
BtrPlace: Autonomous and Flexible Management of
VMs in Hosting Platforms

Fabien Hermenier

OASIS - Team Project
University of Nice-Sophia Antipolis

March 28, 2012

Fabien Hermenier (UNS) March 28, 2012 1 / 29

Motivation

Virtualized datacenter

WN2

WN1

WN3

WN4

WN6

WN7

WN8

WN5

R1 R2 R3
giga-ethernet link fiber channel link

WN11

SN1

WN9

WN10

Fabien Hermenier (UNS) March 28, 2012 2 / 29

Motivation

Virtualized highly-available Web application

Fabien Hermenier (UNS) March 28, 2012 3 / 29

Motivation

Dynamic consolidation meets high-availability

Datacenter administrator wants
I to stack VMs on servers to improve resource usage
I an autonomous management of the VMs

Application administrator wants its VMs placed wrt. :

I their resource requirements
I fault tolerance to hardware failure for replicated services
I a network latency compatible with the synchronization protocol

Fabien Hermenier (UNS) March 28, 2012 4 / 29

Motivation

One step beyond

Some problems

I multiple specific placement constraints
I concurrent/overlapping constraints
I non-expert users with limited concerns
I new placement constraints emerge with new usages

One proposition

I an extensible, composable VM manager
I specialized on the fly by independent constraints expressed by users
I easy specification of placement constraints with declarative scripts

Fabien Hermenier (UNS) March 28, 2012 5 / 29

Motivation Sample scripts

Sample scripts

Datacenter description
namespace datacenter;

$servers = @srv[1 .. 12];
$racks=$servers % 4;

export $racks to *;

Datacenter requirements
namespace sysadmin;
import datacenter;
import clients .*;

vmBtrPlace : large;

fence(vmBtrPlace ,@srv1);
lonely(vmBtrPlace);
ban($clients , @srv5);

Application description
namespace clients.app1;

import datacenter;

VM [1..7]: small <clone , boot=5, halt=5>;
VM[8, 10]: large <clone , boot=60, halt =10>;

$T1 = {VM1 , VM2 , VM3};
$T2 = VM [4..7];
$T3 = VM[8, 10];

for $t in $T [1..3] {
spread($t);

}
among($T3 ,$racks);

export $me to sysadmin;

Fabien Hermenier (UNS) March 28, 2012 6 / 29

Global Design Architecture

Integration into Entropy

production code: 12k loc
unit tests: 8k loc
API documentation: 5k of javadoc

Fabien Hermenier (UNS) March 28, 2012 7 / 29

Global Design Architecture

Sample loop iteration - Monitor

RAM

uCPU

RAM

uCPU

RAM

uCPU
WN1 WN2

VM8

VM5

VM4
(failed)

WN3 WN5
RAM

uCPU

VM6 VM7

VM9

Retrieves the current state of the datacenter

Fabien Hermenier (UNS) March 28, 2012 8 / 29

Global Design Architecture

Sample loop iteration - Model merging

RAM

uCPU

RAM

uCPU

RAM

uCPU
WN1 WN2

VM8

VM4
(waiting)

WN3 WN5
RAM

uCPU

VM6 VM7

VM9

VM5

Current configuration is not viable:
I VM4 must be running
I VM5 does not have access to

sufficient uCPU resource
I WN5 should not host any VMs

Reconfiguration plan:
actions on VMs and servers to reach a viable configuration
migration, suspend, resume, shutdown, startup, . . .

Fabien Hermenier (UNS) March 28, 2012 9 / 29

Global Design Architecture

Sample loop iteration - Plan

1. compute a viable placement for the VMs

RAM

uCPU

RAM

uCPU

RAM

uCPU
WN1 WN2

VM8

VM4
(waiting)

WN3 WN5
RAM

uCPU

VM6 VM7

VM9

VM5

2. schedule the actions

Fabien Hermenier (UNS) March 28, 2012 10 / 29

Inside the Plan module

The reconfiguration problem

Two problems in one

I place the VMs: multi-dimensional packing with restrictions
I schedule the actions: continuous resource restrictions, responsiveness

The approach : constraint programming

I generation of a core model
I placement constraints are translated into "CP constraints" then

plugged into the core model

Fabien Hermenier (UNS) March 28, 2012 11 / 29

Inside the Plan module

Constraint Programming 101 - Model a problem as a CSP

X = {x1, x2, x3}
D(xi) = [0, 4] ,∀xi ∈ X

C =

c1 : x1 < x2
c2 : x1 + x2 + x3 = 4
c3 : allDifferent(x1, x2, x3)

I high-level standardized constraints
I good expressivity
I deterministic composition

I hard to develop efficient custom constraints

Fabien Hermenier (UNS) March 28, 2012 12 / 29

Inside the Plan module

Constraint Programming 101 - Solving a CSP

Solving algorithm

I generic : DFS customizable by search heuristics, filtering, propagation
I independent from the constraints composing the model

I deterministic solving process
I portability of a model (somewhat)

I exact solving duration
I bad model leads to bad performance

Fabien Hermenier (UNS) March 28, 2012 13 / 29

Inside the Plan module The core model

Modeling the core Reconfiguration Problem (RP)

Data from the provisioning module

I VMs : current state, next state, resource consumption
I servers: current state and resource capacities

Inside a reconfiguration : actions

I resource usage distribution changes
I actions are modeled wrt. their impacts on resources

In practice, 5 500 loc; Choco library

Fabien Hermenier (UNS) March 28, 2012 14 / 29

Inside the Plan module The core model

Modeling actions using slices

Finite period where CPU and memory resources are consumed on a server
I c-slice: Resources are currently consumed on a known server
I d-slice: Resources will be consuming on a server at the end of the

reconfiguration
Each slice exposes using variables :

I its placement
I its resource consumption
I the time interval it consumes resources

Building block to model actions and express constraints

Fabien Hermenier (UNS) March 28, 2012 15 / 29

Inside the Plan module The core model

Actions
Each action exposes using variables :

I the moment it starts and terminates
I its cost
I the associated slices

Modeling a migration

I VM1 consumed 3 uCPU : one c-slice
I VM1 now requires 4 uCPU : one d-slice
I a migration occurs iff. slices are not co-located (est. duration k1).

time

N1

0

end of the
reconfiguration

5

3

4

N2

VM1

(a) VM1 was running on N1

time

N1

0

end of the
reconfiguration

5

3

4

N2

k1

VM1

VM1

(b) VM1 was running on N2

Fabien Hermenier (UNS) March 28, 2012 16 / 29

Inside the Plan module The core model

Solving the core problem with CP

Modeling the coordination between slices

I no overloaded servers: two 1D bin-packing constraints to place d-slices
wrt. their resource usage

I actions scheduling: a home-made constraint to manipulate slices
(similar to cumulatives)

Solving: truncated DFS with custom heuristic
Oriented for responsiveness

I place the d-slices for fewest and cheapest actions
I schedule the d-slices asap

Fabien Hermenier (UNS) March 28, 2012 17 / 29

Inside the Plan module The placement constraints

A first library

12 constraints covering

I multiple concerns :
I resource mgmt: capacity, preserve , oversubscription, offline, noIdles
I reliability: spread, root
I partitioning: among, ban, fence
I security: lonely, quarantine

I multiple aspects of a reconfiguration: VM placement, VM resource
allocation, server state, actions schedule, relocation method

Concise implementation

I about 30 loc. each,
I half a day to implement lonely from EC2 specification

Fabien Hermenier (UNS) March 28, 2012 18 / 29

Inside the Plan module The placement constraints

Implementation of spread
spread({VM1, VM2})
VMs must not overlap on a same server

∀V ⊆ V, spread(V) ,

allDifferent({dhost
i |vi ∈ V })

implies(eq(dhost
i , chost

j), geq(d st
i , ced

j)), ∀vi , vj ∈ V

50 lines of code
Fabien Hermenier (UNS) March 28, 2012 19 / 29

Inside the Plan module Optimizations

Improving the solving process
The filter optimization

(c) Wo. filter (d) With filter

I each constraint checks for misplaced VMs
I the CSP is a sub RP as reduced as possible
I beware of false positives

Fabien Hermenier (UNS) March 28, 2012 20 / 29

Inside the Plan module Optimizations

Improving the solving process

Partitioning

I constraints may lead to disjoint sub-RPs
I sub-RPs are solved in parallel
I beware of oversized partitions or un-perfect partitioning

Fabien Hermenier (UNS) March 28, 2012 21 / 29

Evaluation on a cluster

Recovering from external events - RUBiS Benchmark

I 8 servers host 21 VMs running 3 RUBiS benchmarks
I the datacenter administrator uses ban constraints to prepare software

maintenance

Time Event
Reconfiguration Plan

’ Actions Duration
2’10 + ban({WN8}) 3 + 3 migrations 0’42
4’30 + ban({WN4}) 2 + 7 migrations 1’02
7’05 - ban({WN4}) no reconfiguration

11’23 + ban({WN4}) no solution
11’43 - ban({WN8}) 2 migrations 0’28

+ ban({WN4})

I hidden side effects on BtrPlace, not the datacenter administrator

Fabien Hermenier (UNS) March 28, 2012 22 / 29

Evaluation Scalability evaluation

Scalability evaluation

Simulated instances
I from 1,000 to 5,000 servers grouped by 250
I 3-tiers Web applications (20 VMs each)
I initial placement and uCPU usage computed pseudo-randomly
I consolidation ratio of 6:1
I global resource usage: 65% memory, 73% uCPU

2 scenarios
I Hardware Failure (HF): 0.5% of the servers are turned off
I Load Increase (LI): 10% of the applications ask for 30% more

resources (+5% overall usage)

Fabien Hermenier (UNS) March 28, 2012 23 / 29

Evaluation Scalability evaluation

Impact of the filter optimization
I better scalability : faster solving process
I better reconfiguration plans : smaller and faster

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

F
ai

lu
re

 r
at

e
(%

)

Servers

LI
HF
LI + filter
HF + filter

(e) Failure rate

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000

T
im

e
(in

 s
ec

.)

Servers

LI
HF

LI + filter
HF + filter

(f) Solving duration

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 1000 2000 3000 4000 5000

A
ct

io
ns

Servers

LI
HF
LI + filter
HF + filter

(g) Nb. of actions

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1000 2000 3000 4000 5000

T
im

e
(in

 s
ec

.)

Servers

LI
HF

LI + filter
HF + filter

(h) Reconfiguration duration
Fabien Hermenier (UNS) March 28, 2012 24 / 29

Evaluation Scalability evaluation

Impact of the placement constraints

A varying ratio of applications have placement constraints
(3 spread + 1 among each)

Solving duration

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1000 2000 3000 4000 5000

T
im

e
(in

 s
ec

.)

Servers

0%
33%
66%
100%

(i) HF scenario

 0
 20
 40
 60
 80

 100
 120
 140

 0 1000 2000 3000 4000 5000
T

im
e

(in
 s

ec
.)

Servers

0%
33%
66%
100%

(j) LI scenario

The core RP still dominates the solving process

Fabien Hermenier (UNS) March 28, 2012 25 / 29

Evaluation Scalability evaluation

Impact of the placement constraints

A varying ratio of applications have placement constraints
(3 spread + 1 among each)

Reconfiguration plans

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

250 500 1000 2500 5000

T
im

e
(in

 s
ec

.)

Servers

0%
33%

66%
100%

(k) HF scenario

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

250 500 1000 2500 5000
T

im
e

(in
 s

ec
.)

Servers

0%
33%

66%
100%

(l) LI scenario

No impact

Fabien Hermenier (UNS) March 28, 2012 25 / 29

Evaluation Scalability evaluation

Impact of partitioning

I 5.000 servers, 30.000 VMs, 1.500 x (3 spread + 1 among + 1 fence)
I Partitions: from 1 x 5.000 servers to 20 x 250 servers.

Solving duration

 0

 20

 40

 60

 80

 100

 120

5000 2500 1000 500 250

T
im

e
(in

 s
ec

.)

Partition size

LI + filter
HF + filter

The smaller, the better

Fabien Hermenier (UNS) March 28, 2012 26 / 29

Evaluation Scalability evaluation

Impact of partitioning

Varying number of 2.500 servers partition

14 x 2.500 servers (14 shipping containers):
I 35,000 servers hosting 210,000 VMs
I 20 seconds (partitioning) + 20 seconds (solving duration)

Fabien Hermenier (UNS) March 28, 2012 27 / 29

Conclusion

BtrPlace

Flexibility

I a composable reconfiguration algorithm
I manipulable elements: VM placement, VM resource allocation, actions

schedule, relocation method, server state
I a first library of 12 concise placement constraints to express

dependability requirements
I the Fit4Green FP7:

I not affiliated to BtrPlace, nor familiar with CP
I implement a power model and placement constraints
I no real modifications of the core RP

Fabien Hermenier (UNS) March 28, 2012 28 / 29

Conclusion

BtrPlace

Performance
I placement constraints introduce an acceptable overhead
I 5.000 servers hosting 30.000 VMs with 6.000 constraints

I 120 seconds wo. partitioning
I 20 seconds with partitions of 2.500 servers

I scalability limited by the partitions size and the number of slaves

Fabien Hermenier (UNS) March 28, 2012 28 / 29

Conclusion

Last words

Next BtrPlace
I new concerns : network, storage, . . .
I BtrPlace Constraint Catalog
I new manageable elements: VM state, hosting platform
I automatic and optimistic partitioning
I penalty cost

Fabien Hermenier (UNS) March 28, 2012 29 / 29

	Motivation
	Sample scripts

	Global Design
	Architecture

	Inside the Plan module
	The core model
	The placement constraints
	Optimizations

	Evaluation
	on a cluster
	Scalability evaluation

	Conclusion

