, and François Tessier.
Process placement in multicore clusters: Algorithmic issues and practical
techniques.

Laxmikant V. Kale and Sanjeev Krishnan.
Charm++: A portable concurrent object oriented system based on c++.

François Pellegrini and Jean Roman.
Scotch: A software package for static mapping by dual recursive
bipartitioning of process and architecture graphs.

20/20 Denoyelle, Goglin, Gustedt, Jeannot


	Problem Statement
	Identify Bottlenecks
	Map Tasks to Resources
	State of Art

	Experiment Tools
	hwloc: Getting Information about the Architecture
	ORWL: a Resource Oriented Programming Paradigm
	An Application Model Sensitive to Task Mapping

	Protocol
	Protocol
	Assumptions

	Observations
	Conclusion and Future Work

