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Core Density Growth
• Increasing number of Cores per
chipset

• Decreasing memory per Core

Memory access is a critical
bottleneck.
Managing resources (device, Core,
NUMA node) use improves data
locality and performance.
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dot product
for i ← 0..n
result ← result + arrayA[i ] ∗ arrayB [i ]

• Memory bound:
n multiplications, log(n) +
additions
2 ∗ n read operations

• L1 cache conflicts (left side)
might be a bottleneck

• It may be better to use a single
core under a memory node (L1
here).
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Given
• A set of task
• The hardware topology

Map tasks to hardware resources.

Objectives
• Identify bottlenecks in applications.
• Find efficient pattern of processus placement according to
bottlenecks.

• Map applications tasks to resources according to those
patterns.
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State of Art

Placement Strategies
• TreeMatch[5]: Process placement based on topology and
communication pattern

• Scotch,Metis[7]: Graph partitioners
• Charm++[6]: Dynamic load balancing runtime
• StarPU[1], Xkaapi[4]: Task oriented API & Runtime, to
optimize resources use.

• and maaaaany others . . .

→ Balance between explicit instructions and transparency.
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hwloc[2]

hardware locality
• Portable API
• Gather and walk the system
hierarchical topology

• Bind threads to CPU’s and
memory components

Figure : lstopo on an Intel Xeon E5-2650
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ORWL[3]

Ordered Read Write Lock
• Framework: (API + Runtime)
• Resource access management
• Task programming paradigme
• Low overhead Figure : Gflop/s achieved on a constant

size problem (5670 ∗ 5670 matrices of
double precision data) using only the
CPU cores of Cameron cluster.
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BLAS, LAPACK
• Exploiting different kind of bottlenecks
• Widespread benchmark
• Optimized library used in many scientific applications
• Multiple implementations

NAS Parallel Benchmark
• Effects on communication-bound applications
• Both contiguous and random memory access
• Benchmarks derived from computational fluid dynamics
• Needs to be reimplemented with ORWL
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Protocol
Assumptions

Measuring Time
• ORWL builtin measure tools

3 use cases
• compute-bound (Blas 3)
• memory-bound (Blas 1)
• communication-bound

Requires a fine separation in tasks

Multiple resource (core, NUMA, . . . ) ordering.
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Protocol
Assumptions

• One thread per task
• Several task per processing unit is better to avoid time loss
while waiting for locks.

Bound
• Communication: TreeMatch + Bind near NIC.
• Compute: Bind near the same memory node.
• Memory: Bind single PU above a big cache.
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1 use case
• AMD Opteron(TM) Processor 6272 (64 Cores)
• initialization, ddot, reduce
• 128 tasks

Early Result
• Successful task binding
• Several tasks per CPU is better
• Binding 1 PU per L2 improves performance
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Conclusion
In this use case: simple resource restriction improves performance.

Future Work
• Multiply use cases

hardware
binding
application

• Identify bottlenecks in heterogeneous applications.
• Find an efficient algorithm (transparency).
• Eventually build a framework.
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