
A Study of Garbage Collector Scalability
on Multicores

Lokesh Gidra, Gaël Thomas, Julien Sopena and Marc Shapiro

INRIA/University of Paris 6

ASPLOS – March 19th 2013

14/20 most popular languages have GC

but they don’t scale on multicore hardware

Garbage collection on multicore hardware

Gaël Thomas 2

Parallel Scavenge/HotSpot scalability on a 48-core machines

Degrades after 24 GC threads

#cores = #GC threads

Worse↓

Better ↑

G
C

 T
h

ro
u

gh
p

ut
 (

G
B

/s
)

SpecJBB2005 with
48 application threads/3.5GB

Scalability of GC is a bottleneck

By adding new cores, application creates more garbage per time unit

And without GC scalability, the time spent in GC increases

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 3

Lusearch
[PLOS’11]

~50% of the time spent in the GC
at 48 cores

Where is the problem?

Probably not related to GC design:
the problem exists in ALL the GCs of HotSpot 7
(both stop-the-world and concurrent GCs)

What has really changed:

Multicores are distributed architectures, not centralized architectures

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 4

From centralized architectures to distributed ones

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 5

A few years ago…

Uniform memory access machines

Now…

Inter-connect
Node 0 Node 1

Node 2 Node 3
Cores

Non-uniform memory access machines

Cores

Memory

System Bus

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

From centralized architectures to distributed ones
Our machine: AMD Magny-Cours with 8 nodes and 48 cores

� 12 GB per node

� 6 cores per node

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 6

Node 0 Node 1

Node 2 Node 3

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

Local access: ~ 200 cycles
Remote access: ~300 cycles

#cores = #threads

Better↓

Worse↑

C
o

m
p

le
tio

n
 ti

m
e

(m
s)

Single node access

Random access

Local access

Time to perform a fixed
number of reads in //

From centralized architectures to distributed ones
Our machine: AMD Magny-Cours with 8 nodes and 48 cores

� 12 GB per node

� 6 cores per node

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 7

Node 0 Node 1

Node 2 Node 3

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

Local access: ~ 200 cycles
Remote access: ~300 cycles

#cores = #threads

Better↓

Worse↑

C
o

m
p

le
tio

n
 ti

m
e

(m
s)

Single node access

Random access

Local access

Time to perform a fixed
number of reads in //

From centralized architectures to distributed ones
Our machine: AMD Magny-Cours with 8 nodes and 48 cores

� 12 GB per node

� 6 cores per node

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 8

Node 0 Node 1

Node 2 Node 3

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

Local access: ~ 200 cycles
Remote access: ~300 cycles

#cores = #threads

Better↓

Worse↑

C
o

m
p

le
tio

n
 ti

m
e

(m
s)

Single node access

Random access

Local access

Time to perform a fixed
number of reads in //

From centralized architectures to distributed ones
Our machine: AMD Magny-Cours with 8 nodes and 48 cores

� 12 GB per node

� 6 cores per node

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 9

Node 0 Node 1

Node 2 Node 3

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

Local access: ~ 200 cycles
Remote access: ~300 cycles

#cores = #threads

Better↓

Worse↑

C
o

m
p

le
tio

n
 ti

m
e

(m
s)

Single node access

Random access

Local access

Time to perform a fixed
number of reads in //

Parallel Scavenge Heap Space

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 10

Kernel’s lazy first-touch page allocation policy
First-touch allocation

policy

Virtual address space

Parallel Scavenge

Parallel Scavenge Heap Space

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 11

Kernel’s lazy first-touch page allocation policy
⇒ initial sequential phase maps most pages on first node

Initial
application

thread

First-touch allocation
policy

Parallel Scavenge

Parallel Scavenge Heap Space

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 12

Kernel’s lazy first-touch page allocation policy
⇒ initial sequential phase maps most pages on its node

Initial
application

thread

First-touch allocation
policy

But during the whole execution,
the mapping remains on a single node

(virtual space reused by the GC)

Parallel Scavenge

Parallel Scavenge Heap Space

Gaël Thomas 13

Bad balance

Bad locality

First-touch allocation
policy

95% on a single node

PS

SpecJBB

#cores = #GC threads

G
C

 T
h

ro
u

gh
p

ut
 (

G
B

/s
)

Worse↓

Better ↑

Parallel Scavenge

NUMA-aware heap layouts

Gaël Thomas 14

Bad balance

Bad locality

First-touch allocation
policy

Round-robin
allocation policy

Node local object
allocation and copy

95% on a single node

PS

SpecJBB

#cores = #GC threads

G
C

 T
h

ro
u

gh
p

ut
 (

G
B

/s
)

Worse↓

Better ↑

Targets balance Targets locality

Parallel Scavenge Interleaved Fragmented

Interleaved heap layout analysis

Gaël Thomas 15

Bad balance Perfect balance

Bad locality Bad locality

First-touch allocation
policy

Round-robin
allocation policy

Node local object
allocation and copy

95% on a single node 7/8 remote accesses

PS

Interleaved

SpecJBB

#cores = #GC threads

G
C

 T
h

ro
u

gh
p

ut
 (

G
B

/s
)

Worse↓

Better ↑

Parallel Scavenge Interleaved Fragmented

Fragmented heap layout analysis

Gaël Thomas 16

Bad balance Perfect balance Good balance

Bad locality Bad locality Average locality

Parallel Scavenge Interleaved Fragmented

First-touch allocation
policy

Round-robin
allocation policy

Node local object
allocation and copy

95% on a single node 7/8 remote accesses Bad balance if a single
thread allocates for the others

PS

Interleaved

FragmentedSpecJBB
7/8 remote scans

100%
local copies

#cores = #GC threads

G
C

 T
h

ro
u

gh
p

ut
 (

G
B

/s
)

Worse↓

Better ↑

Synchronization optimizations
Remove a barrier between the GC phases

Replace the queue of GC tasks with a lock-free one

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 17

G
C

 T
h

ro
u

gh
p

ut
 (

G
B

/s
)

PS

Interleaved

Fragmented
SpecJBB

Fragmented + synchro

Synchro
optimization

has effect with
high contention

#cores = #GC threads

Worse↓

Better ↑

Effect of Optimizations on the App (GC excluded)

A good balance improves a lot application time

Locality has only a marginal effect on application
While fragmented space increases locality for application over interleaved space

(recently allocated objects are the most accessed)

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 18

A
pp

lic
at

io
n

 ti
m

e PS

Other heap layouts

XML Transform from SpecJVM benchmark

#cores = #GC threads

Better↓

Worse↑

Overall effect (both GC and application)

Optimizations double the app throughput of SPECjbb

Pause time divided in half (105ms to 49ms)

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 19

A
pp

lic
at

io
n

th
ro

ug
hp

u
t (

o
ps

/m
s)

PS

Fragmented

SpecJBB

Interleaved

Fragmented + synchro

#cores = #GC threads

Worse↓

Better ↑

GC scales well with memory-intensive applications

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 20

3.5GB 1GB
2GB

512MB1GB2GB

PS Fragmented + synchro

Conclusion

Previous GCs do not scale because they are not NUMA-aware

• Existing mature GCs can scale with standard // programming techniques

• Using NUMA-aware memory layouts should be useful for all GCs
(concurrent GCs included)

Most important NUMA effects

1. Balancing memory access

2. Memory locality only helps at high core count

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 21

Conclusion

Previous GCs do not scale because they are not NUMA-aware

• Existing mature GCs can scale with standard // programming techniques

• Using NUMA-aware memory layouts should be useful for all GCs
(concurrent GCs included)

Most important NUMA effects

1. Balancing memory access

2. Memory locality only helps at high core count

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 22

Thank You ☺☺☺☺

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 23

Issues in the original fragmented space of hotspot

Fragmented space of hotspot was degrading performance
� 98.4 GB/s with baseline Parallel Scavenge

� Hotspot’s fragmented space performs degrades GC performance by 33%
(63.5 GB/s)

Issues in the original fragmented space
� Collection triggered when a single fragment is full

⇒ 325 collections instead of 177

� Resizing of spaces implies a lot of system calls

⇒ 20% of the GC time spent in resizing

Solutions proposed in our work
� Virtually, each fragment is an entire space to avoid early collection

� Pre-allocate and pre-map the maximal heap size to avoid system calls

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 24

Fragmented Space: node-local allocation

Good locality for both the GC (copies are node-local)

and the application (recently allocated objects are the most used)

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 25

GC Heap
(virtual memory)

GC Threads

scan
copy

Fragmented Space: node-local allocation

Good balance for both the GC (copies are balanced among the nodes)

and the application (objects are spread among the nodes after the first collection)

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 26

GC Heap
(virtual memory)

GC Threads

Evaluated applications
SpecJBB 2005: the most memory-intensive application

� Simulate an application server

� Working set: 3.5GB

5 applications from SpecJVM 2008
� Discard applications that do not use memory

� Working set: between 1 and 2 GB

2 applications from Dacapo 9.12
� Illustrates the effect on non-memory intensive applications

� Working set: 500MB

� A GC Thread has only few KB to collect

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 27

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 28

Memory access micro-benchmark

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 29

Node 0 Node 1

Node 2 Node 3

#cores = #threads

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

M
e

m
or

y

Better↓

Worse↑

C
o

m
p

le
tio

n
 ti

m
e

(m
s)

Access to a single node

Random access

Only local access

Measure the time to access a fixed number of memory locations

Scalability of GC is a bottleneck
Processor frequency is stagnant since a decade

but not memory size

By adding new cores, application creates more garbage

and without scalability, time spent in GC increases

⇒ Prevents the use of GC for data-intensive applications
(application servers, data-intensive applications, scientific applications…

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 30

Where is the problem?
Lack of parallelism?

� Parallel GCs exist since 30 years

� Parallel graph traversal is a well-studied problem

Design of parallel Scavenge ill-suited for many cores?
� The problem exists with ALL the GCs of HotSpot 7

(both stop-the-world and concurrent)

What has really changed:

Multicores are distributed architectures, not centralized architectures

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 31

