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14/20 most popular languages have GC

but they don’t scale on multicore hardware

Garbage collection on multicore hardware
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Parallel Scavenge/HotSpot scalability on a 48-core machines

Degrades after 24 GC threads 

#cores = #GC threads

Worse↓

Better ↑
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Scalability of GC is a bottleneck

By adding new cores, application creates more garbage per time unit

And without GC scalability, the time spent in GC increases
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Lusearch 
[PLOS’11]

~50% of the time spent in the GC
at 48 cores



Where is the problem?

Probably not related to GC design: 
the problem exists in ALL the GCs of HotSpot 7
(both stop-the-world and concurrent GCs)

What has really changed:

Multicores are distributed architectures, not centralized architectures
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From centralized architectures to distributed ones
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A few years ago…

Uniform memory access machines

Now…

Inter-connect
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From centralized architectures to distributed ones
Our machine: AMD Magny-Cours with 8 nodes and 48 cores

� 12 GB per node

� 6 cores per node
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Parallel Scavenge Heap Space
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Kernel’s lazy first-touch page allocation policy
First-touch allocation 

policy

Virtual address space

Parallel Scavenge



Parallel Scavenge Heap Space
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Kernel’s lazy first-touch page allocation policy
⇒ initial sequential phase maps most pages on first node

Initial 
application 

thread

First-touch allocation 
policy

Parallel Scavenge



Parallel Scavenge Heap Space
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Kernel’s lazy first-touch page allocation policy
⇒ initial sequential phase maps most pages on its node

Initial 
application 

thread

First-touch allocation 
policy

But during the whole execution,
the mapping remains on a single node

(virtual space reused by the GC)

Parallel Scavenge



Parallel Scavenge Heap Space
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Bad balance

Bad locality

First-touch allocation 
policy

95% on a single node
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NUMA-aware heap layouts
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Parallel Scavenge Interleaved Fragmented



Interleaved heap layout analysis
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Fragmented heap layout analysis
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Bad balance Perfect balance Good balance

Bad locality Bad locality Average locality

Parallel Scavenge Interleaved Fragmented

First-touch allocation 
policy

Round-robin 
allocation policy

Node local object
allocation and copy

95% on a single node 7/8 remote accesses Bad balance if a single
thread allocates for the others
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Synchronization optimizations
Remove a barrier between the GC phases

Replace the queue of GC tasks with a lock-free one
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Effect of Optimizations on the App (GC excluded)

A good balance improves a lot application time

Locality has only a marginal effect on application
While fragmented space increases locality for application over interleaved space

(recently allocated objects are the most accessed)
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Overall effect (both GC and application)

Optimizations double the app throughput of SPECjbb

Pause time divided in half (105ms to 49ms)
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GC scales well with memory-intensive applications
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3.5GB 1GB
2GB

512MB1GB2GB

PS Fragmented + synchro



Conclusion

Previous GCs do not scale because they are not NUMA-aware

• Existing mature GCs can scale with standard // programming techniques

• Using NUMA-aware memory layouts should be useful for all GCs
(concurrent GCs included)

Most important NUMA effects

1. Balancing memory access

2. Memory locality only helps at high core count
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Thank You ☺☺☺☺
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Issues in the original fragmented space of hotspot

Fragmented space of hotspot was degrading performance 
� 98.4 GB/s with baseline Parallel Scavenge

� Hotspot’s fragmented space performs degrades GC performance by 33%
(63.5 GB/s)

Issues in the original fragmented space
� Collection triggered when a single fragment is full 

⇒ 325 collections instead of 177

� Resizing of spaces implies a lot of system calls

⇒ 20% of the GC time spent in resizing

Solutions proposed in our work
� Virtually, each fragment is an entire space to avoid early collection

� Pre-allocate and pre-map the maximal heap size to avoid system calls
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Fragmented Space: node-local allocation

Good locality for both the GC (copies are node-local)

and the application (recently allocated objects are the most used)
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GC Heap
(virtual memory)

GC Threads

scan
copy



Fragmented Space: node-local allocation

Good balance for both the GC  (copies are balanced among the nodes)

and the application (objects are spread among the nodes after the first collection)
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GC Heap
(virtual memory)

GC Threads



Evaluated applications
SpecJBB 2005: the most memory-intensive application

� Simulate an application server

� Working set: 3.5GB

5 applications from SpecJVM 2008
� Discard applications that do not use memory

� Working set: between 1 and 2 GB

2 applications from Dacapo 9.12
� Illustrates the effect on non-memory intensive applications

� Working set: 500MB

� A GC Thread has only few KB to collect
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Memory access micro-benchmark
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Scalability of GC is a bottleneck
Processor frequency is stagnant since a decade

but not memory size

By adding new cores, application creates more garbage

and without scalability, time spent in GC increases

⇒ Prevents the use of GC for data-intensive applications
(application servers, data-intensive applications, scientific applications…
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Where is the problem?
Lack of parallelism? 

� Parallel GCs exist since 30 years

� Parallel graph traversal is a well-studied problem

Design of parallel Scavenge ill-suited for many cores?
� The problem exists with ALL the GCs of HotSpot 7

(both stop-the-world and concurrent)

What has really changed:

Multicores are distributed architectures, not centralized architectures
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