
MODFRAC, Fracture Network Modeler and Mesher

Technical Description

G. Pichot1 H. Borouchaki2 P. Laug3

1. Inria Paris & Université Paris-Est, CERMICS (ENPC), geraldine.pichot@inria.fr
2. Université de Technologie de Troyes, houman.borouchaki@utt.fr
3. Inria Saclay (retired)

1 Introduction

It is well known that fractures play a major role in many applications of geology (water resources,
deep storage, geothermal energy, among others) and cannot be neglected in subsurface modeling as
they are preferential flow paths. Fractures are ubiquitous and have a large range of sizes (from a few
centimeters to several kilometers) and apertures (which determine their transmissivity).

A possible strategy for modeling these fracture networks is the Discrete Fracture Network (DFN)
approach. Fractures are then modeled as ellipses or polygons whose properties (orientation, size,
position, transmissivity) are governed by statistical laws derived from field observations. In numerical
simulations, the three-dimensional domain Ω is typically a parallelepiped (here called a cube for the
sake of brevity) containing several thousand or even more than a million fractures.

The MODFRAC software, from such a DFN model, calculates the intersections of the fractures
with each other and with the faces of the cube, completes this model with geometric and
topological information, and generates a mesh of this model.

The execution takes place in several stages:

1. Reading the software control parameters.
2. Reading the fracture network.
3. Optionally, reading the description of the wells and other geometric constraints.
4. Possible conversion of ellipses into polygons (on user request).
5. Selection of all fractures inside the cube.
6. Calculation of the intersections of the fractures with each other and with the faces of the cube.

These intersections are straight segments on the fractures and faces of the cube, and eventually
produce arcs of ellipses at the boundary of the fractures.

7. In the case of a mesh performed on the DFN backbone only (the surrounding porous media is
not meshed), selection of fractures connected to given faces of the cube, using a graph
structure. Only these fractures will be useful for later numerical simulations.

8. Calculation of the intersections of the preceding straight segments with each other. These
intersections are points at the intersection of 3 faces which are either fractures or faces of the
cube. These intersection points subdivide the segments into sub-segments. It is essential to
manage this data in a strictly consistent manner.

9. Transmission of the preceding information to an “indirect” surface mesher, where the three-
dimensional mesh results from the construction of planar meshes of the parameter domains.
The meshing methodology is based on a combined frontal-Delaunay approach in a
Riemannian context.

10. Improving minimum mesh quality.

11. Writing the surface mesh, which could possibly be used by an independent volume mesher.
12. Writing files that can be used for numerical simulations.

The software makes maximum use of the available computing power and most of the steps are
parallelized using an arbitrary number of threads, which greatly increases processing speed on
common machines comprising one or more multi-core processors.

2 Features

MODFRAC software is driven by the modfrac.env text file. In this file, the user can modify each
parameter (or environment variable) by means of a keyword and a value (or several values). It is
appropriate here to distinguish between two main classes of parameters. The first, called generic
parameters, are used in a wide variety of mesh applications. We give below the generic parameters
used in the context that concerns us, namely meshing fracture networks. The second, called specific
parameters, have been added to control certain particular aspects of the MODFRAC software.

Generic parameters

The following list gives, for each generic parameter, its keyword, its type, its description and its
default value.

• angle_mesh : real (0 to 90) indicating the angular tolerance for the geometric discretization of
the ellipses bounding the fractures (if hgeo_flag is set). This is the angle (in degrees) between
an edge of the discretization and the tangent to the ellipse at each end. The default value is 8°.

• export_amadeus: integer (0 to 4) indicating the content of the mesh file amadeus.mesh which
will be generated: 0 no file, 4 file readable by the GHS3D volume mesh generator, otherwise
visualization file (with Edges and Normals fields). If FRACporous = 1 and export_amadeus ≠
4, two files are generated: amadeus.mesh for the volume mesher and amadeus-visu.mesh for
the visualization (it contains edges information). The default value is 0.

• gradation: real in the interval [1.1, 1.e+30] indicating the maximum ratio of lengths between
any two adjacent edges (1.e+30 means that no gradation is desired). The default value is
1.e+30.

• hgeo_flag: boolean (0, 1) indicating that a geometric mesh is desired (you can simultaneously
set hgeo_flag and hphy_flag). In our context, the mesh is controlled by the curvature of the
ellipses bounding the fractures. The default value is 0.

• hgeomin: real indicating the minimum size of edges for a geometric mesh (hgeo_flag ≠ 0).
The default is diag * 0.001, where diag is the length of the diagonal of the cube.

• hgeomax: real indicating the maximum size of edges for a geometric mesh (hgeo_flag ≠ 0).
The default is diag * 0.1, where diag is the length of the diagonal of the cube.

• hphy_flag: boolean (0, 1) indicating that a physical mesh is desired, i.e. respecting the sizes
specified by the user (you can simultaneously set hgeo_flag and hphy_flag). The default value
is 1.

• hphydef: real indicating the size of the edges for a physical mesh (hphy_flag ≠ 0). The default
is diag * 0.01, where diag is the length of the diagonal of the cube.

• hphymin: real indicating the minimum size of the edges for a physical mesh (hphy_flag ≠ 0).
The default value is that of hgeomin.

• hphymax: real indicating the maximum size of edges for a physical mesh (hphy_flag ≠ 0). The
default value is that of hgeomax

• intermedfile: boolean (0, 1) activating the generation of intermediate files in order to check
the correct running of the software. If intermedfile=1 and refs=0, only general files are
created. If refs ≠ 0, intermedfile is forced to 1 and files concerning more particularly the
fracture refs are also created. The default value is 0.

• memory: integer indicating the maximum number of vertices generated on each fracture. The
default value is 100,000.

• number_of_threads: integer n indicating the desired number of threads on which the parallel
parts of the software are executed (if it is 0 then the process remains sequential). For example,
on a desktop computer equipped with a single quad-core processor, good performance will be
obtained with n = 4. This performance is sometimes slightly improved with n > 4, due to a
hyper-threading phenomenon. The default value is 0.

• refs : integer giving a fracture number (see also intermedfile parameter). The default value is
0. The correspondence between refs and the original fracture number is in the
modfrac_frac_meshed.vector file (see below).

• size_computation: boolean (0, 1) forcing size gradation around small edges. The default value
is 0.

• verb: integer (0 to 100) indicating the percentage of verbosity, or level of printing of software
messages. The default value is 0.

Specific parameters

The parameters below have been added especially for the MODFRAC software.

• FRACconforming: boolean (0, 1) indicating that the discretizations of the sub-segments
generated in step 8 must be conforming. Otherwise, if a sub-segment is at the intersection of
two fractures f1 and f2, the number of edges of the discretization of this sub-segment on the
fracture f1 can be different from the number of edges on the fracture f2. The default value is 1.

• FRACcube_faces: integer n indicating the faces of the cube to which the fractures must be
connected (step 7). This integer contains several digits, each digit representing a face of the
cube. By convention, the faces are numbered 1 (x = xmin), 2 (x = xmax), 3 (y = ymin), 4 (y =
ymax), 5 (z = zmin) and 6 (z = zmax). For example, if n = 12, all fractures connected (directly
or indirectly) to faces 1 and 2 will be retained. The default value is 0 (all fractures, connected
or not, are retained).

• FRACcubemin: 3 real numbers (xmin, ymin, zmin) representing the minimum coordinates of
the corners of the cube. This parameter is required.

• FRACcubemax: 3 real numbers (xmax, ymax, zmax) representing the maximum coordinates of
the corners of the cube. This parameter is required.

• FRACell_to_pol: integer n indicating that each ellipse must be replaced by a polygon with n
sides (step 4). The default value is 0 (in this case, ellipses are not converted to polygons before
meshing).

• FRACeps_abs: real indicating an absolute threshold of distance εa below which two points are
considered as coincident. The default value is εa = εr diag, where εr is given by the
FRACeps_rel parameter and diag is the length of the diagonal of the cube.

• FRACeps_rel: real indicating a relative threshold of distance εr to calculate the absolute
threshold εa defined by the parameter FRACeps_abs. The default is 10-6.

• FRACfilename: character string indicating the name of the fracture network file. The default
is the string "frac-no.vector".

• FRACfixed_constraints: boolean (0, 1) indicating to fix (freeze) certain vertices during the
final optimization of the mesh (step 10), in order to compare certain numerical tests very
accurately. If this boolean is true, the optimization does not move the points located on the
straight geometric constraints (starting with a 1 in the constraints.dat file). The optimization
also does not move the vertices located on the 4 sides of the cube faces that contain these
constraints, to fully preserve the constrained areas. The default value is 0 (free vertices).

• FRACL: real d defining a real cube (and not any parallelepiped) centered at the origin and
with side d. FRACL d is equivalent to FRACcubemin -d/2 -d/2 -d/2 and FRACcubemax +d/2
+d/2 +d/2.

• FRACpad_zeros: boolean (0, 1) indicating that the inter-edges.dat and inter-cube-edges.dat
files must be padded with 0s in order to make the number of elements per line constant. The
default is 0 (smaller file sizes).

• FRACporous: boolean (0, 1) indicating that the numerical simulations relate to a porous
medium. In this case, all fractures are meshed (FRACcube_faces is forced to 0), the faces of
the cube are also meshed and the output mesh of MODFRAC can be used as input of a volume
mesher. The default value is 0.

• FRACqmin: real qmin indicating the minimum quality required for the mesh (step 10). This
value, generally small (of the order of 10-4), is often essential for later numerical simulations.
For any triangle of quality q < qmin, the MODFRAC software improves its quality up to a
value q' ≥ qmin by moving its vertices if possible. The default value is 0.0 (no improvement
requested).

• FRACsimulation: boolean (0, 1). If it is 0, only the mesh file amadeus.mesh is generated. If it
is 1, other useful files for numerical simulations are generated. The default value is 1.

• FRACwrite_frac: Boolean (0, 1) activating the conversion of a fracture network in .disk
format into a network in .vector format (see the description of this format below). The name of
the output file is frac-no.vector. The default value is 0 (no conversion).

• FRACwrite_inter: integer (0, 1, 2) indicating the option for generating inter-* files (see
below). The default is 2.

• FRACwrite_subdomain: integer (0 to 7) indicating the option for generating subdomain files
(see below). The default value is 0.

After reading the parameters specified by the user (step 1), the MODFRAC software reads a file
defining a network of fractures (step 2). The name of this file is given by the FRACfilename
parameter. The suffix of this name (.vector, .disk or .geo) indicates the format of the file.

Fracture file with .vector suffix, in particular frac-no.vector (input)

In this format (cf. Table 9 of reference [1]), each fracture is delimited by an ellipse defined by its
center, its normal, its major axis and its minor axis. The first line of the file specifies the list of
variables used:
no Laxis_maj Laxis_min c_x c_y c_z n_x n_y n_z no_fracture u_x u_y u_z v_x v_y v_z

Fracture file with .disk suffix (input)

In this other format [2], each fracture is delimited by a circle. The first line of the file again gives the
variables used: label id xc yc zc dip dipdir half_length aperture ...

• label and id are variables that can be ignored
• xc, yc and zc are the coordinates of the center of the circle
• dip is the dip and dipdir the azimuth (geological data giving the normal to the fracture)
• half_length is the radius of the circle
• aperture is the aperture, which determines the transmissivity of the fracture
• Additional variables, following the aperture variable, depend on the context of use.

The second line contains 2 integers: the total number of fractures and the number of additional
variables following aperture. The following lines contain, for each fracture, the values of the variables
that describe it.

Fracture file with .geo suffix (input)

In this format of the GMSH software [3], each fracture is delimited by a convex planar polygon. The
syntax is recalled below in a simplified way:

Point(p) = {x, y, z, h}
Line(l) = {p, q}
Line Loop(ll) = {l1, l2, l3, ...}
Plane Surface(s) = {ll}

In this way, we successively define points, straight segments joining two points, loops of straight
segments and finally planar surfaces delimited by loops. The MODFRAC software deduces the origin
and the normal of each polygon, then the intersections of the polygons with each other (even if they
are already given in the .geo file) in order to guarantee the topological coherence of the whole.

File with the well description wells.geo (input)

The exploitation of underground resources often requires the drilling of one or more wells. The
optional file wells.geo (in .geo format as before) gives the description of such wells (step 3) in the
form of planar polygonal faces. An example is given in Section 3.

Note that the wells.geo file can be used to describe not only wells, but also any surface made up of one
or more planar polygons.

File with the geometric constraints constraints.dat (input)

As indicated in the introduction, optional step 3 gives the possibility of specifying other geometric
constraints than the previous ones. Each constraint is defined by a text line having one of the following
forms:

a) 1 Px Py Pz Qx Qy Qz
b) 2 Ox Oy Oz Nx Ny Nz
c) 2 Ox Oy Oy Px Py Pz Qx Qy Qz

If the line begins with a 1, it is a linear constraint (1D), which is a straight segment joining points P
and Q located on the same face of the cube.
If it starts with a 2, it is a surface constraint (2D), which is a plane intersecting the cube. This plane
can be defined by its origin O and its normal N (6 reals), or by its origin O and two points P and Q
belonging to it (9 reals).

Files for fracture selection frac_meshed.vector and frac_unmeshed.vector (input)

The frac_meshed.vector (resp. frac_unmeshed.vector) file, if it exists, gives the list of the numbers of
the fractures to be meshed (resp. not to be meshed).

Execution

After having read the previous data, the MODFRAC software runs as indicated previously by
calculating the intersections of the fractures with each other and with the faces of the cube, by
selecting the only useful fractures, by completing this model with geometric and topological
information, and by generating a mesh. Various information is displayed (depending on the verb
parameter), in particular the calculation times in the sequential and parallel parts. The files generated
by the software are described below.

Mesh file amadeus.mesh (output)

The mesh file written by MODFRAC is in .mesh format (cf. Section 7.2.1 of report [4]). This is a text
file that can contain several fields, including:

• Vertices : coordinates of the vertices.
• Edges : edges of the discretization of the boundaries of the fractures and their intersections.
• Triangles : triangles of the mesh.

As a reminder, the export_amadeus parameter allows you to add other fields or to generate an
additional amadeus-visu.mesh file. The .mesh format is compatible with many 3D visualization and
volume mesh software, in particular GHS3D [5].

Files generated for numerical simulations (output)

In the general case (default values of the FRACsimulation and FRACwrite_* parameters), the files
below are generated for subsequent numerical simulations, typically in a MATLAB environment [6].

• info.dat: this file contains various information, namely maxvglo = largest global vertex number of

the extremities of sub-segments, nclassic = number of “classic” fractures (selected in the input
file, and not created artificially by geometric constraints), nconstraints = number of geometric
constraints, nsegff, nsegfc, nsegcc = number of fracture/fracture, fracture/cube and cube/cube
intersection segments (the latter being 12 in number), nsubsegff, nsubsegfc, nsubsegcc = number
of fracture/fracture, fracture/cube and cube/cube intersection sub-segments, ndom = number of
domains, nsubdom = number of subdomains.
Face numbering: by convention, “classic” fractures are numbered from 1 to nclassic, fractures
created by geometric constraints from nclassic+1 to N = nclassic+nconstraints, and faces of the
cube from N+1 to N+6.

• edges.vector : mesh edges with their characteristics [1, Table 11].
• inter-edges.dat: for each discretized intersection, its number, number of a fracture containing it

(for non-conforming cases), global numbers of its edges of the discretization.
• inter-no.vector: for each discretized intersection, line number, number of edges, numbers of the

two fractures creating the intersection, number of a fracture (for non-conforming cases), number
of the intersection [1 , Table 16].

• inter-vertices.dat: for each discretized intersection, its number, number of a fracture containing
this intersection (for non-conforming cases), global numbers of the vertices of the discretization.

• modfrac_frac_meshed.vector: for each fracture selected and meshed by the MODFRAC software,
its original number in the frac-no.vector file.

• null-patches.vector : numbers of non-meshed fractures, if any.
• numbers.vector : for each fracture, number of vertices, number of edges and number of triangles.
• quality-data.dat, quality-hist.dat: information on the quality of the mesh, in free form or in a form

adapted to an Excel-type spreadsheet.
• triangles.vector: for each triangle, local numbers of its vertices and edges [1, Table 10].
• vertices-glo.vector: 3D coordinates of the vertices of the mesh.
• vertices.vector: 2D coordinates of mesh vertices [1, Table 12].

Intermediate files conditionally generated (output)

If intermedfile ≠ 0, intermediate files are generated in order to check the correct execution of the
software. The intermed-tln3d.mesh file allows you to visualize all the intersection sub-segments in 3D.
The intermed.geo file gives the geometric model in the .geo format of the GMSH software [3].
If moreover refs ≠ 0, a dozen files concerning face refs are generated with names intermed-refs-*,
especially intermed-refs-dc-cont-2d.mesh which contains the discretization used as input to the planar
mesher and intermed-refs-frac_meshed.vector which contains the numbers of the fractures connected
to the fracture refs.

File frac-no.vector conditionally generated (output)

If FRACwrite_frac ≠ 0, a fracture network in .disk format (circles) is converted into .vector format
(ellipses). These two formats are described above.

Files inter-∗ conditionally generated (output)

If FRACwrite_inter ≠ 0, the software describes the fracture intersections in the inter-no.vector, inter-
vertices.dat and inter-edges.dat files (see above). If FRACwrite_inter = 1, these are the intersections
concerning all the faces (fractures and faces of the cube). If FRACwrite_inter = 2, intersections not

No Laxis_maj Laxis_min c_x c_y c_z n_x n_y n_z no_fracture u_x u_y u_z v_x v_y v_z
1 10 10 0 0 0 0 1 0 0 0 0 1 1 0 0
2 10 10 0 1 0 0 1 0 1 0 0 1 1 0 0
3 10 10 0 2 0 0 1 0 2 0 0 1 1 0 0
4 10 10 0 -1 0 0 1 0 3 0 0 1 1 0 0
5 10 10 0 -2 0 0 1 0 4 0 0 1 1 0 0
6 10 10 0 0 0 1 0 0 5 0 0 1 0 1 0
7 10 10 1 0 0 1 0 0 6 0 0 1 0 1 0
8 10 10 2 0 0 1 0 0 7 0 0 1 0 1 0
9 10 10 -1 0 0 1 0 0 8 0 0 1 0 1 0
10 10 10 -2 0 0 1 0 0 9 0 0 1 0 1 0
11 10 10 0 0 0 0 0 1 10 1 0 0 0 1 0
12 10 10 0 0 1 0 0 1 11 1 0 0 0 1 0
13 10 10 0 0 2 0 0 1 12 1 0 0 0 1 0
14 10 10 0 0 -1 0 0 1 13 1 0 0 0 1 0
15 10 10 0 0 -2 0 0 1 14 1 0 0 0 1 0

involving any face of the cube. Finally, if FRACwrite_inter = 3, intersections concerning at least one
face of the cube.

Files of subdomains, conditionally generated (output)

If FRACwrite_subdomain ≠ 0, the local numbers of the subdomains are given, with several options: in
a separate subdomain-*.vector file or not, in the amadeus.mesh file or not, for all the fractures and the
6 faces of the cube, or for the 6 faces of the cube only. These options are determined by the value of
the parameter:

• 0 or 1 : no numbers given
• 2 : file subdomain-cube, without fractures
• 3 : file subdomain-frac-cube, with fractures
• 4 : file amadeus, without fractures
• 5 : file amadeus, with fractures
• 6 : file subdomain-cube and amadeus, without fractures
• 7 : file subdomain-frac-cube and amadeus, with fractures

3 Examples

In this section, several examples of meshes generated with MODFRAC are presented.

The geometry of the fracture networks presented in this section was provided by the DFN.lab software
developed by Fractory, a joint laboratory between ITASCA Consultants SAS, the CNRS and the
University of Rennes (https://fractorylab.org).

The simulations were run on an Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz laptop with 4 cores
(8 logical processors) and 32 GB of RAM.

 Special fracture networks (sugar box type and Warren&Root)

The first examples relate to particular networks of the sugar box and Warren&Root type. The cube is
cut completely by an organized network of fractures whose length and width are significantly greater
than the size of the cube.
The following example contains 15 fractures organized as a sugar box network. The frac-no.vector
input file is given by Table 1.

Table 1. Sugar box example: file frac-no.vector.

https://fractorylab.org/

verb 10

FRACL 5
FRACcube_faces 12
FRACporous 0
FRACqmin 1.e-6
FRACwrite_frac 0

hgeo_flag 1
hgeomax 1000.
angle_mesh 30

 The geometry corresponding to this file is given by Figure 1.

Figure 1. Sugar box geometry – 15 fractures.

The following modfrac.env file (Table 2) is used to generate the mesh shown in Figure 2. By default
the mesh is conformal (FRACconforming at 1). This mesh was made by MODFRAC in 1s.

Table 2. File modfrac.env. Figure 2. Sugar box mesh – 15 fractures.

The quality of the mesh is given by the file quality-data.dat (Table 3) and by the histogram of
Figure 3.

Table 3. File quality-data.dat. Figure 3. Mesh quality histogram.

From the quality-data.dat file (Table 3) are deduced properties of the generated mesh:
- It contains 111,240 triangles (#triangles),
- It has a minimum quality 0.789048 (qmin) at triangle 42055 (qmin:triangle) which has vertices 25408

(qmin:v1), 25369 (qmin:v2) and 25758 (qmin:v3) belonging to fracture 6 (qmin: fracture_ref). In this
example, all fractures have been selected and meshed. Otherwise, the correspondence between the
fracture_ref number and the original fracture number is in the modfrac_frac_meshed.vector file.

- It has an average quality of 0.980217 (qmoy),
- It has a maximum quality of 0.999999 (qmax) at triangle 80054 (qmax:triangle) which has as vertices

40272 (qmax:v1), 40324 (qmax:v2) and 39768 (qmax:v3) belonging to fracture 11 (qmax
:fracture_ref),

- The mesh quality is good, no triangle quality being below 0.7.

Other specific geometries can be meshed, such as Warren&Root type networks for which the fractures
are not necessarily regularly spaced, as shown in Figure 4.

Figure 4. Mesh of a Warren&Root type network – 15 fractures.

111240 (#triangles)
0.789048 (qmin)
42055 (qmin:triangle)
25408 (qmin:v1)
25369 (qmin:v2)
25758 (qmin:v3)
6 (qmin:fracture_ref)
0.980217 (qmoy)
0.999999 (qmax)
80054 (qmax:triangle)
40272 (qmax:v1)
40324 (qmax:v2)
39768 (qmax:v3)
11 (qmax:fracture_ref)

verb 10
FRACL 20
FRACcube_faces 12
FRACporous 0
FRACqmin 1.e-4
FRACwrite_frac 0
hgeo_flag 1
hgeomax 1000.
angle_mesh 30
number_of_threads 4
export_amadeus 1

 Networks of fractures represented by ellipses

Now, we consider Discrete Fracture Network (DFN) type fracture networks, for which the fractures
are discs or ellipses which can cut the cube and/or end up completely immersed in the cube.

Let's start with small DFNs to illustrate the different options available as input to the modfrac.env file.

The network of fractures presented in Figure 5 is contained in a cube of side L20. It has 1397 fractures
described in a frac-no.vector file.

Figure 5. DFN L20 – 1397 fractures.

Table 4. File modfrac.env . Figure 6. DFN L20 – Mesh – 1397 fractures.

The mesh generated from the modfrac.env file given in Table 4 is shown in Figure 6. The mesh
contains 178,407 triangles and was completed in 17s.

The quality of the mesh is given by file quality-data.dat (Table 5) and the histogram of Figure 7. The
quality is slightly lower than the previous one, due to the many geometric constraints forming angles
close to 0° or 180°. Note that the minimum quality criterion FRACqmin imposed in the modfrac.env
file is satisfied: 0.000565164 (qmin) > 0.0001 (FRACqmin).

Table 5. File quality-data.dat. Figure 7. Mesh quality histogram.

Thanks to the gradation and angle_mesh parameters, different levels of refinement can be specified to
MODFRAC, as shown in Figures 8 and 9.

Figure 8. Angle 30° and gradation 1.4. Figure 9. Angle 10° and gradation 1.2.

MODFRAC is able to mesh much larger fracture networks. For example the network shown in Figure
10 contains 1,176,566 fractures. The mesh made by MODFRAC and generated from the modfrac.env
file given in Table 6 contains 20,723,302 triangles and was generated in 14 minutes with 4 threads.

178407 (#triangles)
0.000565164 (qmin)
67234 (qmin:triangle)
15628 (qmin:v1)
3337 (qmin:v2)
620 (qmin:v3)
362 (qmin:fracture_ref)
0.945222 (qmoy)
1 (qmax)
74423 (qmax:triangle)
15251 (qmax:v1)
15252 (qmax:v2)
64257 (qmax:v3)
421 (qmax:fracture_ref)

verb 10
FRACL 200
FRACcube_faces 12
FRACporous 0
FRACqmin 1.e-4
FRACwrite_frac 0
hgeo_flag 1
hgeomax 1000.
angle_mesh 30
number_of_threads 4
export_amadeus 1
memory 800000

Table 6. File modfrac.env. Figure 10. DFN L200 – Mesh – 1,176,566 fractures.

The quality of the mesh is given by the quality-data.dat files of Table 7 and by the histogram of Figure
11.

Table 7. File quality-data.dat. Figure 11. Mesh quality histogram.

For such a complex network, the mesher is able to improve the minimum quality of the triangles, even
if it remains a little below the required quality (4.8e-05 < FRACqmin). The screen output indicates
that this happens for 3 triangles.

20723302 (#triangles)
4.81633e-05 (qmin)
8229123 (qmin:triangle)
3143093 (qmin:v1)
3143092 (qmin:v2)
10401401 (qmin:v3)
327098 (qmin:fracture_ref)
0.616738 (qmoy)
1 (qmax)
19269394 (qmax:triangle)
9065201 (qmax:v1)
10872669 (qmax:v2)
9065200 (qmax:v3)
1067726 (qmax:fracture_ref)

 Networks of fractures represented by polygons

By using the FRACell_to_pol parameter, it is possible to transform ellipses into polygons before
meshing them. Warning! This can change the fracture network considered depending on the
FRACell_to_pol number of sides chosen. For example, on the L20 Figure 5 test case, by adding the
FRACell_to_pol parameter to 10 to the modfrac.env file of Table 4, we obtain the Figure 12 mesh
which contains 1311 polygons (while the initial network contained 1397 fractures). Indeed, an ellipse
can intersect the cube while the polygon which discretizes it is entirely exterior to the cube and two
ellipses can intersect between them while the corresponding polygons do not intersect.

Figure 12. DFN L20 – ellipses are replaced by 10-sided polygons – 1311 polygons.

The quality is given by Table 8 and by the histogram of Figure 13.

Table 8. Fichier quality-data.dat. Figure 13. Histogramme de qualité du maillage.

MODRAC is also able to take a .geo file as input. In this format of the GMSH software [3], each
fracture is delimited by a convex planar polygon.

132824 (#triangles)
0.000498204 (qmin)
4090 (qmin:triangle)
427 (qmin:v1)
17855 (qmin:v2)
430 (qmin:v3)
29 (qmin:fracture_ref)
0.941964 (qmoy)
1 (qmax)
68418 (qmax:triangle)
18139 (qmax:v1)
18140 (qmax:v2)
56964 (qmax:v3)
534 (qmax:fracture_ref)

 Addition of wells

 A simple example of wells.geo file is given below (Table 9).

Table 9. File wells.geo.

The previous file describes a vertical well going from surface z = 5 to depth z = -3, the global domain
being defined in the environment file modfrac.env as a cube centered at the origin and of side 10. The
cross section of this well is approximated by an octagon, also centered at the origin. The surface mesh
created by MODFRAC, as well as the volume mesh coming from GH3D, are illustrated in Figure 14.

Figure 14. On the left, section of a surface mesh containing a well. On the right, section of the
corresponding solid mesh.

Point(1) = {0.5, 0, -3, h};
Point(2) = {0.353553, 0.353553, -3, h};
Point(3) = {0, 0.5, -3, h};
Point(4) = {-0.353553, 0.353553, -3, h};
Point(5) = {-0.5, 0, -3, h};
Point(6) = {-0.353553, -0.353553, -3, h};
Point(7) = {0, -0.5, -3, h};
Point(8) = {0.353553, -0.353553, -3, h};
Point(9) = {0.5, 0, 5, h};
Point(10) = {0.353553, 0.353553, 5, h};
Point(11) = {0, 0.5, 5, h};
Point(12) = {-0.353553, 0.353553, 5, h};
Point(13) = {-0.5, 0, 5, h};
Point(14) = {-0.353553, -0.353553, 5, h};
Point(15) = {0, -0.5, 5, h};
Point(16) = {0.353553, -0.353553, 5, h};

Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 5};
Line(5) = {5, 6};
Line(6) = {6, 7};
Line(7) = {7, 8};
Line(8) = {8, 1};
Line(9) = {9, 10};
Line(10) = {10, 11};
Line(11) = {11, 12};
Line(12) = {12, 13};
Line(13) = {13, 14};
Line(14) = {14, 15};
Line(15) = {15, 16};
Line(16) = {16, 9};
Line(17) = {1, 9};
Line(18) = {2, 10};
Line(19) = {3, 11};
Line(20) = {4, 12};
Line(21) = {5, 13};
Line(22) = {6, 14};
Line(23) = {7, 15};
Line(24) = {8, 16};

Line Loop(1) = {-8, -7, -6, -5, -4, -3, -2, -1};
Line Loop(2) = {9, 10, 11, 12, 13, 14, 15,
16};
Line Loop(3) = {1, 18, -9, -17};
Line Loop(4) = {2, 19, -10, -18};
Line Loop(5) = {3, 20, -11, -19};
Line Loop(6) = {4, 21, -12, -20};
Line Loop(7) = {5, 22, -13, -21};
Line Loop(8) = {6, 23, -14, -22};
Line Loop(9) = {7, 24, -15, -23};
Line Loop(10) = {8, 17, -16, -24};

Plane Surface(1) = {1};
Plane Surface(2) = {2};
Plane Surface(3) = {3};
Plane Surface(4) = {4};
Plane Surface(5) = {5};
Plane Surface(6) = {6};
Plane Surface(7) = {7};
Plane Surface(8) = {8};
Plane Surface(9) = {9};
Plane Surface(10) = {10};

 Fractured porous mesh

The FRACporous option at 1 also meshes the faces of the cube. The output of MODFRAC can then
be proposed as input to a volume mesher. Figure 10 gives an example of a volume mesh, produced
with the GHS3D software (Inria), from the surface mesh generated with MODFRAC.

Figure 15. Example of a volume mesh (right image) produced with GHS3D (Inria) from the surface
mesh generated with MODFRAC (left image).

As an example, in the article [7], a network of 52 polygons is proposed. Figure 16 illustrates the test
case.

Figure 16. An example of a fractured porous test case [7] – 52 fractures represented by polygons.

The data is available at the following link: https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-
3d.git.

By using the modfrac.env file with FRACporous at 1 and FRACfixed_constraints at 1 as proposed in
Table 11 and the constraints.dat file proposed in Table 12 to define the shaded areas in Figure 16,
MODFRAC can generate the mesh shown in Figure 17.

https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d.git
https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d.git

verb 10

FRACcubemin -500 100 -100
FRACcubemax 350 1500 500
FRACcube_faces 12
FRACporous 1
FRACqmin 1.e-4
FRACwrite_frac 0
FRACfixed_constraints 1
FRACwrite_subdomain 2

hgeo_flag 1
hgeomax 1000.
angle_mesh 30

number_of_threads 4
export_amadeus 1
size_computation 1
memory 800000

d Omega in 0
1 -200.0 1500.0 500.0 -200.0 1500.0 300.0
1 -200.0 1500.0 300.0 -500.0 1500.0 300.0
d Omega in 1
1 -500.0 1500.0 300.0 -500.0 1200.0 300.0
1 -500.0 1200.0 300.0 -500.0 1200.0 500.0
d Omega out 0
1 -500.0 100.0 100.0 -500.0 400.0 100.0
1 -500.0 400.0 100.0 -500.0 400.0 -100.0
d Omega out 1
1 350.0 100.0 100.0 350.0 400.0 100.0
1 350.0 400.0 100.0 350.0 400.0 -100.0

 Table 11. File modfrac.env. Table 12. File constraints.dat.

Figure 17. Fractured porous test cases [7] – 52 fractures. Surface mesh: overview on the left and
section on the right.

This mesh can then be proposed as input to a volume mesher, such as GHS3D (Inria) (see Figure 18).

Figure 18. Fractured porous test case [7] – 52 fractures. Volume mesh generated by the software
GHS3D (Inria).

These meshes can be used to perform numerical simulations. By way of example, Figure 19 shows the
hydraulic head solution obtained by solving a stationary single-phase flow within fractured porous
media [7] using a mixed hybrid finite element method.

Figure 19. Fractured porous test cases [7] – 52 fractures. Hydraulic head obtained by solving the
problem of flow in fractured porous media [7] with a hybrid mixed finite element method (RT0)
implemented in the software nef-flow-fpm (Inria).

The following example shows a network containing 87,335 fractures. Figure 20 shows the mesh
generated with MODFRAC. It contains 3,929,522 triangles and was made in 1 minute 37 seconds with
4 threads.

Figure 20. Fractured porous test cases – 87,335 fractures. Surface mesh: overview on the left and
section on the right.

This mesh can then be proposed as input to a volume mesher, such as GHS3D (Inria) (see Figure 21).

Figure 21. Fractured porous test cases – 87,335 fractures. Volume mesh generated by the software
GHS3D (Inria).

3 Future work

The MODFRAC software now meets the essential demands concerning the modeling and meshing of
fractures. However, these demands are constantly evolving, which implies new work to be carried out.
This section describes the main ongoing studies.

Triangulated surfaces. Currently, the objects processed by MODFRAC (fractures, wells, cube) are
defined by ellipses or planar polygons. It is planned to add triangulated faces to it in order to simply
represent any warped surface. A first advantage concerns the cube, which could thus be generalized to
a domain Ω of any shape. In addition, it would be possible to represent with better precision wells of
cylindrical section and also following any path, as permitted by directional drilling techniques. Finally,
the fractures themselves could be of arbitrary shapes. To integrate this new representation of surfaces,
it is necessary to calculate the intersection lines drawn on each surface (triangle/triangle intersection in
3D), then transfer them to an isometric unfolding of each surface (which will be an associated
parametric domain). Then, these lines must be made conforming in each parametric domain
(edge/edge intersection in 2D). Once this representation is established, we will have a valid parametric
domain and a discrete parameterization of each surface, and thus generate any desired mesh.

Domain decomposition. Another study concerns the decomposition of a parallelepipedic domain Ω
into several blocks. This will allow additional parallelization of the calculations, resulting in new time
savings and above all the processing of an even larger number of fractures, of the order of several tens
of millions.

References

[1] J.R. de Dreuzy, Géraldine Pichot, B. Poirriez d, J. Erhel. Synthetic benchmark for modeling

flow in 3D fractured media. Computers & Geosciences. 50 (2013) 59-71.

[2] R. Le Goc, File format .disk, Fractory internal report, https://fractorylab.org.

[3] Ch. Geuzaine, J.F. Remacle, Gmsh Reference Manual, https://gmsh.info/doc/texinfo/gmsh.pdf.

[4] P. Frey, MEDIT: An interactive mesh visualization software, RT-0253, Inria, 2001.

[5] Inria-Simulog, GHS3D, tetrahedral mesh generator, internal report, 2005.

[6] MATLAB, data analysis, algorithm development and creation of mathematical models,
https://www.mathworks.com/.

[7] I. Berre, W. M. Boon, B. Flemisch, A. Fumagalli, D. Gläser, E. Keilegavlen, A. Scotti, I.
Stefansson, A. Tatomir, K. Brenner, S. Burbullah, P. Devloo, O. Duran, M. Favino, J.
Hennicker, I. Lee, K. Lipnikov, R. Masson, K. Mosthaf, M. G. C. Nestola, C. Ni, K. Nikitin, P.
Schälde, D. Svyatskiy, R. Yanbarisov, P. Zulian. Verification benchmarks for single-phase flow
in three-dimensional fractured porous media. Advances in Water Resources, Volume 147. 2021.

https://fractorylab.org/
https://gmsh.info/doc/texinfo/gmsh.pdf
https://www.mathworks.com/

