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Introduction
e0

Model Problem

B A system of algebraic inequalities of the form: Find X € R" such that

EX = F,
K(X)>0, G(X)>0, K(X)-G(X)=0.

complementarity constraints

—n>1and 0 < m <n are two integers.
— EeR*"™" FecR"™.
— K :R" - R™ and G : R” — R™ are linear operators.
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Introduction
e0

Model Problem

B A system of algebraic inequalities of the form: Find X € R" such that

EX = F,
K(X)>0, G(X)>0, K(X)-G(X)=0.

complementarity constraints

—n>1and 0 < m <n are two integers.
— EeR*"™" FecR"™.
— K :R" - R™ and G : R” — R™ are linear operators.

B The category of PDEs containing complementarity constraints leads
to systems of nonlinear algebraic inequalities.
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oe

B Using a complementarity function (C-function), such system can be
equivalently reformulated as a system of algebraic equalities.
B C:R™ xR™ = R™ (m > 1) is a C-function if

Cz,y) =0 <= >0, y>0, x-y=0, Y(z,y) € R™ xR™.
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B Using a complementarity function (C-function), such system can be
equivalently reformulated as a system of algebraic equalities.

B C:R™ xR™ = R™ (m > 1) is a C-function if

Cz,y) =0 <= >0, y>0, x-y=0, Y(z,y) € R™ xR™.

B Well known C-functions:

e
(CFB(may))l:\/m?""y?_ml_yl’ l=1,..,m. ’
-1 0 1'
1
~ T +y T —Y -
(Cmin(mvy))l = Tl - ‘72”7 l=1,..,m. .I o l”"
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B Using a complementarity function (C-function), such system can be
equivalently reformulated as a system of algebraic equalities.

B C:R™ xR™ = R™ (m > 1) is a C-function if

Cz,y) =0 <= >0, y>0, x-y=0, Y(z,y) € R™ xR™.

B Well known C-functions:

e
(CFB(may))l:\/m?""y?_ml_yl’ l=1,..,m. ’
-1 0 1'
1
~ T +y T —Y -
(Cmin(mvy))l = Tl - ‘72”7 l=1,..,m. .I o l”"

B By introducing C : R™ — R™ defined by C(X) := C (K (X), G(X)), the
problem will be equivalent to a nonlinear nonsmooth (not of class C!)
system of equalities:

—
=
~
Il

S|
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Introduction
[ ]

Motivation

B Replace the semismooth (non-differentiable) C-function C(-)
by a smooth (differentiable) function C,(-), with p a small parameter,
such that
1Cu() = C()Il = 0 as p— 0.
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Introduction
[ ]

Motivation

B Replace the semismooth (non-differentiable) C-function C(-)
by a smooth (differentiable) function C,(-), with p a small parameter,
such that
1Cu() = C()Il = 0 as p— 0.

B Establish a posteriori error estimate that allows to:
— Estimate the total error.
— Distinguish the smoothing, linearization, and algebraic error
components.
— Formulate adaptive stopping criteria.

IFPEN-Inria 7



Introduction
[ ]

Motivation

B Replace the semismooth (non-differentiable) C-function C(-)
by a smooth (differentiable) function C,(-), with p a small parameter,
such that
1Cu() = C()Il = 0 as p— 0.

B Establish a posteriori error estimate that allows to:
— Estimate the total error.
— Distinguish the smoothing, linearization, and algebraic error
components.
— Formulate adaptive stopping criteria.

B Propose adaptive inexact algorithms for the smoothing Newton
method and the interior point method.
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Classical methods
[ ]

Classical semismooth Newton methods

B Iterative semismooth linearization method.
B For X° € R", on step k > 1, one looks for X* € R™ such that

Ak—IXk _ Bk:—l

where the Jacobian matrix and the right-hand side vector are given by

k—1 E n,n

k-1 ,_ F n
B E I: JC(kal)kal _C(kal) :| ER )

and Jc is the (generalized) Jacobian matrix in the sense of Clarke of
the semismooth C-function C.
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Classical methods
L]

Nonparametric interior-point method

B Introduce:
— a smoothing parameter u > 0,
— a vector p € R™, such that p=pl1, 1 =11,...,1] € R™.

B Replace the original nonsmooth problem by the smoothed problem: Find
XJ € R™ such that

EX = F,
K(X)>0, G(X) >0, K(X)G(X)—p=0,

where K(X)G(X) = [(K(X)G(X)),, ..., (K(X)G(X))
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Nonparametric interior-point method

B Introduce:
— a smoothing parameter u > 0,
— a vector p € R™, such that p=pl1, 1 =11,...,1] € R™.

B Replace the original nonsmooth problem by the smoothed problem: Find
XJ € R™ such that
EX = F,
K(X)>0, G(X) >0, K(X)G(X)—pn=0,

where K(X)G(X) = [(K(X)G(X)),,...,(K(X)G(X)),]".

m
B Treat p as an unknown.

B Introduce the following new equation
into the system

D. T. S. Vu, Numerical res-
olution of algebraic systems
with complementarity con-
en + ,u2 =0. ditions, Ph.D. thesis, Paris
Saclay University, (2020).

B Rewrite the problem as enlarged
nonlinear smooth system.
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Adaptive inexact smoothin vton method
L]

Smoothed C-functions

Smoothed F-B function:

(CrB,u(® v), = /12 + 2 + vy — (1 + ;)

\ 3z .
\ Crp.u(2)
\~ ~
\ — Cra(z)
\
\
\
p=1
pn="05

—-1.5 0 1.5




Adaptive inexact smoothin vton method
L]

Smoothed C-functions

Smoothed F-B function: Smoothed min function:
- x; + Y, (‘miylu)z

(CrB,u(® v), = /12 + 2 + vy — (1 + ;) (Crmin, (@), = 2 - 2
l=1,..,m. where (|z|,), =\/u? + =2,

l=1,...,m.

\ Cro.u(z)
\ — Crn(z)




Adaptive inexact smoothing Newton method
[ eJele]

Adaptive inexact smoothing Newton method

B Denote by j > 0 a smoothing iteration.

B Update of p/ : . '
— Actual work: a geometric sequence /T = 0.1y,
— Future work: an update based on the PDE discretization error.
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Adaptive inexact smoothing Newton method

B Denote by j > 0 a smoothing iteration.

B Update of p/ : . '
— Actual work: a geometric sequence /T = 0.1y,
— Future work: an update based on the PDE discretization error.

B Define a function C,; : R" — R™ as

C.i(X) = C,; (K(X),G(X)),

o

where éuj :R™ x R™ — R™ is a smoothed C-function.
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Denote by 7 > 0 a smoothing iteration.

Update of p : . '
— Actual work: a geometric sequence /T = 0.1y,
— Future work: an update based on the PDE discretization error.

Define a function C,; : R" — R™ as

C.i(X):=C, (K(X),G(X)),
where éuj :R™ x R™ — R™ is a smoothed C-function.

The smoothed problem is a system of smooth (of class C') nonlinear
equations, written as: Find X7 € R™ such that

{ EX’ = F,
C.(X7) = o.

— Apply the classical Newton method.
— Solve the resulting linear system using GMRES.
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Notations:

— 7 : smoothing iteration
— k : linearization iteration
— 4 : algebraic iteration
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Notations:

— 7 : smoothing iteration
— k : linearization iteration
— 4 : algebraic iteration

Terminate if

7.k, X 7,k
i]alg < QalgTin

Terminate if

i,k i ki
Min < Min"y"*

sm

Terminate if
i o
it < Esm

=.m: tolerance
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Adaptive inexact smoothing Newton method
e0

A posteriori error estimate distinguishing the error components

B Recall that the initial problem to solve is

{cm o
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Adap

A posteriori error estimate distinguishing the error components

B Recall that the initial problem to solve is
EX = F,
C(X) = o.

B The total residual vector of the system is given by

S F — EX7ki
Jikaiy L -
R(X ) = |: —C(Xj’k’z) :|

10/17
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Adap

A posteriori error estimate distinguishing the error components

B Recall that the initial problem to solve is

{cm o

B The total residual vector of the system is given by

S F — EX7ki
Jksiy L -
R(X ) = |: —C(Xj’k’z) :|

B Introduce Ci’ffl :R™ — R™, the linearization of C ;:

ClITH (V) = Cu (X771 + Jo,, (XPF YV - XPF Y vV eR™

10/17
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Adaptive inexact smoothing Newton method

®0

A posteriori error estimate distinguishing the error components

B Recall that the initial problem to solve is

{cm o

B The total residual vector of the system is given by
F —-EX7k? }

R(Xj’k’i) = |: _C(Xj,k,i)
B Introduce Ci’ffl :R™ — R™, the linearization of C ;:
ClF V) = Cpu (XM 4+ I, (XPEH)(V - XY, VeR™
B Add and substract C,,; (X7**%) and its linearization Ci’f_l(Xj’k’i)

C(XH) = C(X7M) £y (XIMT) £ CIFTH (XM,

10/17
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B The total residual vector can be decomposed as follows:

. 0 0
R(X k%) = S o + k=1 S R
( ) C”j (X TR0y — (X Ik Cfﬂ' (X 7R3y — C,.i (X1
smoothness linearization
F —EXJk7
Jr

O

algebraic




vton method

B The total residual vector can be decomposed as follows:

. 0 0
R(X k%) = S o + k=1 S R
( ) C”j (X TR0y — (X Ik Cfﬂ' (X 7R3y — C,.i (X1
smoothness linearization
F —EXJk7
Jr

O

algebraic
B The relative Le-norm of R(X7*?) is bounded by

Ji ki Jr ks

HR(X].JC’Z‘) ‘r < Ugﬁlf’i + i +nalg 5

with o o
=[G (R — ek

T

= || e k) - (xR

)

T
1
2\ 2

. .

2 . S
oo ooms

,/(/J/,,_/:: (’ ‘F _REX ki
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Adaptive i t smoothing wton method
[ ]

Adaptive inexact smoothing Newton algorithm

B Initialization:
Choose a tolerance esm > 0, a € ]0,1[ and iy, aalg € 10, 1].
Set j := 1 and X790 := X% € R™. Choose p? > 0.
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Adap

Adaptive inexact smoothing Newton algorithm

B Initialization:
Choose a tolerance esm > 0, a € ]0,1[ and iy, aalg € 10, 1].
Set j := 1 and X790 := X% € R™. Choose p? > 0.

B Smoothing loop:

» Newton linearization loop:
0. Set k:=1. )
1. Consider the problem of finding a solution X7* to

A]k 12X3k Bj,k 17,
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Adap

Adaptive inexact smoothing Newton algorithm

B Initialization:
Choose a tolerance esm > 0, a € ]0,1[ and iy, aalg € 10, 1].
Set j := 1 and X790 := X% € R™. Choose p? > 0.
B Smoothing loop:
» Newton linearization loop:
0. Set k:=1. )
1. Consider the problem of finding a solution X7* to
A]k 1ZXJIc Bj,k 11
2. Algebraic solver loop ~
a) Set i :=1 and X7 := X7F~1? a5 initial guess. o
b) Perform one step of the iterative algebraic solver to obtain X7+
Jik=1xyrj.ki _ gik—1 ikt
Auj X»Pt = Buj Rang .

c) If 7/‘(/\‘1‘]‘," < (:2‘1,%7/1/1‘1?", stop. If not, set ¢ := ¢+ 1 and go to 2b).
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Adaptive inexact smoothing Newton algorithm

B Initialization:
Choose a tolerance esm > 0, a € ]0,1[ and iy, aalg € 10, 1].
Set j := 1 and X790 := X% € R™. Choose p? > 0.

B Smoothing loop:

» Newton linearization loop:
0. Set k:=1. )
1. Consider the problem of finding a solution X7* to

A]k 1ZXJIc Bj,k 11
2. Algebraic solver loop

a) Set i :=1 and X7F? .= XIk=17 aq initial guess. o
b) Perform one step of the iterative algebraic solver to obtain X7+
Jik=1xyrj.ki _ gik—1 VLK
Auj X - B,Lj Ralg :

c) If 7/‘(/\‘1‘]‘," < (:2‘1,%7/1/1‘1?", stop. If not, set ¢ := ¢+ 1 and go to 2b).
3. If r/{i']f"’ < il stop. If not, set k =k + 1, go to 1.
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Adap

Adaptive inexact smoothing Newton algorithm

B Initialization:
Choose a tolerance esm > 0, a € ]0,1[ and iy, aalg € 10, 1].
Set j := 1 and X790 := X% € R™. Choose p? > 0.
B Smoothing loop:
» Newton linearization loop:
0. Set k:=1.
1. Consider the problem of finding a solution X7* to
A]k 12X3k Bj,k 17,
2. Algebraic solver loop
a) Set i :=1 and X7F? .= XIk=17 aq initial guess.
b) Perform one step of the iterative algebraic solver to obtain Xkt

Jik=1xj.ki _ gik—1 Jr ki
ADRTXIR = g - R
c) If 7/‘(/\‘11" < (x;‘l,g/:l/l'f", stop. If not, set i := i+ 1 and go to 2b).
3. If r/'\’i']f"’ < il stop. If not, set k =k + 1, go to 1.
> If | R(X7F0)|| < 20, stop. If not, set j:=j+ 1 and pf := api~1.
Then set X790 := X7—1:k:% and k:=1, and go to 1.
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vmerical tests
[ ]

Adaptive inexact smoothing Newton method

Settings: n = 75000, csm = 107°, p' =1, a = 0.1, qyin = 1, g = 1073,

——
k,i
1001 I
e ik
Malg
u 0e
g 10 -+
-
g 100 R
LE 10 710 2
1076 [
u“ =
= 10"
-9 ~ .
10 | n=107"
10 20 30 40

Cumulated Newton iteration

Figure: Estimators as a function of cumulated Newton iterations k,
at convergence of the linear solver.




GMRES stopping criterion:
gk Mo \(My \(B—aXT-F:1))|

— Classical: R:

_ <
Mo\ (M \B—aXTF— 1) =T

(Mj, My :preconditioner matrices, T : tolerance).

alg

. ik ki
— Adaptive: "ilg ‘< O‘algnljin L.

104
= e
= .
g h
] .
et .
g 100 -
g
g
=
S
g -
S 1074 .
°
g
<
@
3
£ Adaptive stopping criterion
g 1078 b
2
=
Classical stopping criterion

—12 L L L L
10 5 10 15 20

Gmres iteration

Figure: Algebraic and linearization
estimators and GMRES algebraic residual
as a function of GMRES iterations, for
j =2, k=2, i varies.




GMRES stopping criterion: )
M\ \(B-AXT R 1))

— Classical: R:

J, ki
alg

Mo\ (M1 \ B—aX 7 F=T)]|

<,

(Mj, My :preconditioner matrices, T : tolerance).

. ik ki
— Adaptive: "ilg ‘< O‘algnljin L.

Estimators and algebraic residual

104

10-8

10712

Figure: Algebraic and linearization
estimators and GMRES algebraic residual
as a function of GMRES iterations, for

j =2, k=2, i varies.

Adaptive stopping criterion
Classical stopping criterion

5 10 15

Gmres iteration

103

10°

Estimators

102

e

s

4 6

Smoothing iteration

Figure: Estimators as a function of

smoothing iterations j, at

convergence of the linear and

nonlinear solvers.




ical tests

Comparison of the methods

B Comparison of the:

— Semismooth Newton method with F-B function (ssn-FB),

— Adaptive smoothing Newton method with smoothed F-B (ASN-FB),
— Nonparametric interior-point method (1p),

— Adaptive interior-point method (a1p).

B We introduce a unified linearization residual given for V' € R™ by
R(V) = ||F -EV|| + [[K(V)" || +[|G(V)"|| + |K(V)-G(V)],
where

K(V)  :=min[0, K(V)] and G(V)~ := min[0, G(V)].
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Settings: n = 75000, esm = 1078, ' =1, a =0.1, oy = 1.

2 .
R 10°F . —+ SSN-FB
— r _— ASN-FB
1025 | o ] F —— IP
2 _— [ —e— AIP
g b R
g / g
Zowef 1 E g §
k] = [
3 3] r
E [
“ 100 | b [
10° E
! ! ! ! ! L ! ! ! L 1
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Size of the system (%) 10 Size of the system (%) 10*

Figure: Left: Number of cumulated Newton iterations, right: CPU time,
as a function of the size of the system, using a stopping criterion
on the unified relative residual.
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(o] le}

Conclusions and outlook

B Conclusions

— The adaptive inexact smoothing Newton method provides an
interesting reduction of the number of iterations.

— The nonparametric interior-point method and the adaptive
interior-point method behave almost similarly.




Conclusion
(o] le}

Conclusions and outlook

B Conclusions

— The adaptive inexact smoothing Newton method provides an
interesting reduction of the number of iterations.

— The nonparametric interior-point method and the adaptive
interior-point method behave almost similarly.

B Outlook

— Adaptively choose the smoothing parameter by defining an
estimator related to the discretization error.

— Apply the method to more involved problems.
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for your attention.
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