
Preliminary Study in Guiding Kernel SIMDization
through Performance Modeling and Code

Mockup Generation

Christopher Haine

Inria Runtime Team

January 14, 2014

1 / 28



Motivation (1)
SIMDization is necessary to obtain high performance.

I Explicit vectorization is time consuming.

I Use of compilers and tools is needed.

Compilers propose automatic vectorization.

I Quality of vectorized codes?

I A lot of source codes are too complicated for a compiler to
vectorize.

I Hints about what caused vectorization to fail are hard to
understand.

Examples with GCC 4.6.3:

tsc.c:1986: note: not vectorized, possible dependence between

data-refs b[D.18123_4] and b[i_46] (->s1213)

tsc.c:121: note: not vectorized: complicated access pattern.

tsc.c:5476: note: not vectorized: relevant stmt not supported:

*D.16720_10 = D.16721_11;

2 / 28



Motivation (2)

We proposed in a recent paper the automatic generation of
vectorization hints

I Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization
Opportunities through Static-Dynamic Dependence Analysis. Workshop
on Productivity and Performance (2013)

Implemented in MAQAO software, a performance tuning tool.

However, as we will show, hints themselves are not sufficient.

I Hints are hints. They may be wrong.

I Even if they are correct, would it be worth to apply suggested
transformations?

How to better guide the user through his vectorization process?

I Performance gain estimation is precious information.

3 / 28



Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

4 / 28



Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

5 / 28



MAQAO Overview

Figure : MAQAO Architecture
6 / 28



Dependence Graph

Figure : Dependence Graph of s2233 TSVC Benchmarks

7 / 28



Dependence Graph and Vectorization

The graph is said vectorizable if one of the three conditions applies
to the computational part of the graph:

I There is no cycle.

I There is a cycle, with a cumulative weight greater than the
width of SIMD vectors.

I There is a cycle, with a cumulative weight smaller than the
width of SIMD vectors, and the instructions of the cycle all
are of one of the following types: add, mul, max, min. The
cycle corresponds to a reduction.

A code with a vectorizable dependence graph may require
transformations in order to be SIMDizable.

8 / 28



Vectorization Hints

Hints for code transformations required for SIMDization are based
on dependence graph, strides and control flow graph.

I Data alignment
first address offset is not a multiple of the vector

I Loop transformations, loop interchange
all accesses within loop have a large innermost loop stride

I Loop transformations, loop reversal
strides in the wrong way, or negative strides

I Idiom Recognition
simple pattern matching on dependence graph (dot product, mem copy)

I ...

9 / 28



Test Machine Specifications

All conducted experiments are based on ARMv7 architecture.
I ST-Ericsson Snowball board (ARM Cortex-A9)

I 32-bit out-of-order processor @ 800Mhz

I NEON Advanced SIMD
I Single precision floating-point arithmetic
I up to 128-bit registers

10 / 28



Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

11 / 28



Performance Model

First approach to predict performances

I Goal is to state an upper bound of performance

I The bound represents the underlying architecture limit

We model pipelines usage through a capacity model

I Intimate knowledge of the architecture is needed

I We rely on microbenchmarks to obtain accurate information

12 / 28



Microbenchmarks

Microbenchmarks are small portions of code

I They allow measurements of particular specifications

I This approach brings more accurate results than stated in
documentations

Two main pieces of information are needed to build the
performance model

I Number of pipelines
I How many pipelines for a given instructions?
I Is a given pipeline shared among several instructions?

I Cycles Per Instruction (CPI)
I Number of cycles required to issue an instruction

13 / 28



Capacity Model (1)

I During the kernel execution, what determines performance the
most is the busiest pipeline

I Accordingly, the model is expressed as follows:

t = maxπ(
ninsπ∑
i=1

CPIi ),∀π ∈ {pipelines} (1)

I Where t represents minimum time in cycles necessary for the
execution of a loop kernel per iteration

14 / 28



Capacity Model (2)

I Reductions are important code patterns in scientific
applications

I Reductions are chains of dependences
I Instructions latency is considered, as next instruction requires

previous instruction result

I Model can be extended to include this constraint

t = max(maxπ(
ninsπ∑
i=1

CPIi ),maxχ(

ninsχ∑
i=1

latencyi + ρCPI )),

∀π ∈ {pipelines},∀χ ∈ {chains} (2)

15 / 28



Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

16 / 28



Code Mockups

More reliable performance prediction of transformed loop kernel
than performance models

I Code Mockups are designed to tend to the vectorized loop
kernel behavior

I Goal is to achieve similar performance to give reliable output
to the user

I Code Mockups are semantically diverging from basis loop
kernel

I Two different classes of Code Mockups
I Code Mockups of basis loop kernel

I Naive vectorization
I Other minor modifications e.g. unrolling, unroll&jam...

I Code Mockups of restructured loop kernel
I Major transformations e.g. data restructuration, loop

interchange...

17 / 28



Example #1 - Alignment Issues

Example of Code Mockup application on TSVC Benchmark

I Study of s111 function
I MAQAO reported an alignment issue

I Explain alignment issue...

for (int i = 1; i < LEN; i += 2) {

a[i] = a[i - 1] + b[i];

}

Figure : Loop Kernel of s111 Function in TSVC Benchmark

18 / 28



Example #1 - Alignment Issues

Figure : Output of s111 Function in TSVC Benchmark

19 / 28



Example #2 - Loop Interchange or Data Transpose

Other example of Code Mockup application on TSVC Benchmark

I Study of s1115 function
I MAQAO reported Loop interchange/Data Transpose issue

I Explain...

for (int i = 0; i < LEN2; i++) {

for (int j = 0; j < LEN2; j++) {

aa[i][j] = aa[i][j]*cc[j][i] + bb[i][j];

}

}

Figure : Loop Kernel of s1115 Function in TSVC Benchmark

20 / 28



Example #2 - Loop Interchange or Data Transpose

Figure : Output of s1115 Function in TSVC Benchmark

21 / 28



Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

22 / 28



Case Study: Multigrid Kernel (1)
We use a modified version of the multigrid kernel part of the NPB
3.3 series of NAS benchmarks

for (k=1; k< N-1; k++) {

for (j=1; j< N-1; j++) {

for (i=0; i< N; i++) {

u1[i] = u1[i] * u1[i];

u2[i] = u2[i] * u2[i];

}

for (i=1; i< N-1; i++) {

r[k][j][i] = u1[i-1] + u1[i+1]

+ u2[i-1] + u2[i] + u2[i+1];

}

}

}

Figure : Sample C Code of Modified Multigrid Benchmark

23 / 28



Case Study: Multigrid Kernel (2)

> some base addresses not aligned on

’word size * vector width’ bytes: data restructuration

needed for vectorization compatibility

> some non contiguous strides:

loop/data restructuration needed for vectorization

Figure : MAQAO Report Excerpt on Multigrid Benchmark

24 / 28



Case Study: Multigrid Kernel (3)

Figure : Modified Multigrid Performance

25 / 28



Outline

1. Context

2. Performance Model

3. Code Mockups Generation

4. Evaluation

5. Conclusion

26 / 28



Related Works

This work is based on:
I Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization

Opportunities through Static-Dynamic Dependence Analysis. Workshop
on Productivity and Performance (2013)

Related works on vectorization:
I Videau, B., Marangozova-Martin, V., Genovese, L.: Optimizing 3D

Convolutions for Wavelet Transforms on CPUs with SSE Units and GPUs.
Euro-Par (2013)

I Kong, Martin and Veras, Richard and Stock, Kevin and Franchetti, Franz
and Pouchet, Louis-Noël and Sadayappan, P.: When polyhedral
transformations meet SIMD code generation. PLDI (2013)

Related Software:

I Intel Vtune

I PIN tool

27 / 28



Conclusion
Unsufficient/unefficient compilers autovectorization.

I We propose guided vectorization through user hints

I We backup these hints with performance estimations

We presented two different approaches for estimating the
performance of vectorized loop kernels.

I Performance Model
I Predicts an upper bound of performance

I Code Mockups Generation
I Approach vectorized loop kernel behavior
I We showed on a typical simulation code that this approach is

relevant

Future Works:

I More Mockups (rescheduling, etc.)

I Evaluate Code Mockups Generation approach on GPU
architectures

I Possibility of including MAQAO in a compilation chain
28 / 28


	Context
	Performance Model
	Code Mockups Generation
	Evaluation
	Conclusion

