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Motivation (1)
SIMDization is necessary to obtain high performance.
» Explicit vectorization is time consuming.

> Use of compilers and tools is needed.

Compilers propose automatic vectorization.
» Quality of vectorized codes?
» A lot of source codes are too complicated for a compiler to
vectorize.

» Hints about what caused vectorization to fail are hard to
understand.

Examples with GCC 4.6.3:

tsc.c:1986: note: not vectorized, possible dependence between
data-refs b[D.18123_4] and b[i_46] (->s1213)

tsc.c:121: note: not vectorized: complicated access pattern.

tsc.c:5476: note: not vectorized: relevant stmt not supported:
*D.16720_10 = D.16721_11;

N
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Motivation (2)

We proposed in a recent paper the automatic generation of
vectorization hints

» Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization
Opportunities through Static-Dynamic Dependence Analysis. Workshop
on Productivity and Performance (2013)

Implemented in MAQAO software, a performance tuning tool.

However, as we will show, hints themselves are not sufficient.
» Hints are hints. They may be wrong.

» Even if they are correct, would it be worth to apply suggested
transformations?

How to better guide the user through his vectorization process?

» Performance gain estimation is precious information.
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MAQAQO Overview
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Dependence Graph
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Dependence Graph and Vectorization

The graph is said vectorizable if one of the three conditions applies
to the computational part of the graph:

» There is no cycle.

» There is a cycle, with a cumulative weight greater than the
width of SIMD vectors.

> There is a cycle, with a cumulative weight smaller than the
width of SIMD vectors, and the instructions of the cycle all
are of one of the following types: add, mul, max, min. The
cycle corresponds to a reduction.

A code with a vectorizable dependence graph may require
transformations in order to be SIMDizable.
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Vectorization Hints

Hints for code transformations required for SIMDization are based
on dependence graph, strides and control flow graph.

>

Data alignment
first address offset is not a multiple of the vector

Loop transformations, loop interchange
all accesses within loop have a large innermost loop stride

Loop transformations, loop reversal

strides in the wrong way, or negative strides

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem copy)
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Test Machine Specifications

All conducted experiments are based on ARMv7 architecture.
» ST-Ericsson Snowball board (ARM Cortex-A9)
» 32-bit out-of-order processor @ 800Mhz
» NEON Advanced SIMD

» Single precision floating-point arithmetic
> up to 128-bit registers
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Performance Model

First approach to predict performances

» Goal is to state an upper bound of performance

» The bound represents the underlying architecture limit
We model pipelines usage through a capacity model

» Intimate knowledge of the architecture is needed

» We rely on microbenchmarks to obtain accurate information
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Microbenchmarks

Microbenchmarks are small portions of code
» They allow measurements of particular specifications

» This approach brings more accurate results than stated in
documentations

Two main pieces of information are needed to build the
performance model
» Number of pipelines

» How many pipelines for a given instructions?
> |s a given pipeline shared among several instructions?

» Cycles Per Instruction (CPI)
» Number of cycles required to issue an instruction
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Capacity Model (1)

» During the kernel execution, what determines performance the
most is the busiest pipeline

» Accordingly, the model is expressed as follows:

ninsx

t = maxg( Z CPI;),Vm € {pipelines} (1)
i=1

» Where t represents minimum time in cycles necessary for the
execution of a loop kernel per iteration
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Capacity Model (2)

» Reductions are important code patterns in scientific
applications
» Reductions are chains of dependences
» Instructions latency is considered, as next instruction requires
previous instruction result

» Model can be extended to include this constraint

nins; ninsy
t = max(max( Z CPl;), max, ( Z latency; + pcpr)),
i=1 i=1

vV € {pipelines},Vx € {chains} (2)
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Code Mockups

More reliable performance prediction of transformed loop kernel
than performance models
» Code Mockups are designed to tend to the vectorized loop
kernel behavior
» Goal is to achieve similar performance to give reliable output
to the user
» Code Mockups are semantically diverging from basis loop
kernel
» Two different classes of Code Mockups
» Code Mockups of basis loop kernel
> Naive vectorization
» Other minor modifications e.g. unrolling, unroll&jam...
» Code Mockups of restructured loop kernel
» Major transformations e.g. data restructuration, loop
interchange...
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Example #1 - Alignment Issues

Example of Code Mockup application on TSVC Benchmark
» Study of s111 function

» MAQAO reported an alignment issue
» Explain alignment issue...

for (int 1

= 1; i < LEN; i += 2) {
ali] =

ali - 1] + b[i]l;

Figure : Loop Kernel of s111 Function in TSVC Benchmark
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Example #1 - Alignment Issues
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Figure : Output of s111 Function in TSVC Benchmark
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Example #2 - Loop Interchange or Data Transpose

Other example of Code Mockup application on TSVC Benchmark

» Study of s1115 function
» MAQAO reported Loop interchange/Data Transpose issue

» Explain...
for (int i = 0; 1 < LEN2; i++) {
for (int j = 0; j < LEN2; j++) {
aalil[j] = aalill[jl*cc[jI[i] + bb[il[j];
}

Figure : Loop Kernel of s1115 Function in TSVC Benchmark
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Example #2 - Loop Interchange or Data Transpose
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Case Study: Multigrid Kernel (1)
We use a modified version of the multigrid kernel part of the NPB
3.3 series of NAS benchmarks

for (k=1; k< N-1; k++) {
for (j=1; j< N-1; j++) {

for (i=0; i< N; i++) {
ul[i] = uwi1[i] * uwi[i];
u2[i] = u2[i] * u2[i];

}

for (i=1; i< N-1; i++) {
r(k][jI0i] = uili-1] + ul[i+1]

+ u2[i-1] + uw2[i] + u2[i+1];

Figure : Sample C Code of Modified Multigrid Benchmark
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Case Study: Multigrid Kernel (2)

> some base addresses not aligned on
’word size * vector width’ bytes: data restructuration
needed for vectorization compatibility

> some non contiguous strides:
loop/data restructuration needed for vectorization

Figure : MAQAO Report Excerpt on Multigrid Benchmark
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Case Study: Multigrid Kernel (3)
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Conclusion

Unsufficient/unefficient compilers autovectorization.

» We propose guided vectorization through user hints

» We backup these hints with performance estimations
We presented two different approaches for estimating the
performance of vectorized loop kernels.

> Performance Model

> Predicts an upper bound of performance

» Code Mockups Generation

» Approach vectorized loop kernel behavior
» We showed on a typical simulation code that this approach is
relevant

Future Works:
» More Mockups (rescheduling, etc.)

» Evaluate Code Mockups Generation approach on GPU
architectures

» Possibility of including MAQAO in a compilation chain
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