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Data and Problem

' "
Creia— @5’5%55 2/24



The application Geco air needs to classify trips according to
their transport modes.

» Geco air is an application monitoring users' travels and advising to reduce
pollutions.

» To do this, Geco air need to take users' trips as inputs and classify according
to their transport modes (car, train, bus, walking, etc).
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Data: GPS and accelerometer data of trips.

» ~70,000,000 trips from GPS and accelerometer data

> several time series features: velocity, latitude, longitude, elevation
» ~11500 trips selected for this problem

Velocity [kmih]
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Data: GPS and accelerometer data of trips.
» Manually labeled by users as : car, carpool, bus, train, bicycle, moto, scooter,

metro, running, walking, plane, public transport
» Some trips are multi-mode, i.e. mixture of several transportation modes
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Example of well-defined trips
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Example of less well-defined trips

» Less well-defined trips are due to: multi-modality, underground mobility, etc.
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We classify transport modes.

» Goal: when a trip is received from Geco Air without transport mode, provide
the transport mode with high reliability

> Classify 11500 trips to 9 classes (plane, car/carpool, bus, train, walking,
bicycle/scooter, metro, moto, running)

> If the trip is difficult to classify, it's better to say that the trips is “unknown”
rather than providing wrong transport mode

» Confusing between car and walking is more critical than confusing between
car and bus
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We use weighted accuracy tuned for our problem for the

performance indicators.
» Unknown probability = Proportion of trips whose classification probability is
less than 0.6
» Accuracy = Accuracy for the “known” trips, i.e. trips whose classification
probability is more than 0.6.
> Score = 0.85 x (Accuracy) + 0.15 x (1 — Unknown probability)
» Weighted Accuracy = Accuracy for known trips, with loss function below:

’ H car ‘ bus ‘ train ‘ walking ‘ bicycle ‘ metro ‘ moto ‘ running ‘

car 1 0.9 0.3 0 0 0 1 0
bus 09| 1 0.4 0 0 0.2 0.9 0
train 03|04 1 0 0 0.4 0.3 0
> | walking 0 0 1 0.5 0 0 0.7
bicycle 0 0 0 0.5 1 0 0 0.5
metro 0 |02 04 0 0 1 0 0
moto 1 /09| 03 0 0 0 1 0
running 0 0 0 0.7 0.5 0 0 1
> Weighted

_ Score= 0.85 x (Weighted Accuracy) + 0.15 x (1 — Unknown probability)
VAP (o o/2a



Featurization and Model: existing approach
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Several features are computed from raw data.

» From Arthur Mouchot's internship
» From raw data, several features are computed.

» acceleration, number of stops, time between stops, velocity x acceleration, etc.
> for time series features, several additional features are computed: mean,
median, 95% quantile, fourier transform, etc.

e
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We use 5 units model.

» From Arthur Mouchot's internship

» We use random forest for each unit classifier.

L
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Featurization and Model: new approach
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Topological Data Analysis quantifies and extracts

topological information from data.
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We additionally consider two featurization using Topological
Data Analysis.

» Since we have several 1-dimensional time series features, we can apply
topological data analysis.
» We consider two featurization from velocity, acceleration,
velocity x acceleration:
» Sub/super-level filtration + Topological Data Analysis
» Time-delayed embedding + Topological Data Analysis
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Proposed Featurization for gps velocity: Sub/super-level

filtration + Topological Data Analysis
» Input: time series data x = {xo,--- ,xy} C R, Output: vector \¥ € R¥.

1.

Construct the sub-level filtration xs,, and compute the persistence diagram

Dgm(xsup)-

From Dgm(xsup), compute the landscape Agp : N X R — R.
Construct the super-level filtration xs,per and compute the persistence

diagram Dgm(Xsuper)-

From Dgm(xsyper), compute the landscape Agyper : N x R — R.
Vectorize Asup and Agyper to get A€ € RK.
Perform PCA on A\X and get \k € Rk,

level = 0.15
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Proposed featurization for gps velocity: Time-delayed
embedding + Topological Data Analysis

» Input: time series data x = {xp, - ,xy} C R, Output: k-dimensional vector

1.

K e Rk,

Construct the point cloud X C R™ using the time-delayed embedding with
parameters m, T.

Perform PCA on X and obtain X¢ c R/.

Construct the Rips filtration Ry and compute the persistence diagram
Dgm(X").

From Dgm(X'), compute the landscape A : N x R — R.

Vectorize ) to get AK € RX.

Perform PCA on A\X and get \k € Rk,

Persistent landscapes

Sampled sequence example l>~\9°f
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We use 4 units model.

» We tested several models and choose this 4 units model.

» We use random forest for each unit classifier.
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Test results and Conclusion
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Test result for 4 units model.

» We use K-fold to test model.

Unknown A Weighted S Weighted
probability ceuracy Accuracy core Score
5 units
(Random Forest) 0.430 0.883 0.920 0.836 0.868
4units + TDA | 5550 | 0918 | 0944 |0.853 | 0.874
(Random Forest)
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Mean confusion matrix for 4 units model

H car ‘ bus ‘ train ‘ walking ‘ bicycle ‘ metro ‘ moto ‘ running ‘ recall ‘
car 160.9 | 2.2 2.0 1.0 2.3 0.95
bus 29 2.2 0.6 0.7 0.36
train 0.5 11.2 0.4 0.93
walking 1.1 0.3 0.5 0.5 0.93
bicycle 0.4 1.0 40.0 0.5 0.96
metro 0.2 0.4 0.2 1.6 0.8 0.5 0.16
moto
running 1.3 0.6 2.9 0.60
precision 0.97 | 0.47 | 0.83 0.85 0.89 0.4 0.78 0.92

. .
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Conclusion

» The classification problem comes from improving Geco air application.

» The classification problem has several difficulties: ill-defined trips,
multi-modal trips, imbalanced labels, etc

» We used weighted score tuned for our prolem.

» By utilizing topological data analysis, we could have improved the
classification result.

» The quality of the classification result greatly depends on the labels.
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Future work

» For this project: further applying topological data analysis, applying other
machine learning frameworks, taking a closer look at misclassified data, etc.

» Inria Datashape - Ifpen will also work on another project: predicting
permiability of rock

e
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Background
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Number of holes is used to summarize Topological features.

» Geometrical objects :
» AAB,C,DEFGHILJKLMNOPQRST,UVWXY,Z
> 7L F b

» Number of holes of different dimensions is considered.
1. Bo =# of connected components‘
—
2. (1 =# of loops (holes inside 1-dim sphere) \_/

=
3. B2 =+t of voids (holes inside 2-dim sphere) : if dim > 3"~
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Example : Objects are classified by homologies.

1. o =# of connected components ‘

2. 1 = of loops O

[ o\ A ] 0 [ L 2 |
CGLILM
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EF,T,Y, H K X
2 ot F [ [ |
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When analyzing data, we prefer robust features where
features of the underlying manifold can be inferred from
features of finite samples.

Underlying circle 100 samples
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the

inference.

Underlying circle: Bg=1, ;=1 100 samples: B =100, 3; =0

” o N0 o,
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.25
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level =0.15
level = 0.15
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level =0.15 level=0 level =0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level =0.15 level=0
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Landscape is a functional summary of the persistent
homology.
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Proposed Featurization for gps velocity: Sub/super-level filtration + Topological
Data Analysis
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1. Construct the sub-level filtration xs,, and compute the

persistence diagram Dgm(xsyp)-
> For f: RY - R and r > 0, the sub-level set is

fl(—oo,r]={xeR?: f(x) < r}.

» For the time-series data x, we constrcut a function £, : R — R by a piecewise
linear function having (i, x;) as vertices. Then we make the sub-level filtration

{xsub(r)} 50 = {fx_l(_oo7 r]}r>0 ’

and compute its persistence diagram Dgm(xsyp)-
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2. From Dgm(xsyp), compute the landscape
Asub - N X R — R,
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3. Construct the super-level filtration Xgyper and compute the
persistence diagram Dgm(Xsyper)-
» For f : RY = R and r > 0, the super-level set is
flr,00)={xeR?: f(x)>r}.
» For the time-series data x, we constrcut a function f, : R — R by a piecewise

linear function having (i, x;) as vertices. Then we make the sub-level filtration
as

{Xsuper(r)}r>0 = {&—1[“ OO)}r>0 ’

and compute its persistence diagram Dgm(Xsyper)-

level =0.15 level=0
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4. From Dgm(Xsuper), compute the landscape
Asuper - N x R — R.
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5. Vectorize Agyp and Agyper to get MK e RX.
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6. Perform PCA on AKX and get Ak € R*.
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Proposed featurization for gps velocity: Time-delayed embedding + Topological
Data Analysis
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1. Construct the point cloud X € R™ using the time-delayed

embedding with parameters m, 7.

Let f be the time series function. Then, let the sliding window mapping
SWp-f : R— R™ be

Wi F(£) = [F(t — (m—1)7), ... F(t —7), F(2)] .

Sampled sequence example

06 04 02 00 02 04 06

ARIMA  eeeeeees Comp-Sinusoidal —-—-—
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1. Construct the point cloud X C R™ using the

time-delayed embedding with parameters m, 7.

Let xg, X1, ..., Xy be a sequence of equi-interval samples from the time series
function f, with xg = 7(0) and xy = f(T). Then, we construct the trajectory
matrix X as

SWo, - f((m — 1)7) %o x e X
Wi, F(1 4 (m—1)7) , Xir  Xia(menr
SWm,T f( T) XNf(mfl)T XN*(IW*2)T e XN

Sampled sequence example

06 04 02 00 02 04 0§

=5

ARIMA  eeeeeees Comp-Sinusoidal —-—-— OU-process
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2. Perform PCA on X and obtain X! c R/,

Data Data after PCA

...............................................................

e
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3. Construct the Rips filtration Ry and compute the

persistence diagram Dgm(X').
» For X C R? and r > 0, the Rips complex Rips(X, r) is defined as
Rips(X,r) = {{x1,...,x} C X : d(x;,x;) <2r,forall 1 <ij<k}.

Rips Complex

VAP (o 2243



3. Construct the Rips filtration Ry and compute the
persistence diagram Dgm(X').
> For the dataset X', we make the Rips filtration as
{Rxi (r)},50 = {Rips (X', 1)},
and compute its persistence diagram Dgm(X').

Rips Complex

[
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4. From Dgm(X'), compute the landscape A : N x R — R,

Persistent Homology Landscape
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5. Vectorize \ to get AKX € RX.

Persistent Homology
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6. Perform PCA on AKX and get Ak € R*.
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Model Selection
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We compare 3 different models.

» We separate out plane first, and then apply different models on the rest.
» We compare 3 different models: 1 unit model, 4 units model, 5 units model.

> For each unit classifier, we tried different algorithms (random forest,
Adaboost, Xgboost, SVM, logistic regression, naive Bayes, Knn) and choose
the one with the best accuracy.

. / ,
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We compare 3 different models : 1 unit model

]

car/bus/train/walking/bicycle/metro/moto/running

‘ plane

running

‘ car ’ ‘ bus ’ ‘ train ‘ ‘walking ‘bicycle ‘metro ‘moto
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We compare 3 different models : 4 units model

)

car/bus/train/walking/bicycle/metro/moto/running ‘

‘ plane ’

I ]
running/walking car/moto/bus ‘ bicycle
|
[ I 1

‘walking‘ ‘ train ’ ‘ metro

running
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We compare 3 different models : 5 units model

L

[ plane car/bus/train/walking/bicycle/metro/moto/running
I L I T 1
[car/bus/train/metro/moto bicycle waIking] [running]
[ train ] [car/bus/metro/moto]
[ bus/metro car/moto
[ bus } moto] car ] moto
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Test results for model
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We choose algorithm for each classifier based on test results.

> We use K-fold to test algorithms for classifiers.
» Conclusion:

» bus/metro - carpool/car/moto : Logistic Regression
» bus - metro : XgBoost
» All the others: Random Forest

rd 4 -
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We choose 4 units model based on test results.

» We use K-fold to test models.

» Conclusion: use 4 units model.

Unkno.\/\./n Accuracy Weighted Score Weighted

probability Accuracy Score
(Randlorl;nli:torest) 0.382 0.905 0.936 0.862 0.888
(Ranjol:iltrirest) 0.385 0.909 0.938 0.865 0.890
(RF+5 LuF:I:i XB) 0.289 0.882 0.920 0.856 0.888
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TDA features lead to higher scores.

» We additionally compare 4 units with TDA vs 4 units without TDA.

» Conclusion: use TDA features

Unknown Accur Weighted Scor Weighted
probability ceuracy Accuracy core Score
4 units, with TDA 1 4 385 | 0909 | 00938 |0.865| 0.890
(Random Forest)
4 units, without TDA | 4 375 | 0900 | 0033 |0.859 | 0.887
(Random Forest)
VAP (o
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Future Plans
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Future Plans

There are several things to try, including:
» Further fine tuning Topological Data Analysis features
Spliting a multi-modal trip to several unimodal trips

Merge trips to generate more trips

>

>

» Taking a closer look at misclassified data
» Incorporating locations of public transport
>

Applying other machine learning frameworks (e.g., deep learning)

rd g -
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Further fine tuning Topological Data Analysis features

» Topological Data Analysis requires several parameters to choose, in particular
with time-delayed embedding.

rd 4 -
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Spliting a multi-modal trip to several unimodal trips

> Some trips are multi-mode, i.e. mixture of several transportation modes

» For this trip, detecting change of transportation mode and spliting it to
several unimodal trips can help to improve classification.

rd g -
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Merge trips to generate more trips

» Merge several trips with the same transport mode to generate more trips.

- e .
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Taking a closer look at misclassified data

> Taking a closer look at where the classifier fails (e.g., bus-car, metro-car,

running-bicycle) will help designing features.

’ H car ‘ bus ‘ train ‘ walking ‘ bicycle ‘ metro ‘ moto ‘ running ‘ recall ‘
car 1609 | 2.2 2.0 1.0 2.3 0.95
bus 2.9 2.2 0.6 0.7 0.36
train 0.5 11.2 0.4 0.93

walking 1.1 0.3 0.5 0.5 0.93

bicycle 0.4 1.0 40.0 0.5 0.96

metro 0.2 0.4 0.2 1.6 0.8 0.5 0.16

moto

running 1.3 0.6 2.9 0.60

precision 0.97 | 0.47 | 0.83 0.85 0.89 0.4 0.78 0.92
VAP (o a1/a3



Applying other machine learning frameworks (e.g., deep
learning)

» Instead of random forest, we can apply other machine learning frameworks,
for example, deep learning.

e
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Incorporating locations of public transport

» Train, bus, metro have fixed networks.

> If we can incorporate geographical locations of these networks, the classifier
can be improved.

rd 4 -
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