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Motivation

Virtualized datacenter
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Motivation

Virtualized highly-available Web application
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Motivation

Dynamic consolidation meets high-availability

Datacenter administrator wants
I to stack VMs on servers to improve resource usage
I an autonomous management of the VMs

Application administrator wants its VMs placed wrt. :

I their resource requirements
I fault tolerance to hardware failure for replicated services
I a network latency compatible with the synchronization protocol
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Motivation

One step beyond

Some problems

I multiple specific placement constraints
I concurrent/overlapping constraints
I non-expert users with limited concerns
I new placement constraints emerge with new usages

One proposition

I an extensible, composable VM manager
I specialized on the fly by independent constraints expressed by users
I easy specification of placement constraints with declarative scripts
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Motivation Sample scripts

Sample scripts

Datacenter description
namespace datacenter;

$servers = @srv[1 .. 12];
$racks=$servers % 4;

export $racks to *;

Datacenter requirements
namespace sysadmin;
import datacenter;
import clients .*;

vmBtrPlace : large;

fence(vmBtrPlace ,@srv1 );
lonely(vmBtrPlace );
ban($clients , @srv5);

Application description
namespace clients.app1;

import datacenter;

VM [1..7]: small <clone , boot=5, halt=5>;
VM[8, 10]: large <clone , boot=60, halt =10>;

$T1 = {VM1 , VM2 , VM3};
$T2 = VM [4..7];
$T3 = VM[8, 10];

for $t in $T [1..3] {
spread($t);

}
among($T3 ,$racks );

export $me to sysadmin;
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Global Design Architecture

Integration into Entropy

production code: 12k loc
unit tests: 8k loc
API documentation: 5k of javadoc
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Global Design Architecture

Sample loop iteration - Monitor
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Retrieves the current state of the datacenter
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Global Design Architecture

Sample loop iteration - Model merging
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Current configuration is not viable:
I VM4 must be running
I VM5 does not have access to

sufficient uCPU resource
I WN5 should not host any VMs

Reconfiguration plan:
actions on VMs and servers to reach a viable configuration
migration, suspend, resume, shutdown, startup, . . .
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Global Design Architecture

Sample loop iteration - Plan

1. compute a viable placement for the VMs
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2. schedule the actions
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Inside the Plan module

The reconfiguration problem

Two problems in one

I place the VMs: multi-dimensional packing with restrictions
I schedule the actions: continuous resource restrictions, responsiveness

The approach : constraint programming

I generation of a core model
I placement constraints are translated into "CP constraints" then

plugged into the core model
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Inside the Plan module

Constraint Programming 101 - Model a problem as a CSP

X = {x1, x2, x3}
D(xi ) = [0, 4] ,∀xi ∈ X

C =


c1 : x1 < x2
c2 : x1 + x2 + x3 = 4
c3 : allDifferent(x1, x2, x3)

I high-level standardized constraints
I good expressivity
I deterministic composition

I hard to develop efficient custom constraints
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Inside the Plan module

Constraint Programming 101 - Solving a CSP

Solving algorithm

I generic : DFS customizable by search heuristics, filtering, propagation
I independent from the constraints composing the model

I deterministic solving process
I portability of a model (somewhat)

I exact solving duration
I bad model leads to bad performance
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Inside the Plan module The core model

Modeling the core Reconfiguration Problem (RP)

Data from the provisioning module

I VMs : current state, next state, resource consumption
I servers: current state and resource capacities

Inside a reconfiguration : actions

I resource usage distribution changes
I actions are modeled wrt. their impacts on resources

In practice, 5 500 loc; Choco library
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Inside the Plan module The core model

Modeling actions using slices

Finite period where CPU and memory resources are consumed on a server
I c-slice: Resources are currently consumed on a known server
I d-slice: Resources will be consuming on a server at the end of the

reconfiguration
Each slice exposes using variables :

I its placement
I its resource consumption
I the time interval it consumes resources

Building block to model actions and express constraints
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Inside the Plan module The core model

Actions
Each action exposes using variables :

I the moment it starts and terminates
I its cost
I the associated slices

Modeling a migration

I VM1 consumed 3 uCPU : one c-slice
I VM1 now requires 4 uCPU : one d-slice
I a migration occurs iff. slices are not co-located (est. duration k1).
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Inside the Plan module The core model

Solving the core problem with CP

Modeling the coordination between slices

I no overloaded servers: two 1D bin-packing constraints to place d-slices
wrt. their resource usage

I actions scheduling: a home-made constraint to manipulate slices
(similar to cumulatives)

Solving: truncated DFS with custom heuristic
Oriented for responsiveness

I place the d-slices for fewest and cheapest actions
I schedule the d-slices asap
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Inside the Plan module The placement constraints

A first library

12 constraints covering

I multiple concerns :
I resource mgmt: capacity, preserve , oversubscription, offline, noIdles
I reliability: spread, root
I partitioning: among, ban, fence
I security: lonely, quarantine

I multiple aspects of a reconfiguration: VM placement, VM resource
allocation, server state, actions schedule, relocation method

Concise implementation

I about 30 loc. each,
I half a day to implement lonely from EC2 specification
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Inside the Plan module The placement constraints

Implementation of spread
spread({VM1, VM2})
VMs must not overlap on a same server

∀V ⊆ V, spread(V ) ,

allDifferent({dhost
i |vi ∈ V })

implies(eq(dhost
i , chost

j ), geq(d st
i , ced

j )), ∀vi , vj ∈ V

50 lines of code
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Inside the Plan module Optimizations

Improving the solving process
The filter optimization

(c) Wo. filter (d) With filter

I each constraint checks for misplaced VMs
I the CSP is a sub RP as reduced as possible
I beware of false positives
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Inside the Plan module Optimizations

Improving the solving process

Partitioning

I constraints may lead to disjoint sub-RPs
I sub-RPs are solved in parallel
I beware of oversized partitions or un-perfect partitioning
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Evaluation on a cluster

Recovering from external events - RUBiS Benchmark

I 8 servers host 21 VMs running 3 RUBiS benchmarks
I the datacenter administrator uses ban constraints to prepare software

maintenance

Time Event
Reconfiguration Plan

’ Actions Duration
2’10 + ban({WN8}) 3 + 3 migrations 0’42
4’30 + ban({WN4}) 2 + 7 migrations 1’02
7’05 - ban({WN4}) no reconfiguration

11’23 + ban({WN4}) no solution
11’43 - ban({WN8}) 2 migrations 0’28

+ ban({WN4})

I hidden side effects on BtrPlace, not the datacenter administrator
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Evaluation Scalability evaluation

Scalability evaluation

Simulated instances
I from 1,000 to 5,000 servers grouped by 250
I 3-tiers Web applications (20 VMs each)
I initial placement and uCPU usage computed pseudo-randomly
I consolidation ratio of 6:1
I global resource usage: 65% memory, 73% uCPU

2 scenarios
I Hardware Failure (HF): 0.5% of the servers are turned off
I Load Increase (LI): 10% of the applications ask for 30% more

resources (+5% overall usage)
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Evaluation Scalability evaluation

Impact of the filter optimization
I better scalability : faster solving process
I better reconfiguration plans : smaller and faster
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Evaluation Scalability evaluation

Impact of the placement constraints

A varying ratio of applications have placement constraints
(3 spread + 1 among each)

Solving duration
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The core RP still dominates the solving process
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Evaluation Scalability evaluation

Impact of the placement constraints

A varying ratio of applications have placement constraints
(3 spread + 1 among each)

Reconfiguration plans

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

250 500 1000 2500 5000

T
im

e 
(in

 s
ec

.)

Servers

0%
33%

66%
100%

(k) HF scenario

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

250 500 1000 2500 5000
T

im
e 

(in
 s

ec
.)

Servers

0%
33%

66%
100%

(l) LI scenario

No impact

Fabien Hermenier (UNS) March 28, 2012 25 / 29



Evaluation Scalability evaluation

Impact of partitioning

I 5.000 servers, 30.000 VMs, 1.500 x (3 spread + 1 among + 1 fence)
I Partitions: from 1 x 5.000 servers to 20 x 250 servers.

Solving duration
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Fabien Hermenier (UNS) March 28, 2012 26 / 29



Evaluation Scalability evaluation

Impact of partitioning

Varying number of 2.500 servers partition

14 x 2.500 servers (14 shipping containers):
I 35,000 servers hosting 210,000 VMs
I 20 seconds (partitioning) + 20 seconds (solving duration)
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Conclusion

BtrPlace

Flexibility

I a composable reconfiguration algorithm
I manipulable elements: VM placement, VM resource allocation, actions

schedule, relocation method, server state
I a first library of 12 concise placement constraints to express

dependability requirements
I the Fit4Green FP7:

I not affiliated to BtrPlace, nor familiar with CP
I implement a power model and placement constraints
I no real modifications of the core RP

Fabien Hermenier (UNS) March 28, 2012 28 / 29



Conclusion

BtrPlace

Performance
I placement constraints introduce an acceptable overhead
I 5.000 servers hosting 30.000 VMs with 6.000 constraints

I 120 seconds wo. partitioning
I 20 seconds with partitions of 2.500 servers

I scalability limited by the partitions size and the number of slaves
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Conclusion

Last words

Next BtrPlace
I new concerns : network, storage, . . .
I BtrPlace Constraint Catalog
I new manageable elements: VM state, hosting platform
I automatic and optimistic partitioning
I penalty cost
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