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A Gaussian linear parametric SPDE model

Advection-diffusion of a quantity ¢ with Gaussian source
(Or+u-V—vA)c=f+B

is parametrized by 2 kinds of input:
» boundary conditions like ¢(t = 0), B := (B(t))t on
<(0,

> process parameters like v
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A Gaussian linear parametric SPDE model

Advection-diffusion of a quantity ¢ with Gaussian source
(Or+u-V—vA)c=f+B
is parametrized by 2 kinds of input:
> - . _ B — B
boundary conditions like ¢(t = 0), ( (t)) .
> process parameters like v
Having in mind a two-step Data Assimilation (DA) procedure
1. given v, fit c(t = 0), B to “data about c(t;v), t € [0, T)”
2. given {c(t;v),t € [0, T);v € A} “optimize” v

the Reduced-Basis method can decrease computational costs:
c(t = 0), B have to be fit for many values of the parameter v.



Reduced-Basis for 4DVar

LProblem setting: 4Dvar parametrized

DA by smoothing in a discrete setting
In practice, one considers calibrating the input of a
space-discrete model at discrete times t” € [0, NA{]

(m+ Ata(v))c" =mc" " + At "+ VAt gjw]
which we rewrite in standard DA notations
Xn = M(V)Xn_1 + fn + 77[7 T]n ~ N(o, Qn)
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DA by smoothing in a discrete setting
In practice, one considers calibrating the input of a
space-discrete model at discrete times t” € [0, NA{]

(m+ At a(v))e" =mc™ " + At 7+ VAL gw!
which we rewrite in standard DA notations
Xn=MW)Xo_1 + o410 np ~N(0,Qp)
One DA approach using z, = H xp + €p, en ~ N(0, Rp)
maximizes the posterior probability law
X0, XN1Zo =28, ... Zn = Z§ ~ N (x5, P®)
using a background as prior mc~' + At fy (=:smoothing)
Xo ~ N(x§ = Mx_y + fy, P} := Q)
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MAP of N'(x®, P?) : quadratic minimization

N
p(Xo...Xn|Zo ... 2ZN) H P(Zk| Xk ) P(Xk|Xk—1) MAP minimizes
k=0

N
J(Xo ... xn) =Y _(Hxn— 28)T Ry (Hxn — 25)
n=0
N
+ Z(Xn - Mxp_1 — fnf1)TQr71(Xn — Mxp_1 — fr_4)
n=1

+ (0= x) Q5 (x0 = x0) (1)

the so-called weak 4DVar computational problem:
a large (invertible) linear system parametrized by v in M(v).
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4DVar with parameter: cost decreased by RB

4DVar is computationally expensive, especially if N > 1.
Computing x*(v) for many v is very expensive.

A Reduced Basis (RB) approximation x°(v) ~ x3(v)
decreases the computational cost of x°(v)

after a learning stage has exploited enough variations in v.

A good estimator for X°(v) — x5(v) is crucial to a fast learning stage.

Note : in practice, the 4DVar saddle-point system is often
reduced but without error control



Reduced-Basis for 4DVar

I—Reduced-Basis: error estimate + greedy projection

Outline

Reduced-Basis: error estimate + greedy projection



Reduced-Basis for 4DVar
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Reduced Basis =~ “hyper-Galerkin”, = error estimate !
When x, = Mx,_1 + f, + nn results from PDE discretization

(m+ At a)c” = me"' + At "+ VAt giw]
proj. x ~ X = Xy onto Reduced Basis rank(X) < N x f(d.o.f.)
(M+ At 2)e" = me" + At 1" + VAL gw)

is computationally cheaper ...once X has been identified !
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Reduced Basis =~ “hyper-Galerkin”, = error estimate !
When x, = Mx,_1 + f, + nn results from PDE discretization

(m+ At a)c" = me" ' + At "+ VAL gw’

proj. x ~ X = Xy onto Reduced Basis rank(X) < N x #(d.o.f.)
(M+ At 2)e" = me" + At 1" + VAL gw)

is computationally cheaper ...once X has been identified !

Using residuals: (m+ At a)el = mel~" + At r! + At eg,
greedy algorithms construct X incrementally, inspecting a
sample of [el(v)||? := ||cN — X¢N||, through estimates:

- - 2
(Bm+ %' Ba)llegll® < Bmlled 117+ 5182 1113 + 3 CmlleB |7,
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Reduced Basis =~ “hyper-Galerkin”, = error estimate !
When x, = Mx,_1 + f, + nn results from PDE discretization

(m+ At a)c" = me" ' + At "+ VAL gw’

proj. x ~ X = Xy onto Reduced Basis rank(X) < N x #(d.o.f.)
(M+ At 2)e" = me" + At 1" + VAL gw)

is computationally cheaper ...once X has been identified !

Using residuals: (m+ At a)el = mel~" + At r! + At eg,
greedy algorithms construct X incrementally, inspecting a
sample of [el(v)||? := ||cN — X¢N||, through estimates:

5aZII6‘CII2 < Bl €lI?+265;" Z 17215, +2sz leBl = A

n=1 E =
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Reduced Basis construction for parabolic PDEs

Standard RB uses a POD-greedy algorithm:
1. X = span{(y} using
¢ principal component of ¢'(v1), ..., cN(v4) at vy
2. While max,en,,,, A(v) > e, X = XU {(} using

POD modes ¢ of ¢'(7),...,cN(7) at 7 € argmaxA(v)
vEN



Reduced-Basis for 4DVar

L Reduced-Basis: error estimate + greedy projection

Reduced Basis construction for parabolic PDEs

Standard RB uses a POD-greedy algorithm:

1. X = span{(y} using
¢1 principal component of ¢'(14), ..., cN(v4) at vy

2. While max,en,,,, A(v) > e, X = XU {(} using

POD modes ¢ of ¢'(7),...,cN(p) at 7 € argmaxA(v)
veN

Key to the reduction are:
> the “linear” dimension of {c'(v),...,cN(v);v € A}
» the convergence rate of the greedy algorithm
» the accuracy in error estimate

Let us specialize to 4DVar
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Reduced Basis construction for 4DVar: estimate
Duality: rewrite J with > . (p")7 Q; "' p" and
+ ((m + Ata)c" —me" ' — At " — VAt g,-Wf) Tp”
so 4Dvar rewrites as a system for ¢”, p” with pV = 0 and
(m+Ata)p™ =mp"+ H R (2% — He")

which can be treated by RB like the (forward) eq. for ¢”

N N N
S P < 7 (25;1 S 12, + 2CaCarrn > rezrrZ)
n=1

n=1 n=1
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Reduced Basis construction for 4DVar: greedy

N N N
2 -2 2 2 | .
16212+ " lleBl® < B2 [ D IrplE + > lIrdl5 | =4
1 1 0 1 0

n= n= n=

allows 4DVar RB to use a new POD-greedy given ¢ > 0:

1. X = Span{(y, (2}
¢1 principal component of ¢'(v1),...,cN(14)
(» principal component of p'(v4),...,pN(v4)

2. While max,ep,,,, A'(v) > e, X = X + Span{¢, ('}
¢ principal component of ¢! (7),...,cN(P)
¢" principal component of p' (), ..., pN(7)
using for 7 € argmax{A’(v),v € Ayain}
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Advection-diffusion in TG vortices

Kéarcher M.; Boyaval, S.; Grepl, M. A. & Veroy, K.
Reduced basis approximation and a posteriori error bounds for
4D-Var data assimilation, Optimization and Engineering 2018

advection by:(sin(mx1) cos(mxz), — cos(mxy) sin(mwx2))
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Advection- diffusi1on in TG \r/ucgrti%%s
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Advection- diffusion in TG vortices
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Error estimate

Strong 4DVar Q = 0 (left) and weak Q = .1 (right)
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Optimum: v* = .034 (strong), .022 (weak)

N er (strong) e, n (strong) er (weak) e, n (weak)

10 3.12e-01 4.18e-01 2.44e-01 6.02e-02
20 7.36e-03 1.30e-01 1.70e-02 9.33e-03
30 8.22e-04 1.42e-03 3.51e-03 1.70e-04
40 1.24e-04 4.99e-04 6.37e-04 3.26e-04
50 1.14e-05 2.98e-05 2.05e-04 3.53e-05
60 4.36e-06 1.27e-05 9.70e-05 3.90e-05

70 3.92e-07 4.18e-06 3.58e-05 1.93e-05
80 8.76e-08 9.71e-08 1.05e-05 4.12e-06
90 - - 4.17e-06 2.51e-06
100 - - 1.94e-06 3.09e-06
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Conclusion & Perspectives

» RB can be specialized to 4DVar with (LTI) parabolic PDEs

» Other models / DA procedures ?

Thanks for listening
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