

Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact resolution

presented by **Joëlle Ferzly**

IFPEN-Inria meeting December 1st, 2020

under the direction of:

Martin Vohralík Ibtihel Ben Gharbia Soleiman Yousef Director Promoter Promoter Inria, Paris & CERMICS, Marne-la-Vallée IFP Energies nouvelles, Rueil-Malmaison IFP Energies nouvelles, Rueil-Malmaison

2 Classical methods

3 Adaptive inexact smoothing Newton method

A Numerical tests

Introduction $\bullet \circ \circ$	Classical methods 000	Adaptive inexact smoothing Newton method	Numerical tests 00000	Conclusion 000
Model	Problem			

A system of algebraic inequalities of the form: Find $X \in \mathbb{R}^n$ such that

 $\mathbb{E} \boldsymbol{X} = \boldsymbol{F},$ $\boldsymbol{K}(\boldsymbol{X}) \geq \boldsymbol{0}, \quad \boldsymbol{G}(\boldsymbol{X}) \geq \boldsymbol{0}, \quad \boldsymbol{K}(\boldsymbol{X}) \cdot \boldsymbol{G}(\boldsymbol{X}) = \boldsymbol{0}.$

 $complementarity \ constraints$

 $\begin{array}{l} \rightarrow n>1 \text{ and } 0 < m < n \text{ are two integers.} \\ \rightarrow \mathbb{E} \in \mathbb{R}^{n-m,n}, \ \pmb{F} \in \mathbb{R}^{n-m}. \\ \rightarrow \ \pmb{K} : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ and } \ \pmb{G} : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ are linear operators.} \end{array}$

The category of PDEs containing complementarity constraints leads to systems of nonlinear algebraic inequalities.

Introduction $\bullet \circ \circ$	Classical methods 000	Adaptive inexact smoothing Newton method 000000000	Numerical tests 00000	Conclusion 000
Model	Problem			

A system of algebraic inequalities of the form: Find $X \in \mathbb{R}^n$ such that

 $\mathbb{E} X = F,$ $\underbrace{K(X) \ge 0, \quad G(X) \ge 0, \quad K(X) \cdot G(X) = 0.}$

$$\begin{array}{l} \rightarrow n > 1 \text{ and } 0 < m < n \text{ are two integers.} \\ \rightarrow \mathbb{E} \in \mathbb{R}^{n-m,n}, \ \pmb{F} \in \mathbb{R}^{n-m}. \\ \rightarrow \pmb{K} : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ and } \ \pmb{G} : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ are linear operators} \end{array}$$

The category of PDEs containing complementarity constraints leads to systems of nonlinear algebraic inequalities.

 $complementarity \ constraints$

Introduction	$Classical \ methods$	Adaptive inexact smoothing Newton method	
000			

Using a complementarity function (C-function), such system can be equivalently reformulated as a system of algebraic equalities.

$$\tilde{\mathbf{C}}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \ (m \ge 1)$$
 is a C-function if

 $\tilde{\mathbf{C}}(\boldsymbol{x}, \boldsymbol{y}) = 0 \iff \boldsymbol{x} \ge 0, \ \boldsymbol{y} \ge 0, \ \boldsymbol{x} \cdot \boldsymbol{y} = 0, \ \forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^m \times \mathbb{R}^m.$

Well known C-functions:

$$\left(ilde{\mathbf{C}}_{ ext{FB}}(m{x},m{y})
ight)_{l} = \sqrt{m{x}_{l}^{2} + m{y}_{l}^{2}} - m{x}_{l} - m{y}_{l}, \quad l = 1,...,m.$$

$$\left(\tilde{\mathbf{C}}_{\min}(\boldsymbol{x}, \boldsymbol{y})\right)_{l} = \frac{\boldsymbol{x}_{l} + \boldsymbol{y}_{l}}{2} - \frac{|\boldsymbol{x}_{l} - \boldsymbol{y}_{l}|}{2}, \quad l = 1, ..., m.$$

■ By introducing $\mathbf{C} : \mathbb{R}^n \to \mathbb{R}^m$ defined by $\mathbf{C}(\mathbf{X}) := \tilde{\mathbf{C}}(\mathbf{K}(\mathbf{X}), \mathbf{G}(\mathbf{X}))$, the problem will be equivalent to a nonlinear nonsmooth (not of class C^1) system of equalities:

$$\begin{bmatrix} \mathbb{E}X &= F, \\ \mathbf{C}(X) &= \mathbf{0}. \end{bmatrix}$$

Introduction	Classical methods	Adaptive inexact smoothing Newton method	
000			

Using a complementarity function (C-function), such system can be equivalently reformulated as a system of algebraic equalities.

$$\tilde{\mathbf{C}}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \ (m \ge 1)$$
 is a C-function if

 $\tilde{\mathbf{C}}(\boldsymbol{x}, \boldsymbol{y}) = 0 \iff \boldsymbol{x} \ge 0, \ \boldsymbol{y} \ge 0, \ \boldsymbol{x} \cdot \boldsymbol{y} = 0, \ \forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^m \times \mathbb{R}^m.$

Well known C-functions:

$$\left(\tilde{\mathbf{C}}_{\mathrm{FB}}(\boldsymbol{x},\boldsymbol{y})\right)_{l} = \sqrt{\boldsymbol{x}_{l}^{2} + \boldsymbol{y}_{l}^{2}} - \boldsymbol{x}_{l} - \boldsymbol{y}_{l}, \quad l = 1, ..., m.$$

$$\left(ilde{\mathbf{C}}_{\min}(m{x},m{y})
ight)_{l} = rac{m{x}_{l}+m{y}_{l}}{2} - rac{|m{x}_{l}-m{y}_{l}|}{2}, \quad l=1,...,m.$$

■ By introducing $\mathbf{C} : \mathbb{R}^n \to \mathbb{R}^m$ defined by $\mathbf{C}(\mathbf{X}) := \tilde{\mathbf{C}}(\mathbf{K}(\mathbf{X}), \mathbf{G}(\mathbf{X}))$, the problem will be equivalent to a nonlinear nonsmooth (not of class \mathcal{C}^1) system of equalities:

$$\begin{bmatrix} \mathbb{E}X &= F, \\ \mathbf{C}(X) &= \mathbf{0}. \end{bmatrix}$$

Introduction	Classical methods	Adaptive inexact smoothing Newton method	
000			

Using a complementarity function (C-function), such system can be equivalently reformulated as a system of algebraic equalities.

$$\tilde{\mathbf{C}}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \ (m \ge 1)$$
 is a C-function if

 $\tilde{\mathbf{C}}(\boldsymbol{x}, \boldsymbol{y}) = 0 \iff \boldsymbol{x} \ge 0, \ \boldsymbol{y} \ge 0, \ \boldsymbol{x} \cdot \boldsymbol{y} = 0, \ \forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^m \times \mathbb{R}^m.$

Well known C-functions:

$$\left(\tilde{\mathbf{C}}_{\mathrm{FB}}(\boldsymbol{x},\boldsymbol{y})\right)_{l} = \sqrt{\boldsymbol{x}_{l}^{2} + \boldsymbol{y}_{l}^{2}} - \boldsymbol{x}_{l} - \boldsymbol{y}_{l}, \quad l = 1, ..., m.$$

$$\left(\tilde{\mathbf{C}}_{\min}(\boldsymbol{x}, \boldsymbol{y})\right)_{l} = \frac{\boldsymbol{x}_{l} + \boldsymbol{y}_{l}}{2} - \frac{|\boldsymbol{x}_{l} - \boldsymbol{y}_{l}|}{2}, \quad l = 1, ..., m.$$

■ By introducing $\mathbf{C} : \mathbb{R}^n \to \mathbb{R}^m$ defined by $\mathbf{C}(\mathbf{X}) := \tilde{\mathbf{C}}(\mathbf{K}(\mathbf{X}), \mathbf{G}(\mathbf{X}))$, the problem will be equivalent to a nonlinear nonsmooth (not of class \mathcal{C}^1) system of equalities:

$$\begin{bmatrix} \mathbb{E}X &= F, \\ \mathbf{C}(X) &= 0. \end{bmatrix}$$

Introduction $\circ \circ \bullet$	Classical methods	Adaptive inexact smoothing Newton method 00000000	Numerical tests 00000	Conclusion 000
Motiva	tion			

Replace the semismooth (non-differentiable) C-function $\mathbf{C}(\cdot)$ by a smooth (differentiable) function $\mathbf{C}_{\mu}(\cdot)$, with μ a small parameter, such that

 $\|\mathbf{C}_{\mu}(\cdot) - \mathbf{C}(\cdot)\| \to \mathbf{0} \text{ as } \mu \to 0.$

- Establish a posteriori error estimate that allows to:
 - \rightarrow Estimate the total error.
 - \rightarrow Distinguish the smoothing, linearization, and algebraic error components.
 - \rightarrow Formulate adaptive stopping criteria.
- Propose adaptive inexact algorithms for the smoothing Newton method and the interior point method.

Introduction $\circ \circ \bullet$	Classical methods	Adaptive inexact smoothing Newton method 00000000	Numerical tests 00000	Conclusion 000
Motiva	tion			

Replace the semismooth (non-differentiable) C-function $\mathbf{C}(\cdot)$ by a smooth (differentiable) function $\mathbf{C}_{\mu}(\cdot)$, with μ a small parameter, such that

$$\|\mathbf{C}_{\mu}(\cdot) - \mathbf{C}(\cdot)\| \to \mathbf{0} \text{ as } \mu \to 0.$$

- Establish a posteriori error estimate that allows to:
 - \rightarrow Estimate the total error.
 - \rightarrow Distinguish the smoothing, linearization, and algebraic error components.
 - \rightarrow Formulate adaptive stopping criteria.
- Propose adaptive inexact algorithms for the smoothing Newton method and the interior point method.

Introduction $\circ \circ \bullet$	Classical methods	Adaptive inexact smoothing Newton method 00000000	Numerical tests 00000	Conclusion 000
Motiva	tion			

Replace the semismooth (non-differentiable) C-function $\mathbf{C}(\cdot)$ by a smooth (differentiable) function $\mathbf{C}_{\mu}(\cdot)$, with μ a small parameter, such that

$$\|\mathbf{C}_{\mu}(\cdot) - \mathbf{C}(\cdot)\| \to \mathbf{0} \text{ as } \mu \to 0.$$

- Establish a posteriori error estimate that allows to:
 - \rightarrow Estimate the total error.
 - \rightarrow Distinguish the smoothing, linearization, and algebraic error components.
 - \rightarrow Formulate adaptive stopping criteria.
- Propose adaptive inexact algorithms for the smoothing Newton method and the interior point method.

Classical methods	Adaptive inexact smoothing Newton method	
000		

1 Introduction

2 Classical methods

Adaptive inexact smoothing Newton method

Numerical tests

onclusion

Classical semismooth Newton <u>methods</u>

- Iterative semismooth linearization method.
- For $X^0 \in \mathbb{R}^n$, on step $k \ge 1$, one looks for $X^k \in \mathbb{R}^n$ such that

$$\mathbb{A}^{k-1}\boldsymbol{X}^k = \boldsymbol{B}^{k-1},$$

where the Jacobian matrix and the right-hand side vector are given by

$$\mathbb{A}^{k-1} := \begin{bmatrix} \mathbb{E} \\ \mathbf{J}_{\mathbf{C}}(\mathbf{X}^{k-1}) \end{bmatrix} \in \mathbb{R}^{n,n},$$
 $\mathbf{B}^{k-1} := \begin{bmatrix} \mathbf{F} \\ \mathbf{J}_{\mathbf{C}}(\mathbf{X}^{k-1})\mathbf{X}^{k-1} - \mathbf{C}(\mathbf{X}^{k-1}) \end{bmatrix} \in \mathbb{R}^{n},$

and $\mathbf{J}_{\mathbf{C}}$ is the (generalized) Jacobian matrix in the sense of Clarke of the semismooth C-function \mathbf{C} .

Introduction Classi	cal methods Adaptive inexact s	moothing Newton meth		Conclusion
000 000	00000000		00000	000

Nonparametric interior-point method

Introduce:

- \rightarrow a smoothing parameter $\mu>0,$
- \rightarrow a vector $\mu \in \mathbb{R}^m$, such that $\mu = \mu \mathbf{1}, \ \mathbf{1} = [1, \dots, 1] \in \mathbb{R}^m$.

Replace the original nonsmooth problem by the smoothed problem: Find $X^j \in \mathbb{R}^n$ such that

$$\begin{split} \mathbb{E} \boldsymbol{X} &= \boldsymbol{F}, \\ \boldsymbol{K}(\boldsymbol{X}) \geq \boldsymbol{0}, \ \boldsymbol{G}(\boldsymbol{X}) \geq \boldsymbol{0}, \ \boldsymbol{K}(\boldsymbol{X}) \boldsymbol{G}(\boldsymbol{X}) - \boldsymbol{\mu} = \boldsymbol{0}, \end{split}$$
where $\boldsymbol{K}(\boldsymbol{X}) \boldsymbol{G}(\boldsymbol{X}) = \begin{bmatrix} (\boldsymbol{K}(\boldsymbol{X}) \boldsymbol{G}(\boldsymbol{X}))_1, \dots, (\boldsymbol{K}(\boldsymbol{X}) \boldsymbol{G}(\boldsymbol{X}))_m \end{bmatrix}^T. \end{split}$

Treat μ as an unknown.

Introduce the following new equation into the system

$$\epsilon \mu + \mu^2 = 0.$$

Rewrite the problem as enlarged nonlinear smooth system. D. T. S. Vu, Numerical resolution of algebraic systems with complementarity conditions, Ph.D. thesis, Paris Saclay University, (2020).

Introduction Cla	assical methods A	Adaptive inexact smoothing Newton method		Conclusion
000 00	• 0	0000000	00000	000

Nonparametric interior-point method

Introduce:

- \rightarrow a smoothing parameter $\mu > 0$,
- \rightarrow a vector $\mu \in \mathbb{R}^m$, such that $\mu = \mu \mathbf{1}, \ \mathbf{1} = [1, \dots, 1] \in \mathbb{R}^m$.

Replace the original nonsmooth problem by the smoothed problem: Find $X^j \in \mathbb{R}^n$ such that

 $\mathbb{E} X = F,$ $K(X) \ge 0, \ G(X) \ge 0, \ K(X)G(X) - \mu = 0,$ where $K(X)G(X) = \left[(K(X)G(X))_1, \dots, (K(X)G(X))_m \right]^T.$

Treat μ as an unknown.

Introduce the following new equation into the system

$$\epsilon \mu + \mu^2 = 0.$$

Rewrite the problem as enlarged nonlinear smooth system.

D. T. S. Vu, Numerical resolution of algebraic systems with complementarity conditions, Ph.D. thesis, Paris Saclay University, (2020).

Classical methods	Adaptive inexact smoothing Newton method	
	0000000	

1 Introduction

Classical method

3 Adaptive inexact smoothing Newton method

Numerical tests

Conclusion

Smoothed C-functions

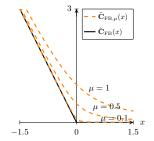
Smoothed F-B function:

$$(\tilde{\mathbf{C}}_{\mathrm{FB},\mu}(\boldsymbol{x},\boldsymbol{y}))_l = \sqrt{\mu^2 + \boldsymbol{x}_l^2 + \boldsymbol{y}_l^2} - (\boldsymbol{x}_l + \boldsymbol{y}_l)$$

$$l = 1, ..., m$$
.

Smoothed min function:

$$\begin{split} \tilde{\mathbf{C}}_{\min,\mu}(\mathbf{x},\mathbf{y}))_l &= \frac{\mathbf{x}_l + \mathbf{y}_l}{2} - \frac{\left(|\mathbf{x} - \mathbf{y}|_{\mu}\right)_l}{2}\\ \text{where } \left(|\mathbf{x}|_{\mu}\right)_l &= \sqrt{\mu^2 + \mathbf{x}_l^2},\\ l &= 1, ..., m. \end{split}$$



tion Classical methods	Adaptive inexact smoothing Newton method	Conclusion
	0000000	

Smoothed C-functions

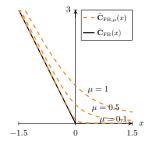
Smoothed F-B function:

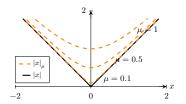
$$\left(\tilde{\mathbf{C}}_{\mathrm{FB},\mu}(\boldsymbol{x},\boldsymbol{y})\right)_{l} = \sqrt{\mu^{2} + \boldsymbol{x}_{l}^{2} + \boldsymbol{y}_{l}^{2}} - \left(\boldsymbol{x}_{l} + \boldsymbol{y}_{l}\right)$$

$$l = 1, ..., m.$$

Smoothed min function:

$$\begin{split} \left(\tilde{\mathbf{C}}_{\min,\mu}(\boldsymbol{x},\boldsymbol{y})\right)_{l} &= \frac{\boldsymbol{x}_{l} + \boldsymbol{y}_{l}}{2} - \frac{\left(\left|\boldsymbol{x} - \boldsymbol{y}\right|_{\mu}\right)_{l}}{2}\\ \text{where } \left(\left|\boldsymbol{x}\right|_{\mu}\right)_{l} &= \sqrt{\mu^{2} + \boldsymbol{x}_{l}^{2}},\\ l &= 1, ..., m. \end{split}$$





- Denote by $j \ge 0$ a smoothing iteration.
- Update of μ^j :
 - \rightarrow Actual work: a geometric sequence $\mu^{j+1} = 0.1 \mu^j$.
 - \rightarrow Future work: an update based on the PDE discretization error.
- Define a function $\mathbf{C}_{\mu j} : \mathbb{R}^n \to \mathbb{R}^m$ as

 $\mathbf{C}_{\mu^j}(oldsymbol{X}) := ilde{\mathbf{C}}_{\mu^j}\left(oldsymbol{K}(oldsymbol{X}), oldsymbol{G}(oldsymbol{X})
ight),$

where $\tilde{\mathbf{C}}_{\mu^j} : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ is a smoothed C-function.

The smoothed problem is a system of smooth (of class C^1) nonlinear equations, written as: Find $X^j \in \mathbb{R}^n$ such that

 $\left\{egin{array}{ccc} \mathbb{E} oldsymbol{X}^j &=& oldsymbol{F},\ \mathbf{C}_{\mu^j}(oldsymbol{X}^j) &=& oldsymbol{0}. \end{array}
ight.$

- \rightarrow Apply the classical Newton method.
- \rightarrow Solve the resulting linear system using GMRES.

- Denote by $j \ge 0$ a smoothing iteration.
- Update of μ^j :
 - \rightarrow Actual work: a geometric sequence $\mu^{j+1} = 0.1 \mu^j$.
 - \rightarrow Future work: an update based on the PDE discretization error.
- Define a function $\mathbf{C}_{\mu j} : \mathbb{R}^n \to \mathbb{R}^m$ as

 $\mathbf{C}_{\mu^j}(\boldsymbol{X}) := \tilde{\mathbf{C}}_{\mu^j}\left(\boldsymbol{K}(\boldsymbol{X}), \boldsymbol{G}(\boldsymbol{X})\right),$

where $\tilde{\mathbf{C}}_{\mu^j} : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ is a smoothed C-function.

The smoothed problem is a system of smooth (of class C^1) nonlinear equations, written as: Find $X^j \in \mathbb{R}^n$ such that

 $\left\{egin{array}{ccc} \mathbb{E}m{X}^j &=& m{F}, \ \mathbf{C}_{\mu^j}(m{X}^j) &=& m{0}. \end{array}
ight.$

- \rightarrow Apply the classical Newton method.
- \rightarrow Solve the resulting linear system using GMRES.

- Denote by $j \ge 0$ a smoothing iteration.
- Update of μ^j :
 - \rightarrow Actual work: a geometric sequence $\mu^{j+1} = 0.1 \mu^j$.
 - \rightarrow Future work: an update based on the PDE discretization error.
- Define a function $\mathbf{C}_{\mu j} : \mathbb{R}^n \to \mathbb{R}^m$ as

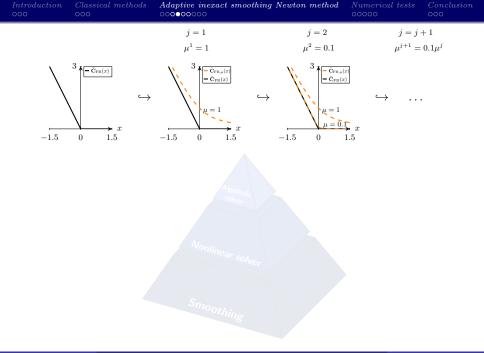
 $\mathbf{C}_{\mu^j}(\boldsymbol{X}) := \tilde{\mathbf{C}}_{\mu^j}\left(\boldsymbol{K}(\boldsymbol{X}), \boldsymbol{G}(\boldsymbol{X})\right),$

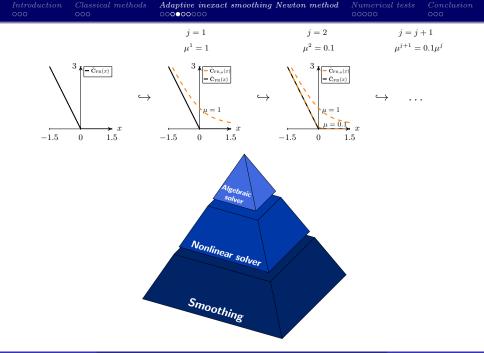
where $\tilde{\mathbf{C}}_{\mu^j} : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ is a smoothed C-function.

The smoothed problem is a system of smooth (of class C^1) nonlinear equations, written as: Find $X^j \in \mathbb{R}^n$ such that

 $\left\{\begin{array}{rcl} \mathbb{E} \boldsymbol{X}^{j} &=& \boldsymbol{F},\\ \mathbf{C}_{\mu^{j}}(\boldsymbol{X}^{j}) &=& \boldsymbol{0}. \end{array}\right.$

- \rightarrow Apply the classical Newton method.
- \rightarrow Solve the resulting linear system using GMRES.

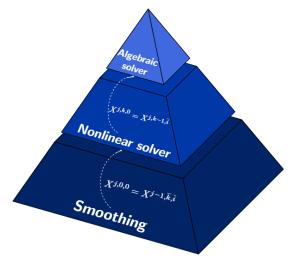




Classical methods	Adaptive inexact smoothing Newton method	
	0000000	

Notations:

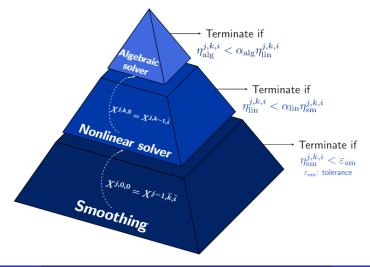
- $\rightarrow j$: smoothing iteration
- \rightarrow k : linearization iteration
- \rightarrow i : algebraic iteration



Classical methods	Adaptive inexact smoothing Newton method	
	00000000	

Notations:

- $\rightarrow j$: smoothing iteration
- \rightarrow k : linearization iteration
- \rightarrow i : algebraic iteration



	Classical methods	Adaptive inexact smoothing Newton method		Conclusion
000	000	000000000	00000	000

Recall that the initial problem to solve is

$$\left(\begin{array}{ccc} \mathbb{E} X &=& F, \\ \mathbf{C}(X) &=& \mathbf{0}. \end{array} \right)$$

The total residual vector of the system is given by

$$oldsymbol{R}(oldsymbol{X}^{j,k,i}) := \left[egin{array}{c} oldsymbol{F} - \mathbb{E}oldsymbol{X}^{j,k,i} \ - oldsymbol{C}(oldsymbol{X}^{j,k,i}) \end{array}
ight].$$

Introduce $\mathbf{C}_{\mu j}^{j,k-1}: \mathbb{R}^n \to \mathbb{R}^m$, the linearization of $\mathbf{C}_{\mu j}$:

 $\mathbf{C}_{\mu^{j}}^{j,k-1}(\bm{V}) := \mathbf{C}_{\mu^{j}}(\bm{X}^{j,k-1}) + \mathbf{J}_{\mathbf{C}_{\mu^{j}}}(\bm{X}^{j,k-1})(\bm{V}-\bm{X}^{j,k-1}), \ \ \bm{V} \in \mathbb{R}^{n}.$

Add and substract $\mathbf{C}_{\mu j}(\mathbf{X}^{j,k,i})$ and its linearization $\mathbf{C}_{\mu j}^{j,k-1}(\mathbf{X}^{j,k,i})$

 $\mathbf{C}(\boldsymbol{X}^{j,k,i}) = \mathbf{C}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}).$

	Classical methods	Adaptive inexact smoothing Newton method		
000	000	000000000	00000	000

Recall that the initial problem to solve is

$$\begin{bmatrix} \mathbb{E}X &= F, \\ \mathbf{C}(X) &= 0. \end{bmatrix}$$

The total residual vector of the system is given by

$$oldsymbol{R}(oldsymbol{X}^{j,k,i}) := \left[egin{array}{c} oldsymbol{F} - \mathbb{E}oldsymbol{X}^{j,k,i} \ - oldsymbol{C}(oldsymbol{X}^{j,k,i}) \end{array}
ight].$$

Introduce $\mathbf{C}_{\mu j}^{j,k-1}: \mathbb{R}^n \to \mathbb{R}^m$, the linearization of $\mathbf{C}_{\mu j}$:

 $\mathbf{C}_{\mu^{j}}^{j,k-1}(V) := \mathbf{C}_{\mu^{j}}(\boldsymbol{X}^{j,k-1}) + \mathbf{J}_{\mathbf{C}_{\mu^{j}}}(\boldsymbol{X}^{j,k-1})(V - \boldsymbol{X}^{j,k-1}), \ \ V \in \mathbb{R}^{n}.$

Add and substract $\mathbf{C}_{\mu j}(\mathbf{X}^{j,k,i})$ and its linearization $\mathbf{C}_{\mu j}^{j,k-1}(\mathbf{X}^{j,k,i})$

 $\mathbf{C}(\boldsymbol{X}^{j,k,i}) = \mathbf{C}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}).$

	Classical methods	Adaptive inexact smoothing Newton method		Conclusion
000	000	000000000	00000	000

Recall that the initial problem to solve is

$$\begin{bmatrix} \mathbb{E}X &= F, \\ \mathbf{C}(X) &= 0. \end{bmatrix}$$

The total residual vector of the system is given by

$$oldsymbol{R}(oldsymbol{X}^{j,k,i}) := \left[egin{array}{c} oldsymbol{F} - \mathbb{E}oldsymbol{X}^{j,k,i} \ - \mathbf{C}(oldsymbol{X}^{j,k,i}) \end{array}
ight].$$

Introduce $\mathbf{C}_{\mu j}^{j,k-1}: \mathbb{R}^n \to \mathbb{R}^m$, the linearization of $\mathbf{C}_{\mu j}$:

 $\mathbf{C}_{\mu^{j}}^{j,k-1}(\boldsymbol{V}) := \mathbf{C}_{\mu^{j}}(\boldsymbol{X}^{j,k-1}) + \mathbf{J}_{\mathbf{C}_{\mu^{j}}}(\boldsymbol{X}^{j,k-1})(\boldsymbol{V}-\boldsymbol{X}^{j,k-1}), \ \ \boldsymbol{V} \in \mathbb{R}^{n}.$

Add and substract $\mathbf{C}_{\mu j}(\mathbf{X}^{j,k,i})$ and its linearization $\mathbf{C}_{\mu j}^{j,k-1}(\mathbf{X}^{j,k,i})$

 $\mathbf{C}(\boldsymbol{X}^{j,k,i}) = \mathbf{C}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}).$

	Classical methods	Adaptive inexact smoothing Newton method		Conclusion
000	000	000000000	00000	000

Recall that the initial problem to solve is

$$\begin{bmatrix} \mathbb{E}X &= F, \\ \mathbf{C}(X) &= 0. \end{bmatrix}$$

The total residual vector of the system is given by

$$oldsymbol{R}(oldsymbol{X}^{j,k,i}) := \left[egin{array}{c} oldsymbol{F} - \mathbb{E}oldsymbol{X}^{j,k,i} \ - oldsymbol{C}(oldsymbol{X}^{j,k,i}) \end{array}
ight].$$

Introduce $\mathbf{C}_{\mu^j}^{j,k-1}: \mathbb{R}^n \to \mathbb{R}^m$, the linearization of \mathbf{C}_{μ^j} :

 $\mathbf{C}_{\mu^{j}}^{j,k-1}(\boldsymbol{V}) := \mathbf{C}_{\mu^{j}}(\boldsymbol{X}^{j,k-1}) + \mathbf{J}_{\mathbf{C}_{\mu^{j}}}(\boldsymbol{X}^{j,k-1})(\boldsymbol{V}-\boldsymbol{X}^{j,k-1}), \ \ \boldsymbol{V} \in \mathbb{R}^{n}.$

Add and substract $\mathbf{C}_{\mu j}(\mathbf{X}^{j,k,i})$ and its linearization $\mathbf{C}_{\mu j}^{j,k-1}(\mathbf{X}^{j,k,i})$

$$\mathbf{C}(\boldsymbol{X}^{j,k,i}) = \mathbf{C}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu^j}(\boldsymbol{X}^{j,k,i}) \pm \mathbf{C}_{\mu^j}^{j,k-1}(\boldsymbol{X}^{j,k,i}).$$

Classical methods	Adaptive inexact smoothing Newton method	
	000000000	

■ The total residual vector can be decomposed as follows:

$$\begin{split} \boldsymbol{R}(\boldsymbol{X}^{j,k,i}) = \underbrace{\left[\begin{array}{c} \boldsymbol{0} \\ \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) - \mathbf{C}(\boldsymbol{X}^{j,k,i}) \\ \text{smoothness} \end{array}\right]}_{\text{smoothness}} + \underbrace{\left[\begin{array}{c} \boldsymbol{0} \\ \mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}) - \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) \\ \text{linearization} \\ + \underbrace{\left[\begin{array}{c} \boldsymbol{F} - \mathbb{E}\boldsymbol{X}^{j,k,i} \\ -\mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}) \end{array}\right]}_{\text{algebraic}} \end{split}$$

The relative L_2 -norm of $\mathbf{R}(\mathbf{X}^{j,k,i})$ is bounded by

$$\left\| \left| \boldsymbol{R}(\boldsymbol{X}^{j,k,i}) \right\|_{\mathrm{r}} \leq \eta_{\mathrm{sm}}^{j,k,i} + \eta_{\mathrm{lin}}^{j,k,i} + \eta_{\mathrm{alg}}^{j,k,i},$$

with

$$\begin{split} \eta_{\mathrm{sm}}^{j,k,i} &:= \left| \left| \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) - \mathbf{C}(\boldsymbol{X}^{j,k,i}) \right| \right|_{\mathrm{r}}, \\ \eta_{\mathrm{lin}}^{j,k,i} &:= \left| \left| \mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}) - \mathbf{C}_{\mu j}(\boldsymbol{X}^{j,k,i}) \right| \right|_{\mathrm{r}}, \\ \eta_{\mathrm{alg}}^{j,k,i} &:= \left(\left| \left| \boldsymbol{F} - \mathbb{E}\boldsymbol{X}^{j,k,i} \right| \right|_{\mathrm{r}}^{2} + \left| \left| \mathbf{C}_{\mu j}^{j,k-1}(\boldsymbol{X}^{j,k,i}) \right| \right|_{\mathrm{r}}^{2} \right)^{\frac{1}{2}} \end{split}$$

Classical methods	Adaptive inexact smoothing Newton method	
	000000000	

■ The total residual vector can be decomposed as follows:

$$\begin{split} \boldsymbol{R}(\boldsymbol{X}^{j,k,i}) = \underbrace{\left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{C}_{\mu^{j}}(\boldsymbol{X}^{j,k,i}) - \boldsymbol{C}(\boldsymbol{X}^{j,k,i}) \\ \text{smoothness} \end{array}\right]}_{\text{smoothness}} + \underbrace{\left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{C}_{\mu^{j}}^{j,k-1}(\boldsymbol{X}^{j,k,i}) - \boldsymbol{C}_{\mu^{j}}(\boldsymbol{X}^{j,k,i}) \\ \text{linearization} \\ + \underbrace{\left[\begin{array}{c} \boldsymbol{F} - \mathbb{E}\boldsymbol{X}^{j,k,i} \\ -\boldsymbol{C}_{\mu^{j}}^{j,k-1}(\boldsymbol{X}^{j,k,i}) \end{array}\right]}_{\text{slearbasin}} \end{split}$$

algebraic

The relative L_2 -norm of $\mathbf{R}(\mathbf{X}^{j,k,i})$ is bounded by

$$\left|\left|\boldsymbol{R}(\boldsymbol{X}^{j,k,i})\right|\right|_{\mathrm{r}} \leq \eta_{\mathrm{sm}}^{j,k,i} + \eta_{\mathrm{lin}}^{j,k,i} + \eta_{\mathrm{alg}}^{j,k,i},$$

with

$$\begin{split} \eta_{\mathrm{sm}}^{j,k,i} &:= \left| \left| \mathbf{C}_{\mu j} \left(\mathbf{X}^{j,k,i} \right) - \mathbf{C} \left(\mathbf{X}^{j,k,i} \right) \right| \right|_{\mathrm{r}}, \\ \eta_{\mathrm{lin}}^{j,k,i} &:= \left| \left| \mathbf{C}_{\mu j}^{j,k-1} \left(\mathbf{X}^{j,k,i} \right) - \mathbf{C}_{\mu j} \left(\mathbf{X}^{j,k,i} \right) \right| \right|_{\mathrm{r}}, \\ \eta_{\mathrm{alg}}^{j,k,i} &:= \left(\left| \left| \mathbf{F} - \mathbb{E} \mathbf{X}^{j,k,i} \right| \right|_{\mathrm{r}}^{2} + \left| \left| \mathbf{C}_{\mu j}^{j,k-1} \left(\mathbf{X}^{j,k,i} \right) \right| \right|_{\mathrm{r}}^{2} \right)^{\frac{1}{2}} \end{split}$$

Initialization:

Choose a tolerance $\varepsilon_{sm} > 0$, $\alpha \in [0, 1[$ and $\alpha_{lin}, \alpha_{alg} \in [0, 1]$. Set j := 1 and $\mathbf{X}^{j,0,0} := \mathbf{X}^0 \in \mathbb{R}^n$. Choose $\mu^j > 0$.

Smoothing loop:

- ▶ Newton linearization loop:
 - **0.** Set k := 1
 - **1.** Consider the problem of finding a solution $\boldsymbol{X}^{j,k}$ to

$$\mathbb{A}_{\mu^j}^{j,k-1,\overline{i}}\boldsymbol{X}^{j,k} = \boldsymbol{B}_{\mu^j}^{j,k-1,\overline{i}}.$$

2. Algebraic solver loop

- a) Set i := 1 and $\mathbf{X}^{j,k,i} := \mathbf{X}^{j,k-1,\overline{i}}$ as initial guess.
- b) Perform one step of the iterative algebraic solver to obtain $X^{j,k,i}$

$$\mathbb{A}_{\mu^j}^{j,k-1}\boldsymbol{X}^{j,k,i} = \boldsymbol{B}_{\mu^j}^{j,k-1} - \boldsymbol{R}_{\mathrm{alg}}^{j,k,i}.$$

c) If $\eta_{\text{alg}}^{j,k,i} < \alpha_{\text{alg}} \eta_{\text{lin}}^{j,k,i}$, stop. If not, set i := i + 1 and go to 2b).

3. If $\eta_{\text{lin}}^{j,n,i} < \alpha_{\text{lin}} \eta_{\text{sm}}^{j,n,i}$, stop. If not, set k := k + 1, go to **1**.

▶ If $\|\mathbf{R}(\mathbf{X}^{j,k,i})\|_{\mathrm{r}} < \varepsilon_{\mathrm{sm}}$, stop. If not, set j := j + 1 and $\mu^{j} := \alpha \mu^{j-1}$. Then set $\mathbf{X}^{j,0} := \mathbf{X}^{j-1,\overline{k},\overline{i}}$ and k := 1, and go to **1**.

Introduction	Classical methods	Adaptive inexact smoothing Newton method	Conclusion
		00000000	

Initialization:

Choose a tolerance $\varepsilon_{sm} > 0$, $\alpha \in [0, 1[$ and $\alpha_{lin}, \alpha_{alg} \in [0, 1]$. Set j := 1 and $\mathbf{X}^{j,0,0} := \mathbf{X}^0 \in \mathbb{R}^n$. Choose $\mu^j > 0$.

Smoothing loop:

- Newton linearization loop:
 - **0.** Set k := 1.
 - 1. Consider the problem of finding a solution $X^{j,k}$ to

$$\mathbb{A}_{\mu^j}^{j,k-1,\overline{i}}\boldsymbol{X}^{j,k} = \boldsymbol{B}_{\mu^j}^{j,k-1,\overline{i}}.$$

- 2. Algebraic solver loop
 - **a**) Set i := 1 and $\mathbf{X}^{j,k,i} := \mathbf{X}^{j,k-1,\overline{i}}$ as initial guess.
 - b) Perform one step of the iterative algebraic solver to obtain $X^{j,k,i}$

$$\mathbb{A}_{\mu j}^{j,k-1} \boldsymbol{X}^{j,k,i} = \boldsymbol{B}_{\mu j}^{j,k-1} - \boldsymbol{R}_{\mathrm{alg}}^{j,k,i}.$$

c) If $\eta_{\text{alg}}^{j,k,i} < \alpha_{\text{alg}} \eta_{\text{lin}}^{j,k,i}$, stop. If not, set i := i + 1 and go to 2b).

- **3.** If $\eta_{\text{lin}}^{j,\alpha,\nu} < \alpha_{\text{lin}}\eta_{\text{sm}}^{j,\alpha,\nu}$, stop. If not, set k := k + 1, go to **1**.
- ▶ If $\|\mathbf{R}(\mathbf{X}^{j,k,i})\|_r < \varepsilon_{sm}$, stop. If not, set j := j + 1 and $\mu^j := \alpha \mu^{j-1}$. Then set $\mathbf{X}^{j,0} := \mathbf{X}^{j-1,\overline{k},\overline{i}}$ and k := 1, and go to 1.

Introduction	Classical methods	Adaptive inexact smoothing Newton method	Conclusion
		00000000	

Initialization:

Choose a tolerance $\varepsilon_{sm} > 0$, $\alpha \in [0, 1[$ and $\alpha_{lin}, \alpha_{alg} \in [0, 1]$. Set j := 1 and $\mathbf{X}^{j,0,0} := \mathbf{X}^0 \in \mathbb{R}^n$. Choose $\mu^j > 0$.

Smoothing loop:

- Newton linearization loop:
 - **0.** Set k := 1.
 - 1. Consider the problem of finding a solution $X^{j,k}$ to

$$\mathbb{A}_{\mu^j}^{j,k-1,\overline{i}}\boldsymbol{X}^{j,k} = \boldsymbol{B}_{\mu^j}^{j,k-1,\overline{i}}.$$

2. Algebraic solver loop

- a) Set i := 1 and $\mathbf{X}^{j,k,i} := \mathbf{X}^{j,k-1,\overline{i}}$ as initial guess.
- b) Perform one step of the iterative algebraic solver to obtain $\boldsymbol{X}^{j,k,i}$

$$\mathbb{A}_{\mu^j}^{j,k-1}\boldsymbol{X}^{j,k,i} = \boldsymbol{B}_{\mu^j}^{j,k-1} - \boldsymbol{R}_{\text{alg}}^{j,k,i}.$$

c) If $\eta_{\text{alg}}^{j,k,i} < \alpha_{\text{alg}} \eta_{\text{lin}}^{j,k,i}$, stop. If not, set i := i + 1 and go to 2b).

3. If $\eta_{\text{lin}}^{j,\kappa,i} < \alpha_{\text{lin}} \eta_{\text{sm}}^{j,\kappa,i}$, stop. If not, set k := k+1, go to **1**.

▶ If $\|\mathbf{R}(\mathbf{X}^{j,k,i})\|_{\mathbf{r}} < \varepsilon_{\mathrm{sm}}$, stop. If not, set j := j + 1 and $\mu^j := \alpha \mu^{j-1}$. Then set $\mathbf{X}^{j,0} := \mathbf{X}^{j-1,\overline{k},\overline{i}}$ and k := 1, and go to 1.

Introduction	Classical methods	Adaptive inexact smoothing Newton method	Conclusion
		00000000	

Initialization:

Choose a tolerance $\varepsilon_{sm} > 0$, $\alpha \in [0, 1[$ and $\alpha_{lin}, \alpha_{alg} \in [0, 1]$. Set j := 1 and $\mathbf{X}^{j,0,0} := \mathbf{X}^0 \in \mathbb{R}^n$. Choose $\mu^j > 0$.

Smoothing loop:

- Newton linearization loop:
 - **0.** Set k := 1.
 - 1. Consider the problem of finding a solution $X^{j,k}$ to

$$\mathbb{A}_{\mu^j}^{j,k-1,\overline{i}}\boldsymbol{X}^{j,k} = \boldsymbol{B}_{\mu^j}^{j,k-1,\overline{i}}.$$

2. Algebraic solver loop

- a) Set i := 1 and $\mathbf{X}^{j,k,i} := \mathbf{X}^{j,k-1,\overline{i}}$ as initial guess.
- b) Perform one step of the iterative algebraic solver to obtain $X^{j,k,i}$

$$\mathbb{A}_{\mu^j}^{j,k-1}\boldsymbol{X}^{j,k,i} = \boldsymbol{B}_{\mu^j}^{j,k-1} - \boldsymbol{R}_{\mathrm{alg}}^{j,k,i}.$$

c) If η^{j,k,i}_{alg} < α_{alg}η^{j,k,i}_{lin}, stop. If not, set i := i + 1 and go to 2b).
 3. If η^{j,k,i}_{i:i} < α_{lin}η^{j,k,i}_{sm}, stop. If not, set k := k + 1, go to 1.

▶ If $\|\mathbf{R}(\mathbf{X}^{j,k,i})\|_{\mathrm{r}} < \varepsilon_{\mathrm{sm}}$, stop. If not, set j := j + 1 and $\mu^{j} := \alpha \mu^{j-1}$. Then set $\mathbf{X}^{j,0} := \mathbf{X}^{j-1,\overline{k},\overline{i}}$ and k := 1, and go to 1.

Introduction	Classical methods	Adaptive inexact smoothing Newton method	Conclusion
		00000000	

Initialization:

Choose a tolerance $\varepsilon_{sm} > 0$, $\alpha \in [0, 1[$ and $\alpha_{lin}, \alpha_{alg} \in [0, 1]$. Set j := 1 and $\mathbf{X}^{j,0,0} := \mathbf{X}^0 \in \mathbb{R}^n$. Choose $\mu^j > 0$.

Smoothing loop:

- Newton linearization loop:
 - **0.** Set k := 1.
 - 1. Consider the problem of finding a solution $X^{j,k}$ to

$$\mathbb{A}_{\mu^j}^{j,k-1,\overline{i}}\boldsymbol{X}^{j,k} = \boldsymbol{B}_{\mu^j}^{j,k-1,\overline{i}}.$$

2. Algebraic solver loop

- a) Set i := 1 and $\mathbf{X}^{j,k,i} := \mathbf{X}^{j,k-1,\overline{i}}$ as initial guess.
- b) Perform one step of the iterative algebraic solver to obtain $X^{j,k,i}$

$$\mathbb{A}_{\mu j}^{j,k-1} \boldsymbol{X}^{j,k,i} = \boldsymbol{B}_{\mu j}^{j,k-1} - \boldsymbol{R}_{\text{alg}}^{j,k,i}.$$

c) If η^{j,k,i}_{alg} < α_{alg}η^{j,k,i}_{lin}, stop. If not, set i := i + 1 and go to 2b).
3. If η^{j,k,i}_{lin} < α_{lin}η^{j,k,i}_{sm}, stop. If not, set k := k + 1, go to 1.
▶ If ||R(X^{j,k,i})||_r < ε_{sm}, stop. If not, set j := j + 1 and μ^j := αμ^{j-1}. Then set X^{j,0} := X^{j-1,k,i} and k := 1, and go to 1.

Classical methods	Adaptive inexact smoothing Newton method	Numerical tests	
		0000	

1 Introduction

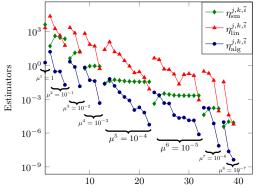
Classical methods

Adaptive inexact smoothing Newton method

4 Numerical tests

Conclusion

Settings: n = 75000, $\varepsilon_{sm} = 10^{-5}$, $\mu^1 = 1$, $\alpha = 0.1$, $\alpha_{lin} = 1$, $\alpha_{alg} = 10^{-3}$.



Cumulated Newton iteration

Figure: Estimators as a function of cumulated Newton iterations k, at convergence of the linear solver.

IFPEN-Inria meeting - December 1st, 2020

GMRES stopping criterion:

 $\begin{array}{l} \rightarrow \text{Classical: } R_{\text{alg}}^{j,k,i} := \frac{\|\underline{\mathbb{M}}_2 \setminus (\underline{\mathbb{M}}_1 \setminus (\underline{B} - \mathbb{A} \underline{X}^{j,k,i}))\|}{\|\underline{\mathbb{M}}_2 \setminus (\underline{\mathbb{M}}_1 \setminus \underline{B} - \mathbb{A} \underline{X}^{j,k-1})\|} \leq \tau, \\ (\underline{\mathbb{M}}_1, \underline{\mathbb{M}}_2 \text{ : preconditioner matrices, } \tau : \text{tolerance}). \end{array}$

 \rightarrow Adaptive: $\eta_{\text{alg}}^{j,k,i} < \alpha_{\text{alg}} \eta_{\text{lin}}^{j,k,i}$.

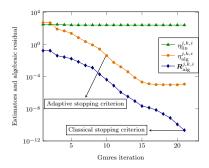
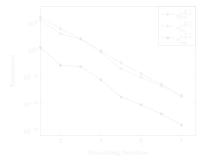


Figure: Algebraic and linearization estimators and GMRES algebraic residual as a function of GMRES iterations, for $j = 2, \ k = 2, \ i$ varies. Figure: Estimators as a function of smoothing iterations j, at convergence of the linear and nonlinear solvers.



GMRES stopping criterion:

 $\begin{array}{l} \rightarrow \text{Classical: } \boldsymbol{R}_{\text{alg}}^{j,k,i} := \frac{\| \mathbb{M}_2 \backslash (\mathbb{M}_1 \backslash (\boldsymbol{B} - \mathbb{A} \boldsymbol{X}^{j,k,i})) \|}{\| \mathbb{M}_2 \backslash (\mathbb{M}_1 \backslash \mathbb{B} - \mathbb{A} \boldsymbol{X}^{j,k-1}) \|} \leq \tau, \\ (\mathbb{M}_1, \mathbb{M}_2 \text{ : preconditioner matrices, } \tau \text{ : tolerance}). \end{array}$

 \rightarrow Adaptive: $\eta_{\text{alg}}^{j,k,i} < \alpha_{\text{alg}} \eta_{\text{lin}}^{j,k,i}$.

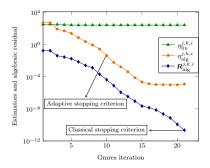
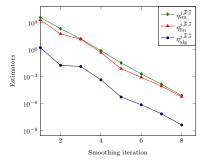


Figure: Algebraic and linearization estimators and GMRES algebraic residual as a function of GMRES iterations, for $j = 2, \ k = 2, \ i$ varies. Figure: Estimators as a function of smoothing iterations j, at convergence of the linear and nonlinear solvers.



Introduction 000	Classical methods	Adaptive inexact smoothing Newton method 00000000	Numerical tests	Conclusion 000	
Compa	rison of th	ne methods			

Comparison of the:

- \rightarrow Semismooth Newton method with F–B function (SSN-FB),
- \rightarrow Adaptive smoothing Newton method with smoothed F–B (ASN-FB),
- \rightarrow Nonparametric interior-point method (IP),
- \rightarrow Adaptive interior-point method (AIP).

• We introduce a unified linearization residual given for $V \in \mathbb{R}^n$ by

$$oldsymbol{R}(oldsymbol{V}) = ||oldsymbol{F} - \mathbb{E}oldsymbol{V}|| + \left|oldsymbol{K}(oldsymbol{V})^{-}ig|
ight| + \left|oldsymbol{G}(oldsymbol{V})^{-}ig|
ight| + |oldsymbol{K}(oldsymbol{V})^{-}ig|
ight| + |oldsymbol{K}(oldsymbol{V})^{-}ig|
ight|,$$

where

$$K(V)^{-} := \min[0, K(V)] \text{ and } G(V)^{-} := \min[0, G(V)].$$

$Classical \ methods$	Adaptive inexact smoothing Newton method	Numerical tests	
		00000	

Settings:
$$n = 75000$$
, $\varepsilon_{\rm sm} = 10^{-8}$, $\mu^1 = 1$, $\alpha = 0.1$, $\alpha_{\rm lin} = 1$.

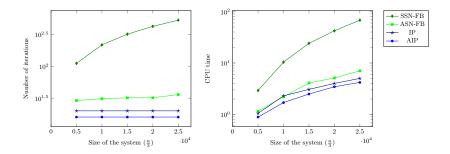


Figure: Left: Number of cumulated Newton iterations, right: CPU time, as a function of the size of the system, using a stopping criterion on the unified relative residual.

Classical methods	Adaptive inexact smoothing Newton method	Conclusion
		•00

1 Introduction

Classical methods

Adaptive inexact smoothing Newton method

Numerical tests

Introduction 000	Classical methods	Adaptive inexact smoothing Newton method	Numerical tests	Conclusion 000	
Conclu	sions and	outlook			

Conclusions

- \rightarrow The adaptive inexact smoothing Newton method provides an interesting reduction of the number of iterations.
- \rightarrow The nonparametric interior-point method and the adaptive interior-point method behave almost similarly.

Outlook

- \rightarrow Adaptively choose the smoothing parameter by defining an estimator related to the discretization error.
- \rightarrow Apply the method to more involved problems.

Introduction 000	Classical methods	Adaptive inexact smoothing Newton method 00000000	Numerical tests 00000	Conclusion 000			
Conclusions and outlook							

Conclusions

- \rightarrow The adaptive inexact smoothing Newton method provides an interesting reduction of the number of iterations.
- \rightarrow The nonparametric interior-point method and the adaptive interior-point method behave almost similarly.

Outlook

- \rightarrow Adaptively choose the smoothing parameter by defining an estimator related to the discretization error.
- \rightarrow Apply the method to more involved problems.

Thank you for your attention.