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Model Problem

� A system of algebraic inequalities of the form: Find X ∈ Rn such that

EX = F ,

K(X)≥ 0, G(X)≥ 0, K(X) ·G(X) = 0.︸ ︷︷ ︸
complementarity constraints

→ n > 1 and 0 < m < n are two integers.
→ E ∈ Rn−m,n, F ∈ Rn−m.
→ K : Rn → Rm and G : Rn → Rm are linear operators.

� The category of PDEs containing complementarity constraints leads
to systems of nonlinear algebraic inequalities.
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� Using a complementarity function (C-function), such system can be
equivalently reformulated as a system of algebraic equalities.

� C̃ : Rm × Rm −→ Rm (m ≥ 1) is a C-function if

C̃(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x · y = 0, ∀(x,y) ∈ Rm × Rm.

� Well known C-functions:

(
C̃FB(x,y)

)
l

=
√
x2
l + y2l − xl − yl, l = 1, ...,m.

x
−1 0 1

2
C̃FB(x)

x
−1 0 1

2
C̃FB(x)

x
−1 0 1

2
C̃FB(x)

(
C̃min(x,y)

)
l

=
xl + yl

2
− |xl − yl|

2
, l = 1, ...,m. x

−1 0 1

1

|x|

x
−1 0 1

1

|x|
x

−1 0 1

1

|x|

� By introducing C : Rn → Rm defined by C(X) := C̃ (K(X),G(X)) , the
problem will be equivalent to a nonlinear nonsmooth (not of class C1)
system of equalities: {

EX = F ,
C(X) = 0.
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Motivation

� Replace the semismooth (non-differentiable) C-function C(·)
by a smooth (differentiable) function Cµ(·), with µ a small parameter,
such that

‖Cµ(·)−C(·)‖ → 0 as µ→ 0.

� Establish a posteriori error estimate that allows to:
→ Estimate the total error.
→ Distinguish the smoothing, linearization, and algebraic error

components.
→ Formulate adaptive stopping criteria.

� Propose adaptive inexact algorithms for the smoothing Newton
method and the interior point method.
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Classical semismooth Newton methods

� Iterative semismooth linearization method.

� For X0 ∈ Rn, on step k ≥ 1, one looks for Xk ∈ Rn such that

Ak−1Xk = Bk−1,

where the Jacobian matrix and the right-hand side vector are given by

Ak−1 :=

[
E

JC(Xk−1)

]
∈ Rn,n,

Bk−1 :=

[
F

JC(Xk−1)Xk−1 −C(Xk−1)

]
∈ Rn,

and JC is the (generalized) Jacobian matrix in the sense of Clarke of
the semismooth C-function C.
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Nonparametric interior-point method

� Introduce:
→ a smoothing parameter µ > 0,
→ a vector µ ∈ Rm, such that µ = µ1, 1 = [1, . . . , 1] ∈ Rm.

� Replace the original nonsmooth problem by the smoothed problem: Find
Xj ∈ Rn such that

EX = F ,

K(X) ≥ 0, G(X) ≥ 0, K(X)G(X)− µ = 0,

where K(X)G(X) =
[
(K(X)G(X))1, . . . , (K(X)G(X))m

]T
.

� Treat µ as an unknown.

� Introduce the following new equation
into the system

εµ+ µ2 = 0.

� Rewrite the problem as enlarged
nonlinear smooth system.

D. T. S. Vu, Numerical res-
olution of algebraic systems
with complementarity con-
ditions, Ph.D. thesis, Paris
Saclay University, (2020).
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Smoothed C-functions

Smoothed F-B function:

(C̃FB,µ(x,y))
l
=

√
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− (xl + yl)
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l
=
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2
−
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2
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√
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l
,
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x
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Joëlle Ferzly IFPEN-Inria meeting - December 1st, 2020 6/17



Introduction Classical methods Adaptive inexact smoothing Newton method Numerical tests Conclusion

Smoothed C-functions

Smoothed F-B function:

(C̃FB,µ(x,y))
l
=

√
µ2 + x2

l
+ y2

l
− (xl + yl)

l = 1, ...,m.

x
−1.5 0 1.5

3

C̃FB(x)

µ = 1

µ = 0.5

µ = 0.1

C̃FB,µ(x)

Smoothed min function:

(C̃min,µ(x,y))
l
=

xl + yl

2
−

(|x− y|µ)l
2

where (|x|µ)l =
√
µ2 + x2

l
,

l = 1, ...,m.

x
−2 0 2

2

|x|

µ = 1

µ = 0.5

µ = 0.1

|x|µ

x
−2 0 2

2

|x|

µ = 1

µ = 0.5

µ = 0.1

|x|µ
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Adaptive inexact smoothing Newton method

� Denote by j ≥ 0 a smoothing iteration.

� Update of µj :
→ Actual work: a geometric sequence µj+1 = 0.1µj .
→ Future work: an update based on the PDE discretization error.

� Define a function Cµj : Rn → Rm as

Cµj (X) := C̃µj (K(X),G(X)) ,

where C̃µj : Rm × Rm → Rm is a smoothed C-function.

� The smoothed problem is a system of smooth (of class C1) nonlinear
equations, written as: Find Xj ∈ Rn such that{

EXj = F ,
Cµj (X

j) = 0.

→ Apply the classical Newton method.
→ Solve the resulting linear system using GMRES.
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Notations:
→ j : smoothing iteration
→ k : linearization iteration
→ i : algebraic iteration
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A posteriori error estimate distinguishing the error components

� Recall that the initial problem to solve is{
EX = F ,

C(X) = 0.

� The total residual vector of the system is given by

R(Xj,k,i) :=

[
F − EXj,k,i

−C(Xj,k,i)

]
.

� Introduce Cj,k−1

µj
: Rn → Rm, the linearization of Cµj :

Cj,k−1

µj
(V ) := Cµj (X

j,k−1) + JC
µj

(Xj,k−1)(V −Xj,k−1), V ∈ Rn.

� Add and substract Cµj (X
j,k,i) and its linearization Cj,k−1

µj
(Xj,k,i)

C(Xj,k,i) = C(Xj,k,i)±Cµj (X
j,k,i)±Cj,k−1

µj
(Xj,k,i).
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� The total residual vector can be decomposed as follows:

R(Xj,k,i) =

[
0

Cµj (Xj,k,i)−C(Xj,k,i)

]
︸ ︷︷ ︸

smoothness

+

[
0

Cj,k−1

µj
(Xj,k,i)−Cµj (Xj,k,i)

]
︸ ︷︷ ︸

linearization

+

[
F − EXj,k,i

−Cj,k−1

µj
(Xj,k,i)

]
︸ ︷︷ ︸

algebraic

� The relative L2-norm of R(Xj,k,i) is bounded by∣∣∣∣∣∣R(Xj,k,i)
∣∣∣∣∣∣
r
≤ ηj,k,ism + ηj,k,ilin + ηj,k,ialg ,

with
ηj,k,ism :=

∣∣∣∣∣∣Cµj (Xj,k,i)−C(Xj,k,i)
∣∣∣∣∣∣
r
,

ηj,k,ilin :=
∣∣∣∣∣∣Cj,k−1

µj
(Xj,k,i)−Cµj (Xj,k,i)

∣∣∣∣∣∣
r
,

ηj,k,ialg :=

(∣∣∣∣∣∣F − EXj,k,i
∣∣∣∣∣∣
r

2
+
∣∣∣∣∣∣Cj,k−1

µj
(Xj,k,i)

∣∣∣∣∣∣
r

2
) 1

2

.
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Adaptive inexact smoothing Newton algorithm

� Initialization:
Choose a tolerance εsm > 0, α ∈ ]0, 1[ and αlin, αalg ∈ ]0, 1].

Set j := 1 and Xj,0,0 := X0 ∈ Rn. Choose µj > 0.

� Smoothing loop:

I Newton linearization loop:
0. Set k := 1.
1. Consider the problem of finding a solution Xj,k to

Aj,k−1,i

µj
Xj,k = Bj,k−1,i

µj
.

2. Algebraic solver loop

a) Set i := 1 and Xj,k,i := Xj,k−1,i as initial guess.
b) Perform one step of the iterative algebraic solver to obtain Xj,k,i

Aj,k−1

µj
Xj,k,i = Bj,k−1

µj
−Rj,k,ialg .

c) If ηj,k,ialg < αalgη
j,k,i
lin , stop. If not, set i := i+ 1 and go to 2b).

3. If ηj,k,ilin < αlinη
j,k,i
sm , stop. If not, set k := k + 1, go to 1.

I If ‖R(Xj,k,i)‖r < εsm, stop. If not, set j := j + 1 and µj := αµj−1.

Then set Xj,0 := Xj−1,k,i and k := 1, and go to 1.
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Joëlle Ferzly IFPEN-Inria meeting - December 1st, 2020 12/17



Introduction Classical methods Adaptive inexact smoothing Newton method Numerical tests Conclusion

Adaptive inexact smoothing Newton algorithm

� Initialization:
Choose a tolerance εsm > 0, α ∈ ]0, 1[ and αlin, αalg ∈ ]0, 1].

Set j := 1 and Xj,0,0 := X0 ∈ Rn. Choose µj > 0.

� Smoothing loop:

I Newton linearization loop:
0. Set k := 1.
1. Consider the problem of finding a solution Xj,k to

Aj,k−1,i

µj
Xj,k = Bj,k−1,i

µj
.

2. Algebraic solver loop

a) Set i := 1 and Xj,k,i := Xj,k−1,i as initial guess.
b) Perform one step of the iterative algebraic solver to obtain Xj,k,i

Aj,k−1

µj
Xj,k,i = Bj,k−1

µj
−Rj,k,ialg .

c) If ηj,k,ialg < αalgη
j,k,i
lin , stop. If not, set i := i+ 1 and go to 2b).

3. If ηj,k,ilin < αlinη
j,k,i
sm , stop. If not, set k := k + 1, go to 1.

I If ‖R(Xj,k,i)‖r < εsm, stop. If not, set j := j + 1 and µj := αµj−1.

Then set Xj,0 := Xj−1,k,i and k := 1, and go to 1.
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Adaptive inexact smoothing Newton method

Settings: n = 75000, εsm = 10−5, µ1 = 1, α = 0.1, αlin = 1, αalg = 10−3.
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Figure: Estimators as a function of cumulated Newton iterations k,
at convergence of the linear solver.
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GMRES stopping criterion:

→ Classical: R
j,k,i
alg

:=
‖M2\(M1\(B−AXj,k,i))‖
‖M2\(M1\B−AXj,k−1)‖

≤ τ,
(M1,M2 :preconditioner matrices, τ : tolerance).

→ Adaptive: η
j,k,i
alg

< αalgη
j,k,i
lin

.

5 10 15 20
10−12

10−8

10−4

100

104

Adaptive stopping criterion

Classical stopping criterion

Gmres iteration

E
st
im

a
to
rs

a
n
d
a
lg
eb

ra
ic

re
si
d
u
a
l

ηj,k,ilin

ηj,k,ialg

Rj,k,i
alg

Figure: Algebraic and linearization
estimators and GMRES algebraic residual

as a function of GMRES iterations, for
j = 2, k = 2, i varies.
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convergence of the linear and
nonlinear solvers.
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Comparison of the methods

� Comparison of the:

→ Semismooth Newton method with F–B function (SSN-FB),
→ Adaptive smoothing Newton method with smoothed F–B (ASN-FB),
→ Nonparametric interior-point method (IP),
→ Adaptive interior-point method (AIP).

� We introduce a unified linearization residual given for V ∈ Rn by

R(V ) = ||F − EV ||+
∣∣∣∣K(V )−

∣∣∣∣+
∣∣∣∣G(V )−

∣∣∣∣+ |K(V ) ·G(V )| ,

where

K(V )− := min[0,K(V )] and G(V )− := min[0,G(V )].
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Settings: n = 75000, εsm = 10−8, µ1 = 1, α = 0.1, αlin = 1.
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Figure: Left: Number of cumulated Newton iterations, right: CPU time,
as a function of the size of the system, using a stopping criterion

on the unified relative residual.
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Conclusions and outlook

� Conclusions

→ The adaptive inexact smoothing Newton method provides an
interesting reduction of the number of iterations.

→ The nonparametric interior-point method and the adaptive
interior-point method behave almost similarly.

� Outlook

→ Adaptively choose the smoothing parameter by defining an
estimator related to the discretization error.

→ Apply the method to more involved problems.
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Joëlle Ferzly IFPEN-Inria meeting - December 1st, 2020 17/17



Thank you
for your attention.


	Introduction
	Model Problem
	Motivation

	Classical methods
	Classical semismooth Newton methods
	Nonparametric interior-point method

	Adaptive inexact smoothing Newton method
	Smoothed C-functions
	Adaptive inexact smoothing Newton method
	An a posteriori error estimate
	Adaptive inexact smoothing Newton algorithm

	Numerical tests
	Adaptive inexact smoothing Newton method
	Comparison of the methods

	Conclusion

