Improving Performance Through Task Locality

Nicolas Denoyelle, Brice Goglin,
Jens Gustedt, Emmanuel Jeannot

Inria / ENSEIRB-MATMECA / Université de Bordeaux

Runtime Team

March 16, 2014

Overview

. Problem Statement

Experiment Tools

Protocol

. Observations

. Conclusion and Future Work

Denoyelle, Goglin, Gustedt, Jeannot

Introduction

Density Growth

e Increasing number of Cores per
chipset

o Decreasing memory per Core

Memory access is a critical
bottleneck.

Managing resources (device, Core,
NUMA node) use improves data
locality and performance.

2/20 Denoyelle, Goglin, Gustedt, Jeannot

Problem Statement

Identify Bottlenecks
Map Tasks to Resources
State of Art

dot product

for i < 0..n
result < result + arraya[i] * arrayg|i]

e Memory bound:
n multiplications, log(n) +
additions
2 % n read operations

e L1 cache conflicts (left side)
might be a bottleneck

e |t may be better to use a single
core under a memory node (L1
here).

3/20 Denoyelle, Goglin, Gustedt, Jeannot

Problem Statement Identify Bottlenecks
Map Tasks to Resources

State of Art

close Data Locality far
A 3
g
memory q
% PU frequency/amount bandwidth/latency network bandwidth/latency
o
1]
c
O >
E=1 =
v 82 -
2 Compute Bound Memory Bound Communication Bound
ag
A oo
<
w E
w @
§ qE, GPU/Coprocessor Hierarchical Computer Cluster/Grid
g8
Yy ¢

4/20 Denoyelle, Goglin, Gustedt, Jeannot

Problem Statement

Identify Bottlenecks

Map Tasks to Resources
State of Art

e A set of task
e The hardware topology

Map tasks to hardware resources.

e Identify bottlenecks in applications.

e Find efficient pattern of processus placement according to
bottlenecks.

e Map applications tasks to resources according to those
patterns.

5/20 Denoyelle, Goglin, Gustedt, Jeannot

Problem Statement Identify Bottlenecks

Map Tasks to Resources
State of Art

State of Art

Placement Strategies

e TreeMatch[5]: Process placement based on topology and
communication pattern

Scotch,Metis[7]: Graph partitioners

Charm++[6]: Dynamic load balancing runtime

StarPUJ[1], Xkaapi[4]: Task oriented API & Runtime, to
optimize resources use.

e and maaaaany others . ..

— Balance between explicit instructions and transparency.

6/20 Denoyelle, Goglin, Gustedt, Jeannot

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

Experiment Tools

2. Experiment Tools
hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

7/20 Denoyelle, Goglin, Gustedt, Jeannot

Experiment Tools hwloc: Getting Information about the Architecture
P ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

hwloc|2]

hardware locality

e Portable API

e Gather and walk the system
hierarchical topology

e Bind threads to CPU’s and
memory components

Figure : Istopo on an Intel Xeon E5-2650
8/20 Denoyelle, Goglin, Gustedt, Jeannot

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

Experiment Tools

ORWL[3]

1000 T T T T T T T T T
900 Ideal perf i
338 i MPI+Oge}|{\%[}?-——;—-- :
?’L 600 S
Ordered Read Write Lock g wr S R]
¥ Lk [A A
2 300 | LI b i 7
e Framework: (APl 4+ Runtime) po (A,;:;’»--X x
100 Fis e :]
e Resource access management g A
1 23 4567 8 910111213141516
e Task programming paradigme Number of nodes
e Low overhead Figure : Gflop/s achieved on a constant

size problem (5670 % 5670 matrices of
double precision data) using only the
CPU cores of Cameron cluster.

9/20 Denoyelle, Goglin, Gustedt, Jeannot

hwloc: Getting Information about the Architecture
ORWL: a Resource Oriented Programming Paradigm
An Application Model Sensitive to Task Mapping

Experiment Tools

BLAS, LAPACK

e Exploiting different kind of bottlenecks

e Widespread benchmark
e Optimized library used in many scientific applications

e Multiple implementations

NAS Parallel Benchmark

e Effects on communication-bound applications

e Both contiguous and random memory access

e Benchmarks derived from computational fluid dynamics
e Needs to be reimplemented with ORWL

10/20 Denoyelle, Goglin, Gustedt, Jeannot

Protocol

Protocol Assumptions

3. Protocol
Protocol
Assumptions

11/20 Denoyelle, Goglin, Gustedt, Jeannot

Protocol

Protocol Assumptions

e ORWL builtin measure tools

3 use cases

e compute-bound (Blas 3)
e memory-bound (Blas 1)

e communication-bound

Requires a fine separation in tasks

Multiple resource (core, NUMA, ...) ordering.

12/20 Denoyelle, Goglin, Gustedt, Jeannot

Protocol

Protocol Assumptions

e One thread per task

e Several task per processing unit is better to avoid time loss
while waiting for locks.

e Communication: TreeMatch + Bind near NIC.
e Compute: Bind near the same memory node.

e Memory: Bind single PU above a big cache.

13/20 Denoyelle, Goglin, Gustedt, Jeannot

Observations

4. Observations

14/20 Denoyelle, Goglin, Gustedt, Jeannot

Observations

Machine (32GB)

Socket P#0 (32GB)

l NUMANode P#0 (16GB) ‘
l L3 (6144KB) ‘
l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘
l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16KB) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7

l PU P#0 I l PU P#4 I l PU P#8 I l PU P#12 I l PUP#16 I l PU P#20 I l PU P#24 I l PU P#28 I
l NUMANode P#1 (16GB) ‘
l L3 (6144KB) ‘
l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘ l L2 (2048KB) ‘
l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘ l L1 (16kB) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7

l PU P#32 I l PU P#36 I l PU P#40 I l PU P#44 I l PU P#48 I l PU P#52 I l PU P#56 I l PU P#60 I

Denoyelle, Gog Gustedt, Jeannot

1 use case

e AMD Opteron(TM) Processor 6272 (64 Cores)
e initialization, ddot, reduce
e 128 tasks

Early Result

e Successful task binding

e Several tasks per CPU is better
e Binding 1 PU per L2 improves performance

16/20 Denoyelle, Goglin, Gustedt, Jeannot

Observations

ddot with ORWL framew ork (128 tasks, acml impl)

1.2 T T T T T T — T
no binding ——
round-robin 2 task/PU ——
round-robin 8task/1 PU /L2

0.8

ddot time (second)

0.4 -

0.2

O 1 1 1 1 1 1 1 1
28[10} 2M12} 2M{14} 2016} 218} 2M20} 2022} 224} 226} 2M28)

data size (Byte
17/20 Denoyelle, Goglin, Gustedt, Jeannot

Conclusion and Future Work

Conclusion

In this use case: simple resource restriction improves performance.

e Multiply use cases

o hardware
e binding
e application

e Identify bottlenecks in heterogeneous applications.
e Find an efficient algorithm (transparency).

e Eventually build a framework.

18/20 Denoyelle, Goglin, Gustedt, Jeannot

Conclusion and Future Work

References |

@ Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier.

StarPU.
@ Francois Broquedis, Jérome Clet-Ortega, Stéphanie Moreaud, Nathalie

Furmento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and
Raymond Namyst.

hwloc: a Generic Framework for Managing Hardware Affinities in HPC
Applications.

@ Pierre-Nicolas Clauss and Jens Gustedt.
Iterative Computations with Ordered Read-Write Locks.

19/20 Denoyelle, Goglin, Gustedt, Jeannot

Conclusion and Future Work

References |l

@ Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and Bruno
Raffin.

XKaapi: A Runtime System for Data-Flow Task Programming on
Heterogeneous Architectures.

@ Emmanuel Jeannot, Guillaume Mercier, and Francois Tessier.
Process placement in multicore clusters: Algorithmic issues and practical
techniques.

@ Laxmikant V. Kale and Sanjeev Krishnan.
Charm++: A portable concurrent object oriented system based on c++.

@ Francois Pellegrini and Jean Roman.

Scotch: A software package for static mapping by dual recursive
bipartitioning of process and architecture graphs.

20/20 Denoyelle, Goglin, Gustedt, Jeannot

	Problem Statement
	Identify Bottlenecks
	Map Tasks to Resources
	State of Art

	Experiment Tools
	hwloc: Getting Information about the Architecture
	ORWL: a Resource Oriented Programming Paradigm
	An Application Model Sensitive to Task Mapping

	Protocol
	Protocol
	Assumptions

	Observations
	Conclusion and Future Work

