Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Carsten Carstensen

Humboldt-Universität zu Berlin

mini-course at inria as prof. invité UPE

Contents L3: Proofs in PMP

Poisson model problem (PMP) in 2D lowest-order conforming FEM w.r.t. triangles in shape regular triangulations lead to $\mathcal{R} = \mathcal{T} \setminus \widehat{\mathcal{T}}, \ \widehat{\Lambda_3} = 0$

Open-Access Reference: C-Feischl-Page-Praetorius: AoA. Comp Math Appl 67 (2014) 1195—1253

Jump Control

Λ_1 Comes from Discrete Jump Control

Given $g \in P_k(\mathcal{T})$ for $\mathcal{T} \in \mathbb{T}$, set

$$[g]_E = \begin{cases} (g|_{T_+})|_E - (g|_{T_-})|_E & \text{for } E \in \mathcal{E}(\Omega) \text{ with } E = \partial T_+ \cap \partial T_-, \\ g|_E & \text{for } E \in \mathcal{E}(\partial \Omega) \cap \mathcal{E}(K). \end{cases}$$

Λ_1 Comes from Discrete Jump Control

Given $g \in P_k(\mathcal{T})$ for $\mathcal{T} \in \mathbb{T}$, set

$$[g]_E = \begin{cases} (g|_{T_+})|_E - (g|_{T_-})|_E & \text{for } E \in \mathcal{E}(\Omega) \text{ with } E = \partial T_+ \cap \partial T_-, \\ g|_E & \text{for } E \in \mathcal{E}(\partial \Omega) \cap \mathcal{E}(K). \end{cases}$$

Lemma (discrete jump control)

For all $k \in \mathbb{N}_0$ there exists $0 < \Lambda_1 < \infty$ s.t., for all $g \in P_k(\mathcal{T})$ and $\mathcal{T} \in \mathbb{T}$,

$$\sqrt{\sum_{K \in \mathcal{T}} |K|^{1/2} \sum_{E \in \mathcal{E}(K)} ||[g]_E||^2_{L^2(E)}} \le \Lambda_1 ||g||_{L^2(\Omega)}.$$

Λ_1 Comes from Discrete Jump Control

Given $g \in P_k(\mathcal{T})$ for $\mathcal{T} \in \mathbb{T}$, set

$$[g]_E = \begin{cases} (g|_{T_+})|_E - (g|_{T_-})|_E & \text{for } E \in \mathcal{E}(\Omega) \text{ with } E = \partial T_+ \cap \partial T_-, \\ g|_E & \text{for } E \in \mathcal{E}(\partial \Omega) \cap \mathcal{E}(K). \end{cases}$$

Lemma (discrete jump control)

For all $k \in \mathbb{N}_0$ there exists $0 < \Lambda_1 < \infty$ s.t., for all $g \in P_k(\mathcal{T})$ and $\mathcal{T} \in \mathbb{T}$,

$$\sqrt{\sum_{K \in \mathcal{T}} |K|^{1/2} \sum_{E \in \mathcal{E}(K)} ||[g]_E||^2_{L^2(E)}} \le \Lambda_1 ||g||_{L^2(\Omega)}.$$

Proof with discrete trace inequality on $E \in \mathcal{E}(K)$ for $K \in \mathcal{T}$

$$|K|^{1/4} \, ||g|_K||_{L^2(E)} \le C_{\mathsf{dtr}} \, ||g||_{L^2(K)}.$$

Compute Λ_1 in Proof of Discrete Jump Control

The contributions to LHS of interior edge $E=\partial T_+\cap\partial T_-$ with edge-patch $\omega_E:=\inf(T_+\cup T_-)$ read

$$\begin{split} &(|T_{+}|^{1/2} + |T_{-}|^{1/2})||[g]_{E}||_{L^{2}(E)}^{2} \\ &\leq (|T_{+}|^{1/2} + |T_{-}|^{1/2})\left(||g|_{T_{+}}||_{L^{2}(E)} + ||g|_{T_{-}}||_{L^{2}(E)}\right)^{2} \\ &\leq C_{\mathsf{dtr}}^{2}\left(|T_{+}|^{1/2} + |T_{-}|^{1/2})\left(|T_{+}|^{-1/4}||g||_{L^{2}(T_{+})} + |T_{-}|^{-1/4}||g||_{L^{2}(T_{-})}\right)^{2} \\ &\leq C_{\mathsf{dtr}}^{2}\underbrace{\left(|T_{+}|^{1/2} + |T_{-}|^{1/2}\right)\left(|T_{+}|^{-1/2} + |T_{-}|^{-1/2}\right)}_{\leq C_{\mathsf{sr}}^{2}} ||g||_{L^{2}(\omega_{E})}^{2} \\ &\leq C_{\mathsf{dtr}}^{2}C_{\mathsf{sr}}^{2}||g||_{L^{2}(\omega_{E})}^{2}. \end{split}$$

Compute Λ_1 in Proof of Discrete Jump Control

The contributions to LHS of interior edge $E = \partial T_+ \cap \partial T_-$ with edge-patch $\omega_E := int(T_+ \cup T_-)$ read

$$\begin{split} &(|T_{+}|^{1/2} + |T_{-}|^{1/2})||[g]_{E}||_{L^{2}(E)}^{2} \\ &\leq (|T_{+}|^{1/2} + |T_{-}|^{1/2})\left(||g|_{T_{+}}||_{L^{2}(E)} + ||g|_{T_{-}}||_{L^{2}(E)}\right)^{2} \\ &\leq C_{\mathsf{dtr}}^{2}\left(|T_{+}|^{1/2} + |T_{-}|^{1/2})\left(|T_{+}|^{-1/4}||g||_{L^{2}(T_{+})} + |T_{-}|^{-1/4}||g||_{L^{2}(T_{-})}\right)^{2} \\ &\leq C_{\mathsf{dtr}}^{2}\underbrace{\left(|T_{+}|^{1/2} + |T_{-}|^{1/2}\right)\left(|T_{+}|^{-1/2} + |T_{-}|^{-1/2}\right)}_{\leq C_{\mathsf{sr}}^{2}} ||g||_{L^{2}(\omega_{E})}^{2} \\ &\leq C_{\mathsf{dtr}}^{2}C_{\mathsf{sr}}^{2} ||g||_{L^{2}(\omega_{E})}^{2}. \end{split}$$

The same final result holds for boundary edge $E = \partial T_+ \cap \partial \Omega$ with $\omega_E := \operatorname{int}(T_+)$. The sum of all those edges proves the discrete jump control lemma with

$$\Lambda_1 := \sqrt{3} C_{\mathsf{dtr}} C_{\mathsf{sr}}. \quad \Box$$

Carsten Carstensen (HU Berlin)

Proof of (A1)

Proof of (A1) with $\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete flux approximations $\hat{P} := \nabla \hat{u}_h \in P_0(\hat{\mathcal{T}}; \mathbb{R}^2)$ and $P := \nabla u_h \in P_0(\mathcal{T}; \mathbb{R}^2)$.

Proof of (A1) with
$$\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$$

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete flux approximations $\hat{P} := \nabla \hat{u}_h \in P_0(\hat{\mathcal{T}}; \mathbb{R}^2)$ and $P := \nabla u_h \in P_0(\mathcal{T}; \mathbb{R}^2)$. Given any $T \in \mathcal{T} \cap \hat{\mathcal{T}}$, set

$$\begin{split} \eta(T) &:= \sqrt{\alpha_T^2 + \beta_T^2} \quad \text{and} \quad \widehat{\eta}(T) := \sqrt{\alpha_T^2 + \widehat{\beta_T}^2} \\ \text{for } \alpha_T &:= |T|^{1/2} \, ||f||_{L^2(T)} \text{ and} \\ \beta_T^2 &:= |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[P]_E||_{L^2(E)}^2 \quad \text{resp.} \quad \widehat{\beta_T}^2 &:= |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[\widehat{P}]_E||_{L^2(E)}^2 \end{split}$$

Convention for conforming P_1 FEM: Jumps on boundary edges vanish.

Proof of (A1) with
$$\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$$

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete flux approximations $\widehat{P} := \nabla \widehat{u}_h \in P_0(\widehat{\mathcal{T}}; \mathbb{R}^2)$ and $P := \nabla u_h \in P_0(\mathcal{T}; \mathbb{R}^2)$. Given any $T \in \mathcal{T} \cap \hat{\mathcal{T}}$, set

$$\begin{split} \eta(T) &:= \sqrt{\alpha_T^2 + \beta_T^2} \quad \text{and} \quad \widehat{\eta}(T) := \sqrt{\alpha_T^2 + \widehat{\beta_T}^2} \\ \text{for } \alpha_T &:= |T|^{1/2} \, ||f||_{L^2(T)} \text{ and} \\ \beta_T^2 &:= |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[P]_E||_{L^2(E)}^2 \quad \text{resp.} \quad \widehat{\beta_T}^2 &:= |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[\widehat{P}]_E||_{L^2(E)}^2 \end{split}$$

Convention for conforming P_1 FEM: Jumps on boundary edges vanish.

Then, $\eta(\mathcal{T} \cap \hat{\mathcal{T}}) := \sqrt{\sum_{T \in \mathcal{T} \cap \hat{\mathcal{T}}} \eta^2(T)}$ and $\widehat{\eta}(\mathcal{T} \cap \hat{\mathcal{T}}) := \sqrt{\sum_{T \in \mathcal{T} \cap \hat{\mathcal{T}}} \widehat{\eta^2}(T)}$ are Euclid norms of vectors in \mathbb{R}^J for $J := 2 | \mathcal{T} \cap \hat{\mathcal{T}} |$.

В

Proof of (A1) with $\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$

The reversed triangle inequality in \mathbb{R}^J bounds the LHS in (A1), namely $|\eta(\hat{\mathcal{T}}, \mathcal{T} \cap \hat{\mathcal{T}}) - \eta(\mathcal{T}, \mathcal{T} \cap \hat{\mathcal{T}})| = |\hat{\eta}(\mathcal{T} \cap \hat{\mathcal{T}}) - \eta(\mathcal{T} \cap \hat{\mathcal{T}})|$, from above by

$$\sqrt{\sum_{T\in\mathcal{T}\cap\hat{\mathcal{T}}}|\hat{\eta}(T)-\eta(T)|^2} = \sqrt{\sum_{T\in\mathcal{T}\cap\hat{\mathcal{T}}} \left| \sqrt{\alpha_T^2 + \widehat{\beta_T}^2} - \sqrt{\alpha_T^2 + \beta_T^2} \right|^2}_{\leq |\widehat{\beta_T} - \beta_T|^2 \text{ (triangle ineq. in } \mathbb{R}^2)}$$

Proof of (A1) with
$$\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$$

The reversed triangle inequality in \mathbb{R}^J bounds the LHS in (A1), namely $|\eta(\hat{\mathcal{T}}, \mathcal{T} \cap \hat{\mathcal{T}}) - \eta(\mathcal{T}, \mathcal{T} \cap \hat{\mathcal{T}})| = |\hat{\eta}(\mathcal{T} \cap \hat{\mathcal{T}}) - \eta(\mathcal{T} \cap \hat{\mathcal{T}})|$, from above by

$$\sqrt{\sum_{T \in \mathcal{T} \cap \hat{\mathcal{T}}} |\hat{\eta}(T) - \eta(T)|^2} = \sqrt{\sum_{T \in \mathcal{T} \cap \hat{\mathcal{T}}} \underbrace{\left| \sqrt{\alpha_T^2 + \widehat{\beta_T}^2} - \sqrt{\alpha_T^2 + \beta_T^2} \right|^2}_{\leq |\widehat{\beta_T} - \beta_T|^2 \text{ (triangle ineq. in } \mathbb{R}^2)}}$$

The reversed triangle inequality in \mathbb{R}^3 and $L^2(E)$ show

$$\begin{split} |\widehat{\beta_{T}} - \beta_{T}| &= |T|^{1/4} \left| \sqrt{\sum_{E \in \mathcal{E}(T)} ||[\widehat{P}]_{E}||^{2}_{L^{2}(E)}} - \sqrt{\sum_{E \in \mathcal{E}(T)} ||[P]_{E}||^{2}_{L^{2}(E)}} \right| \\ &\leq |T|^{1/4} \sqrt{\sum_{E \in \mathcal{E}(T)} ||[\widehat{P} - P]_{E}||^{2}_{L^{2}(E)}}. \quad \text{Altogether,} \end{split}$$

Proof of (A1) with
$$\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$$

The reversed triangle inequality in \mathbb{R}^J bounds the LHS in (A1), namely $|\eta(\hat{\mathcal{T}}, \mathcal{T} \cap \hat{\mathcal{T}}) - \eta(\mathcal{T}, \mathcal{T} \cap \hat{\mathcal{T}})| = |\hat{\eta}(\mathcal{T} \cap \hat{\mathcal{T}}) - \eta(\mathcal{T} \cap \hat{\mathcal{T}})|$, from above by

$$\sqrt{\sum_{T \in \mathcal{T} \cap \hat{\mathcal{T}}} |\hat{\eta}(T) - \eta(T)|^2} = \sqrt{\sum_{T \in \mathcal{T} \cap \hat{\mathcal{T}}} \underbrace{\left| \sqrt{\alpha_T^2 + \widehat{\beta_T}^2} - \sqrt{\alpha_T^2 + \beta_T^2} \right|^2}_{\leq |\widehat{\beta_T} - \beta_T|^2 \text{ (triangle ineq. in } \mathbb{R}^2)}$$

The reversed triangle inequality in \mathbb{R}^3 and $L^2(E)$ show

$$\begin{split} |\widehat{\beta_T} - \beta_T| &= |T|^{1/4} \left| \sqrt{\sum_{E \in \mathcal{E}(T)} ||[\widehat{P}]_E||^2_{L^2(E)}} - \sqrt{\sum_{E \in \mathcal{E}(T)} ||[P]_E||^2_{L^2(E)}} \right| \\ &\leq |T|^{1/4} \sqrt{\sum_{E \in \mathcal{E}(T)} ||[\widehat{P} - P]_E||^2_{L^2(E)}}. \quad \text{Altogether,} \\ &|\widehat{\eta}(\mathcal{T} \cap \widehat{\mathcal{T}}) - \eta(\mathcal{T} \cap \widehat{\mathcal{T}})| \leq \sqrt{\sum_{T \in \mathcal{T} \cap \widehat{\mathcal{T}}} |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[\widehat{P} - P]_E||^2_{L^2(E)}} \end{split}$$

Carsten Carstensen (HU Berlin)

Axioms of Adaptivity Lecture 3

Proof of (A1) with
$$\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$$

Recall

$$|\widehat{\eta}(\mathcal{T} \cap \widehat{\mathcal{T}}) - \eta(\mathcal{T} \cap \widehat{\mathcal{T}})| \leq \sqrt{\sum_{T \in \mathcal{T} \cap \widehat{\mathcal{T}}} |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[\widehat{P} - P]_E||^2_{L^2(E)}}$$

Proof of (A1) with
$$\delta(\mathcal{T}, \hat{\mathcal{T}}) = ||\widehat{P} - P||_{L^2(\Omega)}$$

Recall

$$|\widehat{\eta}(\mathcal{T} \cap \widehat{\mathcal{T}}) - \eta(\mathcal{T} \cap \widehat{\mathcal{T}})| \le \sqrt{\sum_{T \in \mathcal{T} \cap \widehat{\mathcal{T}}} |T|^{1/2} \sum_{E \in \mathcal{E}(T)} ||[\widehat{P} - P]_E||^2_{L^2(E)}}$$

and apply the discrete jump control lemma for each component of the piecewise polynomial vector field $\hat{P} - P \in P_0(\hat{T}; \mathbb{R}^2)$.

This concludes the proof of (A1).

Proof of (A2)

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete fluxes $\hat{P} \in P_0(\hat{\mathcal{T}}; \mathbb{R}^2)$ and $P \in P_0(\mathcal{T}; \mathbb{R}^2)$ as before.

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete fluxes $\hat{P} \in P_0(\hat{\mathcal{T}}; \mathbb{R}^2)$ and $P \in P_0(\mathcal{T}; \mathbb{R}^2)$ as before. Given any refined triangle $T \in \hat{\mathcal{T}}(K) := \{T \in \hat{\mathcal{T}} : T \subset K\}$ for $K \in \mathcal{T} \setminus \hat{\mathcal{T}}$, recall $\alpha_T := |T|^{1/2} ||f||_{L^2(T)}$ and

$$\beta_T^2 := |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[P]_F||_{L^2(F)}^2 \quad \text{resp.} \quad \widehat{\beta}_T^2 := |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[\widehat{P}]_F||_{L^2(F)}^2$$

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete fluxes $\hat{P} \in P_0(\hat{\mathcal{T}}; \mathbb{R}^2)$ and $P \in P_0(\mathcal{T}; \mathbb{R}^2)$ as before. Given any refined triangle $T \in \hat{\mathcal{T}}(K) := \{T \in \hat{\mathcal{T}} : T \subset K\}$ for $K \in \mathcal{T} \setminus \hat{\mathcal{T}}$, recall $\alpha_T := |T|^{1/2} ||f||_{L^2(T)}$ and

 $\beta_T^2 := |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[P]_F||_{L^2(F)}^2 \quad \text{resp.} \quad \widehat{\beta}_T^2 := |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[\widehat{P}]_F||_{L^2(F)}^2$

LHS in (A2) reads

$$\widehat{\eta}(\widehat{\mathcal{T}} \setminus \mathcal{T}) = \sqrt{\sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\alpha_T^2 + \widehat{\beta}_T^2)} \quad \text{(triangle ineq. in } \ell^2\text{)}$$

$$\leq \sqrt{\sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\alpha_T^2 + \beta_T^2)}_{(i)} + \sqrt{\underbrace{\sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\widehat{\beta}_T - \beta_T)^2}_{(ii)}}_{(ii)}.$$

Recall that $\hat{\mathcal{T}}$ is an admissible refinement of \mathcal{T} with respective discrete fluxes $\hat{P} \in P_0(\hat{\mathcal{T}}; \mathbb{R}^2)$ and $P \in P_0(\mathcal{T}; \mathbb{R}^2)$ as before. Given any refined triangle $T \in \hat{\mathcal{T}}(K) := \{T \in \hat{\mathcal{T}} : T \subset K\}$ for $K \in \mathcal{T} \setminus \hat{\mathcal{T}}$, recall $\alpha_T := |T|^{1/2} ||f||_{L^2(T)}$ and

 $\beta_T^2 := |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[P]_F||_{L^2(F)}^2 \quad \text{resp.} \quad \widehat{\beta}_T^2 := |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[\widehat{P}]_F||_{L^2(F)}^2$

LHS in (A2) reads

$$\begin{split} \widehat{\eta}(\widehat{\mathcal{T}} \setminus \mathcal{T}) &= \sqrt{\sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\alpha_T^2 + \widehat{\beta}_T^2)} \quad \text{(triangle ineq. in } \ell^2\text{)} \\ &\leq \sqrt{\sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\alpha_T^2 + \beta_T^2)}_{(i)} + \sqrt{\sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\widehat{\beta}_T - \beta_T)^2}_{(ii)}. \end{split}$$
$$\\ \\ \text{Observe } [P]_F &= 0 \text{ for } F \in \widehat{\mathcal{E}}(\text{int}(K)) \text{ and } |T| \leq |K|/2 \text{ for } T \in \widehat{\mathcal{T}}(K) \end{split}$$

Carsten Carstensen (HU Berlin)

Since $[P]_F = 0$ for $F \in \hat{\mathcal{E}}(int(K))$ and $|T| \le |K|/2$ for $T \in \hat{\mathcal{T}}(K)$ and $K \in \mathcal{T} \setminus \hat{\mathcal{T}}$,

$$(i) := \sum_{T \in \hat{\mathcal{T}}(K)} (\alpha_T^2 + \beta_T^2) \le \frac{|K|}{2} ||f||_{L^2(K)}^2 + \frac{|K|^{1/2}}{\sqrt{2}} \sum_{E \in \mathcal{E}(K)} ||[P]_E||_{L^2(E)}^2.$$

Since $[P]_F = 0$ for $F \in \hat{\mathcal{E}}(int(K))$ and $|T| \le |K|/2$ for $T \in \hat{\mathcal{T}}(K)$ and $K \in \mathcal{T} \setminus \hat{\mathcal{T}}$,

$$(i) := \sum_{T \in \hat{\mathcal{T}}(K)} (\alpha_T^2 + \beta_T^2) \le \frac{|K|}{2} ||f||_{L^2(K)}^2 + \frac{|K|^{1/2}}{\sqrt{2}} \sum_{E \in \mathcal{E}(K)} ||[P]_E||_{L^2(E)}^2.$$

Reversed triangle inequalities in the second term prove

$$\begin{split} |\widehat{\beta}_{T} - \beta_{T}| &= |T|^{1/4} \left| \sqrt{\sum_{F \in \mathcal{E}(T)} ||[\widehat{P}]_{F}||^{2}_{L^{2}(F)}} - \sqrt{\sum_{F \in \mathcal{E}(T)} ||[P]_{F}||^{2}_{L^{2}(F)}} \right| \\ &\leq |T|^{1/4} |\sqrt{\sum_{F \in \mathcal{E}(T)} ||[\widehat{P} - P]_{F}||^{2}_{L^{2}(F)}} \quad \text{and so lead to} \\ ii) := \sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\beta_{T} - \widehat{\beta}_{T})^{2} \leq \sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} ||[\widehat{P} - P]_{F}||^{2}_{L^{2}(F)} \end{split}$$

Since $[P]_F = 0$ for $F \in \hat{\mathcal{E}}(int(K))$ and $|T| \le |K|/2$ for $T \in \hat{\mathcal{T}}(K)$ and $K \in \mathcal{T} \setminus \hat{\mathcal{T}}$,

$$(i) := \sum_{T \in \hat{\mathcal{T}}(K)} (\alpha_T^2 + \beta_T^2) \le \frac{|K|}{2} ||f||_{L^2(K)}^2 + \frac{|K|^{1/2}}{\sqrt{2}} \sum_{E \in \mathcal{E}(K)} ||[P]_E||_{L^2(E)}^2.$$

Reversed triangle inequalities in the second term prove

$$\begin{split} |\widehat{\beta}_{T} - \beta_{T}| &= |T|^{1/4} \left| \sqrt{\sum_{F \in \mathcal{E}(T)} ||[\widehat{P}]_{F}||^{2}_{L^{2}(F)}} - \sqrt{\sum_{F \in \mathcal{E}(T)} ||[P]_{F}||^{2}_{L^{2}(F)}} \right| \\ &\leq |T|^{1/4} |\sqrt{\sum_{F \in \mathcal{E}(T)} ||[\widehat{P} - P]_{F}||^{2}_{L^{2}(F)}} \quad \text{and so lead to} \\ ii) := \sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} (\beta_{T} - \widehat{\beta}_{T})^{2} \leq \sum_{K \in \mathcal{T} \setminus \widehat{\mathcal{T}}} \sum_{T \in \widehat{\mathcal{T}}(K)} |T|^{1/2} \sum_{F \in \mathcal{E}(T)} ||[\widehat{P} - P]_{F}||^{2}_{L^{2}(F)} \end{split}$$

This and the discrete jump control lemma conclude the proof.

Carsten Carstensen (HU Berlin)

Axioms of Adaptivity Lecture 3

Quasiinterpolation

Discrete Quasiinterpolation

Notation $\|\bullet\| := ||\bullet||_{L^2(\Omega)}$ and $|||\bullet||| := \|\nabla \bullet\| := |\bullet|_{H^1(\Omega)}$

Theorem (approximation and stability). $\exists 0 < C = C(\min \angle \mathbb{T}) < \infty$ $\forall \mathcal{T} \in \mathbb{T} \ \forall \hat{\mathcal{T}} \in \mathbb{T} \ (\mathcal{T}) \quad \forall \hat{V} \in S_0^1(\hat{\mathcal{T}}) \ \exists V \in S_0^1(\mathcal{T})$ $V = \hat{V} \text{ on } \hat{\mathcal{T}} \cap \mathcal{T} \text{ and } ||h_{\mathcal{T}}^{-1}(\hat{V} - V)|| + |||V||| \leq C |||\hat{V}|||.$

Discrete Quasiinterpolation

Notation
$$\|\bullet\| := ||\bullet||_{L^2(\Omega)}$$
 and $|||\bullet||| := \|\nabla\bullet\| := |\bullet|_{H^1(\Omega)}$

Theorem (approximation and stability). $\exists 0 < C = C(\min \angle \mathbb{T}) < \infty$ $\forall \mathcal{T} \in \mathbb{T} \ \forall \hat{\mathcal{T}} \in \mathbb{T} \ (\mathcal{T}) \quad \forall \hat{V} \in S_0^1(\hat{\mathcal{T}}) \ \exists V \in S_0^1(\mathcal{T})$ $V = \hat{V} \text{ on } \hat{\mathcal{T}} \cap \mathcal{T} \text{ and } ||h_{\mathcal{T}}^{-1}(\hat{V} - V)|| + |||V||| \leq C |||\hat{V}|||.$

Proof. Define $V \in S_0^1(\mathcal{T})$ by linear interpolation of nodal values

$$V(z) := \begin{cases} \hat{V}(z) & \text{if } z \in \mathcal{N}(\Omega) \cap \mathcal{N}(T) \text{ for some } T \in \mathcal{T} \cap \hat{\mathcal{T}} \\ \int_{\omega_z} \hat{V} \, dx / |\omega_z| & \text{if } z \in \mathcal{N}(\Omega) \text{ and } \mathcal{T}(z) \cap \hat{\mathcal{T}}(z) = \emptyset \\ 0 & \text{if } z \in \mathcal{N}(\partial \Omega) \end{cases}$$

Since V and \hat{V} are continuous at any vertex of any $T \in \mathcal{T} \cap \hat{\mathcal{T}}$, the first case applies in the definition of $V(z) = \hat{V}(z)$ for all $z \in \mathcal{N}(T)$. This proves $V = \hat{V}$ on $T \in \mathcal{T} \cap \hat{\mathcal{T}}$. Given any node $z \in \mathcal{N}$ in the coarse triangulation, let $\omega_z = int(\cup \mathcal{T}(z))$ denotes its patch of all triangles $\mathcal{T}(z)$ in \mathcal{T} with vertex z.

Given any node $z \in \mathcal{N}$ in the coarse triangulation, let $\omega_z = int(\cup \mathcal{T}(z))$ denotes its patch of all triangles $\mathcal{T}(z)$ in \mathcal{T} with vertex z.

Lemma A. There exists $C(z) \approx \operatorname{diam}(\omega_z)$ with

$$||\hat{V} - V(z)||_{L^{2}(\omega_{z})} \le C(z) ||\nabla \hat{V}||_{L^{2}(\omega_{z})}.$$

Proof4Case II: $z \in \mathcal{N}(\Omega)$ and $\mathcal{T}(z) \cap \hat{\mathcal{T}}(z) = \emptyset$ with $V(z) = \int_{\omega_z} \hat{V} dx / |\omega_z|$. Then, the assertion is a Poincare inequality with $C(z) = C_P(\omega_z)$. Given any node $z \in \mathcal{N}$ in the coarse triangulation, let $\omega_z = int(\cup \mathcal{T}(z))$ denotes its patch of all triangles $\mathcal{T}(z)$ in \mathcal{T} with vertex z.

Lemma A. There exists $C(z) \approx \operatorname{diam}(\omega_z)$ with

$$||\hat{V} - V(z)||_{L^{2}(\omega_{z})} \le C(z) ||\nabla \hat{V}||_{L^{2}(\omega_{z})}.$$

Proof4Case II: $z \in \mathcal{N}(\Omega)$ and $\mathcal{T}(z) \cap \hat{\mathcal{T}}(z) = \emptyset$ with $V(z) = \int_{\omega_z} \hat{V} dx / |\omega_z|$. Then, the assertion is a Poincare inequality with $C(z) = C_P(\omega_z)$. Proof4Case III: $z \in \mathcal{N}(\partial\Omega)$ and V(z) = 0. Since $\hat{V} - V$ vanishes along the two edges along $\partial\Omega$ of the open boundary patch ω_z with vertex z. Hence the assertion is indeed a Friedrichs inequality with $C(z) = C_F(\omega_z)$. Given any node $z \in \mathcal{N}$ in the coarse triangulation, let $\omega_z = int(\cup \mathcal{T}(z))$ denotes its patch of all triangles $\mathcal{T}(z)$ in \mathcal{T} with vertex z.

Lemma A. There exists $C(z) \approx \operatorname{diam}(\omega_z)$ with

$$||\hat{V} - V(z)||_{L^{2}(\omega_{z})} \le C(z) ||\nabla \hat{V}||_{L^{2}(\omega_{z})}.$$

Proof4Case II: $z \in \mathcal{N}(\Omega)$ and $\mathcal{T}(z) \cap \hat{\mathcal{T}}(z) = \emptyset$ with $V(z) = \int_{\omega_z} \hat{V} dx/|\omega_z|$. Then, the assertion is a Poincare inequality with $C(z) = C_P(\omega_z)$. Proof4Case III: $z \in \mathcal{N}(\partial\Omega)$ and V(z) = 0. Since $\hat{V} - V$ vanishes along the two edges along $\partial\Omega$ of the open boundary patch ω_z with vertex z. Hence the assertion is indeed a Friedrichs inequality with $C(z) = C_F(\omega_z)$. Proof4Case I: $\exists T \in \mathcal{T}(z) \cap \hat{\mathcal{T}}(z)$ for $z \in \mathcal{N}(\Omega)$ and $V = \hat{V}$ on T. This leads to homogenous Dirichlet boundary conditions on the two edges of the open patch $\omega_z \setminus T$ with vertex z and $\hat{V} - V$ allows for a Friedrichs inequality (on the open patch as in Case III for a patch on the boundary)

$$||\hat{V} - V||_{L^2(\omega_z)} \le C_F(\omega_z \setminus T) ||\nabla(\hat{V} - V)||_{L^2(\omega_z)}$$

However, this is not the claim! The idea is to realize that $LHS = ||w||_{L^2(\omega_z)}$ for $w := \hat{V} - \hat{V}(z)$, which is affine on T and vanishes at vertex z.

However, this is not the claim! The idea is to realize that $LHS = ||w||_{L^2(\omega_z)}$ for $w := \hat{V} - \hat{V}(z)$, which is affine on T and vanishes at vertex z. Hence (as an other inverse estimate or discrete Friedrichs inequality)

$$||w||_{L^{2}(T)} \leq C_{dF}(T) ||\nabla w||_{L^{2}(T)} \leq C_{dF}(T) ||\nabla w||_{L^{2}(\omega_{z})}$$

E.g. the integral mean $w_T:=\int_T w\,dx/|T|$ of $w:=\hat{V}-\hat{V}(z)$ on T satisfies

$$|w_T|^2 |T| \le C_{dF}(T)^2 ||\nabla w||^2_{L^2(\omega_z)}$$

However, this is not the claim! The idea is to realize that $LHS = ||w||_{L^2(\omega_z)}$ for $w := \hat{V} - \hat{V}(z)$, which is affine on T and vanishes at vertex z. Hence (as an other inverse estimate or discrete Friedrichs inequality)

$$||w||_{L^{2}(T)} \leq C_{dF}(T) ||\nabla w||_{L^{2}(T)} \leq C_{dF}(T) ||\nabla w||_{L^{2}(\omega_{z})}$$

E.g. the integral mean $w_T := \int_T w \, dx/|T|$ of $w := \hat{V} - \hat{V}(z)$ on T satisfies $|w_T|^2 \, |T| \le C_{dF}(T)^2 \, ||\nabla w||_{L^2(\omega_z)}^2$

$$\begin{aligned} |\overline{w} - w_T|^2 |T| &= |T|^{-1} |\int_T (\overline{w} - w) dx|^2 \le ||w - \overline{w}||_{L^2(T)}^2 \\ &\le ||w - \overline{w}||_{L^2(\omega_z)}^2 \le C_P(\omega_z)^2 ||\nabla w||_{L^2(\omega_z)}^2 \end{aligned}$$

Consequently, $|\overline{w} - w_T|^2 |\omega_z| \leq \underbrace{|\omega_z|/|T|}_{\leq C_{sr}} C_P(\omega_z)^2 ||\nabla w||_{L^2(\omega_z)}^2$

Carsten Carstensen (HU Berlin)

Axioms of Adaptivity Lecture 3

The orthogonality of 1 and $w - \overline{w}$ in $L^2(\omega_z)$ is followed by Poincare's and geometric-arithmetic mean inequality to verify

$$||w||_{L^{2}(\omega_{z})}^{2} = |\overline{w}|^{2} |\omega_{z}| + ||w - \overline{w}||_{L^{2}(\omega_{z})}^{2}$$

$$\leq 2|\overline{w} - w_{T}|^{2} |\omega_{z}| + 2|w_{T}|^{2} |\omega_{z}| + C_{P}(\omega_{z})^{2} ||\nabla w||_{L^{2}(\omega_{z})}^{2}$$

The above estimates for $|w_T|^2 |T|$ and $|\overline{w} - w_T|^2 |T|$ lead to

$$||w||_{L^{2}(\omega_{z})}^{2} \leq \underbrace{\left(2|\omega_{z}|/|T|\left(C_{dF}(T)+C_{P}(\omega_{z})^{2}\right)+C_{P}(\omega_{z})^{2}\right)}_{=:C(z)^{2}} ||\nabla w||_{L^{2}(\omega_{z})}^{2} \square$$

The orthogonality of 1 and $w - \overline{w}$ in $L^2(\omega_z)$ is followed by Poincare's and geometric-arithmetic mean inequality to verify

$$||w||_{L^{2}(\omega_{z})}^{2} = |\overline{w}|^{2} |\omega_{z}| + ||w - \overline{w}||_{L^{2}(\omega_{z})}^{2}$$

$$\leq 2|\overline{w} - w_{T}|^{2} |\omega_{z}| + 2|w_{T}|^{2} |\omega_{z}| + C_{P}(\omega_{z})^{2} ||\nabla w||_{L^{2}(\omega_{z})}^{2}$$

The above estimates for $|w_T|^2 \, |T|$ and $|\overline{w} - w_T|^2 \, |T|$ lead to

$$||w||_{L^{2}(\omega_{z})}^{2} \leq \underbrace{\left(2|\omega_{z}|/|T|\left(C_{dF}(T)+C_{P}(\omega_{z})^{2}\right)+C_{P}(\omega_{z})^{2}\right)}_{=:C(z)^{2}} ||\nabla w||_{L^{2}(\omega_{z})}^{2} \square$$

W.r.t. triangulation \mathcal{T} and nodal basis functions φ_1 , φ_2 , φ_3 in $S^1(\mathcal{T})$, let $T = \operatorname{conv}\{P_1, P_2, P_3\} \in \mathcal{T}$ and $\Omega_T := \omega_1 \cup \omega_2 \cup \omega_3$ for $\omega_j := \{\varphi_j > 0\}$

Lemma B. There exists $C(T) \approx h_T$ with

$$||\hat{V} - V||_{L^2(T)} \le C(T) ||\nabla \hat{V}||_{L^2(\Omega_T)}.$$

Proof of Lemma B. N.B. $V=\sum_{j=1}^3 V(P_j)\,\varphi_j$ and $1=\sum_{j=1}^3 \varphi_j$ on T Hence

$$\begin{split} ||\hat{V} - V||_{L^{2}(T)}^{2} &= \int_{T} |\sum_{j=1}^{3} (\hat{V} - V(P_{j})) \varphi_{j}|^{2} dx \\ &\leq \int_{T} (\sum_{j=1}^{3} |\hat{V} - V(P_{j})|^{2}) (\sum_{\substack{k=1 \\ \leq 1}}^{3} \varphi_{k}^{2}) dx \quad (\mathsf{CS in } \mathbb{R}^{3}) \\ &\leq \sum_{j=1}^{3} ||\hat{V} - V(P_{j})||_{L^{2}(T)}^{2} \\ &\leq \sum_{j=1}^{3} C(P_{j})^{2} ||\nabla \hat{V}||_{L^{2}(\omega_{j})}^{2} \quad (\mathsf{Lemma } \mathsf{A}) \\ &\leq (\sum_{\substack{j=1 \\ C^{2}(T)}}^{3} C(P_{j})^{2}) \; ||\nabla \hat{V}||_{L^{2}(\Omega_{T})}^{2} \quad \Box \end{split}$$

Lemma C. There exists C > 0 (which solely depends on $\min \angle \mathbb{T}$) with $||\nabla V||_{L^2(T)} \leq C ||\nabla \hat{V}||_{L^2(\Omega_T)}.$

Proof. N.B. $\nabla V = \sum_{j=1}^{3} V(P_j) \nabla \varphi_j$ and $0 = \sum_{j=1}^{3} \nabla \varphi_j$ on T

Lemma C. There exists C > 0 (which solely depends on $\min \angle \mathbb{T}$) with

$$||\nabla V||_{L^2(T)} \le C \, ||\nabla \hat{V}||_{L^2(\Omega_T)}.$$

Proof. N.B. $\nabla V = \sum_{j=1}^{3} V(P_j) \nabla \varphi_j$ and $0 = \sum_{j=1}^{3} \nabla \varphi_j$ on T Hence

$$\begin{split} ||\nabla V||_{L^{2}(T)}^{2} &= \int_{T} |\sum_{j=1}^{3} (\hat{V} - V(P_{j})) \nabla \varphi_{j}|^{2} dx \\ &\leq \int_{T} (\sum_{j=1}^{3} |\hat{V} - V(P_{j})|^{2}) (\sum_{k=1}^{3} |\nabla \varphi_{k}|^{2}) dx \quad (\mathsf{CS in } \mathbb{R}^{6}) \\ &\leq C (\min \angle T)^{2} h_{T}^{-2} \sum_{j=1}^{3} \int_{T}^{\leq C (\min \angle T)^{2} / h_{T}^{2}} dx \\ &\leq \dots (\mathsf{as before}) \dots \\ &\leq \underbrace{C (\min \angle T)^{2} h_{T}^{-2} C^{2}(T)}_{=:C^{2}} ||\nabla \hat{V}||_{L^{2}(\Omega_{T})}^{2} \Box \end{split}$$

Finish of proof of theorem: $||h_{\mathcal{T}}^{-1}(\hat{V}-V)||_{L^2(\Omega)} + |||V||| \lesssim |||\hat{V}|||.$

Finish of proof of theorem: $||h_{\mathcal{T}}^{-1}(\hat{V}-V)||_{L^{2}(\Omega)} + |||V||| \lesssim |||\hat{V}|||.$

Lemma B and C show for some generic constant C>0 hidden in the notation \lesssim and any $T\in \mathcal{T}$ that

$$||h_T^{-1}(\hat{V} - V)||_{L^2(T)}^2 + ||\nabla V||_{L^2(T)}^2 \lesssim ||\nabla \hat{V}||_{L^2(\Omega_T)}^2$$

Notation $\Omega_T := \bigcup_{z \in \mathcal{N}(T)} \omega_x$ is the interior of the set of T plus one layer of triangles of \mathcal{T} around.

Finish of proof of theorem: $||h_{\mathcal{T}}^{-1}(\hat{V}-V)||_{L^{2}(\Omega)} + |||V||| \lesssim |||\hat{V}|||.$

Lemma B and C show for some generic constant C>0 hidden in the notation \lesssim and any $T\in \mathcal{T}$ that

$$||h_T^{-1}(\hat{V} - V)||_{L^2(T)}^2 + ||\nabla V||_{L^2(T)}^2 \lesssim ||\nabla \hat{V}||_{L^2(\Omega_T)}^2$$

Notation $\Omega_T := \bigcup_{z \in \mathcal{N}(T)} \omega_x$ is the interior of the set of T plus one layer of triangles of \mathcal{T} around.

The sum over all those inequalities for $T \in \mathcal{T}$ concludes the proof because the overlap of $(\Omega_T)_{T \in \mathcal{T}}$ is bounded by generic constant $C(\min \angle \mathbb{T})$.

Proof of (A3)

Proof of (A3)

Given discrete solution U (resp. \hat{U}) of CFEM in PMP w.r.t. \mathcal{T} (resp. refinement $\hat{\mathcal{T}}$), set $\hat{e} := \hat{U} - U \in S_0^1(\hat{\mathcal{T}})$ with quasiinterpolant $e \in S_0^1(\mathcal{T})$ as above. Then, $v := \hat{e} - e$ satisfies

$$\delta^2(\mathcal{T},\hat{\mathcal{T}}) = |||\hat{e}|||^2 = a(\hat{e},v) = \underbrace{F(v) - a(U,v)}_{\mathsf{Res}(v)}$$

Proof of (A3)

Given discrete solution U (resp. \hat{U}) of CFEM in PMP w.r.t. \mathcal{T} (resp. refinement $\hat{\mathcal{T}}$), set $\hat{e} := \hat{U} - U \in S_0^1(\hat{\mathcal{T}})$ with quasiinterpolant $e \in S_0^1(\mathcal{T})$ as above. Then, $v := \hat{e} - e$ satisfies

$$\delta^2(\mathcal{T}, \hat{\mathcal{T}}) = |||\hat{e}|||^2 = a(\hat{e}, v) = \underbrace{F(v) - a(U, v)}_{\mathsf{Res}(v)}$$

A piecewise integration by parts with a careful algebra with the jump terms for appropriate signs shows

$$\begin{aligned} -a(U,v) &= -\sum_{E \in \mathcal{E}(\Omega)} \int_{E} v \left[\partial U / \partial \nu_E \right]_E ds \\ &\leq \sqrt{\sum_{E \in \mathcal{E}(\Omega)} |E|^{-1} ||v||_{L^2(E)}^2} \sqrt{\sum_{E \in \mathcal{E}(\Omega)} |E| \left| \left| \left[\partial U / \partial \nu_E \right]_E \right| \right|_{L^2(E)}^2} \end{aligned}$$

Recall trace inequality

$$|E|^{-1}||v||^2_{L^2(E)} \le C_{tr}(h_{\omega_E}^{-2}||v||^2_{L^2(\omega_E)} + ||\nabla v||^2_{L^2(\omega_E)})$$

Carsten Carstensen (HU Berlin)

Axioms of Adaptivity Lecture 3

INRIA 2018 22 / 36

Finish of Proof of (A3)

to estimate $\sum_{E \in \mathcal{E}(\Omega)} |E|^{-1} ||v||_{L^{2}(E)}^{2} \lesssim \sum_{E \in \mathcal{E}(\Omega)} (h_{\omega_{E}}^{-2} ||v||_{L^{2}(\omega_{E})}^{2} + ||\nabla v||_{L^{2}(\omega_{E})}^{2})$ $\lesssim ||h_{\mathcal{T}}^{-1} v||_{L^{2}(\Omega)}^{2} + |||v|||^{2} \lesssim |||\hat{e}|||^{2}$ with the approximation and stability of the quasiinterpolation.

Finish of Proof of (A3)

to estimate

$$\sum_{E \in \mathcal{E}(\Omega)} |E|^{-1} ||v||^2_{L^2(E)} \lesssim \sum_{E \in \mathcal{E}(\Omega)} (h_{\omega_E}^{-2} ||v||^2_{L^2(\omega_E)} + ||\nabla v||^2_{L^2(\omega_E)})$$

$$\lesssim ||h_{\mathcal{T}}^{-1} v||^2_{L^2(\Omega)} + |||v|||^2 \lesssim |||\hat{e}|||^2$$

with the approximation and stability of the quasiinterpolation. A weighted Cauchy inequality followed by approximation property of quasiinterpolation show

$$F(v) \le ||h_{\mathcal{T}}f||_{L^{2}(\Omega)} ||h_{\mathcal{T}}^{-1}v||_{L^{2}(\Omega)} \le C||h_{\mathcal{T}}f||_{L^{2}(\Omega)} |||\hat{e}|||$$

Finish of Proof of (A3)

to estimate

$$\sum_{E \in \mathcal{E}(\Omega)} |E|^{-1} ||v||^2_{L^2(E)} \lesssim \sum_{E \in \mathcal{E}(\Omega)} (h_{\omega_E}^{-2} ||v||^2_{L^2(\omega_E)} + ||\nabla v||^2_{L^2(\omega_E)})$$

$$\lesssim ||h_{\mathcal{T}}^{-1} v||^2_{L^2(\Omega)} + |||v|||^2 \lesssim |||\hat{e}|||^2$$

with the approximation and stability of the quasiinterpolation. A weighted Cauchy inequality followed by approximation property of quasiinterpolation show

$$F(v) \le ||h_{\mathcal{T}}f||_{L^{2}(\Omega)} ||h_{\mathcal{T}}^{-1}v||_{L^{2}(\Omega)} \le C||h_{\mathcal{T}}f||_{L^{2}(\Omega)} |||\hat{e}|||$$

All this plus shape-regularity (e.g. $|T| pprox h_T^2 pprox h_E^2$) lead to reliability

$$\delta^2(\mathcal{T}, \hat{\mathcal{T}}) = |||\hat{e}|||^2 \le \Lambda_3 \, \eta(\mathcal{T})|||\hat{e}|||$$

The extra fact v = 0 on $\mathcal{T} \cap \hat{\mathcal{T}}$ and a careful inspection on disappearing integrals in the revisited analysis prove the asserted upper bound in (A3), $\delta(\mathcal{T}, \hat{\mathcal{T}}) \leq \Lambda_3 \eta(\mathcal{T}, \mathcal{T} \setminus \hat{\mathcal{T}})$

Carsten Carstensen (HU Berlin)

Proof of (A4)

(A4) follows from (A3) for CFEM with $\Lambda_4 = \Lambda_3^2$

The pairwise Galerkin orthogonality in the CFEM allows for the (modified) LHS in (A4) the representation

$$\sum_{k=\ell}^{\ell+m} \delta^2(\mathcal{T}_k, \mathcal{T}_{k+1}) = \delta^2(\mathcal{T}_\ell, \mathcal{T}_{\ell+m+1})$$

for $m \in \mathbb{N}_0$. (A3) shows that this is bounded from above by $\Lambda_3^2 \eta_{\ell}^2$. Since $m \in \mathbb{N}_0$ is arbitrary, this implies

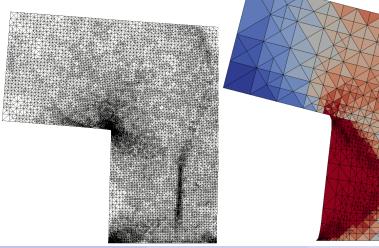
$$\sum_{k=\ell}^{\infty} \delta^2(\mathcal{T}_k, \mathcal{T}_{k+1}) = \lim_{m \to \infty} \sum_{k=\ell}^{\ell+m} \delta^2(\mathcal{T}_k, \mathcal{T}_{k+1}) \le \Lambda_3^2 \eta_\ell^2. \quad \Box$$

Outlook at Applications

Elastoplasticity

An Optimal Adaptive FEM for Elastoplasticity

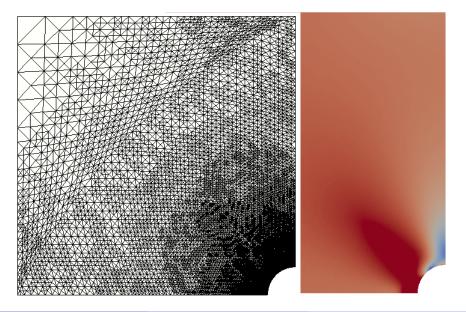
[Carstensen-Schröder-Wiedemann: An optimal adaptive FEM for elastoplasticity, Numer. Math. (2015)]



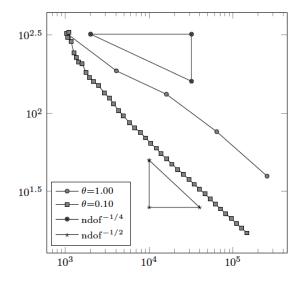
Carsten Carstensen (HU Berlin)

Axioms of Adaptivity Lecture 3

Computational Benchmark in Elastoplasticity



Convergence History in Computational Benchmark



Affine Obstacle Problem

An Optimal Adaptive FEM for an Obstacle Problem

Reference: An optimal Adaptive FEN for an obstacle problem. Carstensen-Hu Jun, CMAM [Online Since 13/06/2015]

Given RHS $F \in H^{-1}(\Omega)$ (dual to $H_0^1(\Omega)$ w.r.t. energy scalar product a) and affine obstacle $\chi \in P_1(\Omega)$ s.t.

$$K := \{ v \in H^1_0(\Omega) : \chi \le v \quad \text{ a.e. in } \Omega \} \neq \emptyset,$$

the obstacle problem allows for a unique weak solution $u \in K$ to

$$F(v-u) \le a(u,v-u)$$
 for all $v \in K$.

An Optimal Adaptive FEM for an Obstacle Problem

Reference: An optimal Adaptive FEN for an obstacle problem. Carstensen-Hu Jun, CMAM [Online Since 13/06/2015]

Conforming discretization leads to discrete solution u_ℓ and a posteriori error control via

$$\eta_E^2 := h_E \, || [\nabla u_\ell]_E \cdot \nu_E ||_{L^2(E)}^2 + \mathsf{Osc}^2(f, \omega_E)$$

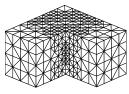
for any interior edge E.

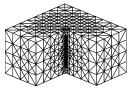
Theorem (Carstensen-Hu 2015). AFEM leads to optimal convergence rates.

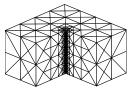
Eigenvalue Problems

Eigenvalue Problem

 $-\Delta u = \lambda u \text{ in } \Omega \quad \text{and} \quad u = 0 \text{ on } \partial \Omega$

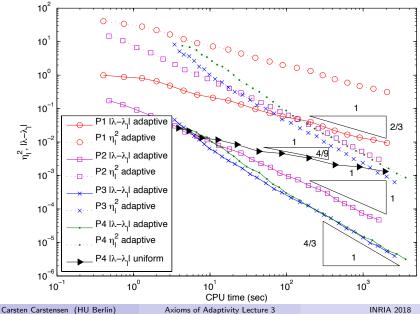






Optimal Computational Complexity - 3D SINUM]

[Carstensen-Gedicke (2013)



A 2018 36 / 36