Preliminary Study in Guiding Kernel SIMDization
through Performance Modeling and Code
Mockup Generation

Christopher Haine

Inria Runtime Team

January 14, 2014

/28

Motivation (1)
SIMDization is necessary to obtain high performance.
» Explicit vectorization is time consuming.

> Use of compilers and tools is needed.

Compilers propose automatic vectorization.
» Quality of vectorized codes?
» A lot of source codes are too complicated for a compiler to
vectorize.

» Hints about what caused vectorization to fail are hard to
understand.

Examples with GCC 4.6.3:

tsc.c:1986: note: not vectorized, possible dependence between
data-refs b[D.18123_4] and b[i_46] (->s1213)

tsc.c:121: note: not vectorized: complicated access pattern.

tsc.c:5476: note: not vectorized: relevant stmt not supported:
*D.16720_10 = D.16721_11;

N

28

Motivation (2)

We proposed in a recent paper the automatic generation of
vectorization hints

» Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization
Opportunities through Static-Dynamic Dependence Analysis. Workshop
on Productivity and Performance (2013)

Implemented in MAQAO software, a performance tuning tool.

However, as we will show, hints themselves are not sufficient.
» Hints are hints. They may be wrong.

» Even if they are correct, would it be worth to apply suggested
transformations?

How to better guide the user through his vectorization process?

» Performance gain estimation is precious information.

28

Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

4/28

Outline

1. Context

5/28

MAQAQO Overview

4—‘ Binary code

Binary parser
lList of instructions .
Instrumentation
Code representation A
- control flow graph Instrumented
- call graph Binary code
- dependences
l Structured code
Performance analysis Execution Traces
- static analysis
- dynamic analysis

— Hints

Figure : MAQAO Architecture

=

Dependence Graph

S
o Ox40TTE : MOVSS OiB40HGRON SRAXILERMM)

— suidc : 1024, 4 -

] - :\

- '

(- - Nx4077e] - ADDESOKTAcHS TRELFRAX,LFXMMO ___> :..
— stride : 10244 - ‘

1.0

A S EXMMI TR FROX SRAN. 1)
_ stride © 10244

Figure : Dependence Graph of s2233 TSVC Benchmarks

T mA0TTIADD SIARAX g1 Gu0TTRLING S07TE D

Dependence Graph and Vectorization

The graph is said vectorizable if one of the three conditions applies
to the computational part of the graph:

» There is no cycle.

» There is a cycle, with a cumulative weight greater than the
width of SIMD vectors.

> There is a cycle, with a cumulative weight smaller than the
width of SIMD vectors, and the instructions of the cycle all
are of one of the following types: add, mul, max, min. The
cycle corresponds to a reduction.

A code with a vectorizable dependence graph may require
transformations in order to be SIMDizable.

28

Vectorization Hints

Hints for code transformations required for SIMDization are based
on dependence graph, strides and control flow graph.

>

Data alignment
first address offset is not a multiple of the vector

Loop transformations, loop interchange
all accesses within loop have a large innermost loop stride

Loop transformations, loop reversal

strides in the wrong way, or negative strides

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem copy)

28

Test Machine Specifications

All conducted experiments are based on ARMv7 architecture.
» ST-Ericsson Snowball board (ARM Cortex-A9)
» 32-bit out-of-order processor @ 800Mhz
» NEON Advanced SIMD

» Single precision floating-point arithmetic
> up to 128-bit registers

10/28

Outline

2. Performance Model

11/28

Performance Model

First approach to predict performances

» Goal is to state an upper bound of performance

» The bound represents the underlying architecture limit
We model pipelines usage through a capacity model

» Intimate knowledge of the architecture is needed

» We rely on microbenchmarks to obtain accurate information

12/28

Microbenchmarks

Microbenchmarks are small portions of code
» They allow measurements of particular specifications

» This approach brings more accurate results than stated in
documentations

Two main pieces of information are needed to build the
performance model
» Number of pipelines

» How many pipelines for a given instructions?
> |s a given pipeline shared among several instructions?

» Cycles Per Instruction (CPI)
» Number of cycles required to issue an instruction

13 /28

Capacity Model (1)

» During the kernel execution, what determines performance the
most is the busiest pipeline

» Accordingly, the model is expressed as follows:

ninsx

t = maxg(Z CPI;),Vm € {pipelines} (1)
i=1

» Where t represents minimum time in cycles necessary for the
execution of a loop kernel per iteration

14 /28

Capacity Model (2)

» Reductions are important code patterns in scientific
applications
» Reductions are chains of dependences
» Instructions latency is considered, as next instruction requires
previous instruction result

» Model can be extended to include this constraint

nins; ninsy
t = max(max(Z CPl;), max, (Z latency; + pcpr)),
i=1 i=1

vV € {pipelines},Vx € {chains} (2)

15/28

Outline

3. Code Mockups Generation

16/28

Code Mockups

More reliable performance prediction of transformed loop kernel
than performance models
» Code Mockups are designed to tend to the vectorized loop
kernel behavior
» Goal is to achieve similar performance to give reliable output
to the user
» Code Mockups are semantically diverging from basis loop
kernel
» Two different classes of Code Mockups
» Code Mockups of basis loop kernel
> Naive vectorization
» Other minor modifications e.g. unrolling, unroll&jam...
» Code Mockups of restructured loop kernel
» Major transformations e.g. data restructuration, loop
interchange...

17/28

Example #1 - Alignment Issues

Example of Code Mockup application on TSVC Benchmark
» Study of s111 function

» MAQAO reported an alignment issue
» Explain alignment issue...

for (int 1

= 1; i < LEN; i += 2) {
ali] =

ali - 1] + b[i]l;

Figure : Loop Kernel of s111 Function in TSVC Benchmark

18 /28

Example #1 - Alignment Issues

4 T T T
' 5111 performance

Prediction without restructuration
Predlctlon with restru cturation

0

basis maxvec restruct maxrestruct
s111 Versions

Speedup over Basis

Figure : Output of s111 Function in TSVC Benchmark

19/28

Example #2 - Loop Interchange or Data Transpose

Other example of Code Mockup application on TSVC Benchmark

» Study of s1115 function
» MAQAO reported Loop interchange/Data Transpose issue

» Explain...
for (int i = 0; 1 < LEN2; i++) {
for (int j = 0; j < LEN2; j++) {
aalil[j] = aalill[jl*cc[jI[i] + bb[il[j];
}

Figure : Loop Kernel of s1115 Function in TSVC Benchmark

20 /28

Example #2 - Loop Interchange or Data Transpose

5 T T T
: : 51115 performance
Prediction without restructuration
Prediction with restructuration

N I I I I ________ |
0

basis vec/naive restruct/autovec restruct/naive restruct/max

Speedup over Basis

s1115 Versions

Figure : Output of s1115 Function in TSVC Benchmark

21/28

Outline

4. Evaluation

22/28

Case Study: Multigrid Kernel (1)
We use a modified version of the multigrid kernel part of the NPB
3.3 series of NAS benchmarks

for (k=1; k< N-1; k++) {
for (j=1; j< N-1; j++) {

for (i=0; i< N; i++) {
ul[i] = uwi1[i] * uwi[i];
u2[i] = u2[i] * u2[i];

}

for (i=1; i< N-1; i++) {
r(k][jI0i] = uili-1] + ul[i+1]

+ u2[i-1] + uw2[i] + u2[i+1];

Figure : Sample C Code of Modified Multigrid Benchmark

23 /28

Case Study: Multigrid Kernel (2)

> some base addresses not aligned on
’word size * vector width’ bytes: data restructuration
needed for vectorization compatibility

> some non contiguous strides:
loop/data restructuration needed for vectorization

Figure : MAQAO Report Excerpt on Multigrid Benchmark

24 /28

Case Study: Multigrid Kernel (3)

T T T
: : Modified Multigrid Performance
5 e R A Prediction with restructuration B

Speedup over Basis

basis GCC/autovec Mockup/vec Hand/restruct Mockup/restruct
Modified Multigrid Versions

Figure : Modified Multigrid Performance

25 /28

Outline

5. Conclusion

26 /28

Related Works

This work is based on:

> Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization
Opportunities through Static-Dynamic Dependence Analysis. Workshop
on Productivity and Performance (2013)

Related works on vectorization:

» Videau, B., Marangozova-Martin, V., Genovese, L.: Optimizing 3D
Convolutions for Wavelet Transforms on CPUs with SSE Units and GPUs.
Euro-Par (2013)

» Kong, Martin and Veras, Richard and Stock, Kevin and Franchetti, Franz
and Pouchet, Louis-Noél and Sadayappan, P.. When polyhedral
transformations meet SIMD code generation. PLDI (2013)

Related Software:
» Intel Vtune
» PIN tool

27 /28

Conclusion

Unsufficient/unefficient compilers autovectorization.

» We propose guided vectorization through user hints

» We backup these hints with performance estimations
We presented two different approaches for estimating the
performance of vectorized loop kernels.

> Performance Model

> Predicts an upper bound of performance

» Code Mockups Generation

» Approach vectorized loop kernel behavior
» We showed on a typical simulation code that this approach is
relevant

Future Works:
» More Mockups (rescheduling, etc.)

» Evaluate Code Mockups Generation approach on GPU
architectures

» Possibility of including MAQAO in a compilation chain

28 /28

	Context
	Performance Model
	Code Mockups Generation
	Evaluation
	Conclusion

