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Jump Control
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A1 Comes from Discrete Jump Control

Given g € Py(T) for T € T, set

g1 = [ lle = ole )l for B £(2) with £ = 9T, noT
"7 gle for E € £(09) N E(K).
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A1 Comes from Discrete Jump Control
Given g € Py(T) for T € T, set

oy = {20l sl for B € £() with £ =, o,
b 9|E for E € £(0Q)NE(K).

Lemma (discrete jump control)
For all k € Ny there exists 0 < A; < oo s.t., for all g € Py(T) and T € T,

\/ STIEM2 S llglelZa e < Adllgllzeo,

KeT Eeé(K)
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A1 Comes from Discrete Jump Control
Given g € Py(T) for T € T, set

oy = {20l sl for B € £() with £ =, o,
b 9|E for E € £(0Q)NE(K).

Lemma (discrete jump control)
For all k € Ny there exists 0 < A; < oo s.t., for all g € Py(T) and T € T,

\/Zrmw S MliglelBasy < Adllgllzo

KeT Eeé(K)

Proof with discrete trace inequality on E € £(K) for K € T

‘KPMHQ‘KHL? ) < Care 9]l 22 (1)
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Compute A; in Proof of Discrete Jump Control

The contributions to LHS of interior edge £ = 0T} N JT_ with
edge-patch wg = int(T4 UT_) read

(T2 + 17121 [g) 1 32

< (1T Y2+ 17212) (gl W2y + gtz 2em))”

< Che (T 2 T 2) (1T 74 g o, + |Tf|—1/4||gr|L2<T_))2
< Gy (I V2 + T 21T 72 4+ |72 7Y) gl 2o,

~
<C3

< Cgtrcs% ||g| |%2(wE)'
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Compute A; in Proof of Discrete Jump Control

The contributions to LHS of interior edge £ = 0T} N JT_ with
edge-patch wg = int(T4 UT_) read

(T2 + 17121 [g) 1 32

< (1T Y2+ 17212) (gl W2y + gtz 2em))”

< Che (T 2 T 2) (1T 74 g o, + |Tf|—1/4|rgr|L2<T_))2
< Gy (I V2 + T 21T 72 4+ |72 7Y) gl 2o,

~
<C3

< Cgtrcs% ||g| |%2(wE)'

The same final result holds for boundary edge E = 0T} N 9S) with
wg :=int(Ty).  The sum of all those edges proves the discrete jump
control lemma with

A1 :=V3C4,Cs. [
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Proof of (Al)
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Recall that 7 is an admissible refinement of 7~ with respective discrete flux
approximations P := Vi, € Py(T;R?) and P := Vuy, € Py(T;R?).
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Recall that 7 is an admissible refinement of 7~ with respective discrete flux
approximations P := Vi, € Py(T;R?) and P := Vuy, € Py(T;R?).
Given any T € T NT, set

N —22
n(T) = Jai +B7 and A(T):=\af + fr
for ap := |T|/? [ fllz2(r) and

—~2 -~
B =TI > |[[Plellfamy resp. Br =IT1"* > |[Plelisg
Ec&(T) Eeg(T)

Convention for conforming P; FEM: Jumps on boundary edges vanish.

Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 3 INRIA 2018 7/36



Proof of (A1) with 6(7,7) = ||P — Plz2q)

Recall that 7 is an admissible refinement of 7~ with respective discrete flux
approximations P := Vi, € Py(T;R?) and P := Vuy, € Py(T;R?).
Given any T € T NT, set

N(T) = /a2 + B2 and A(T) =\ a2 + Br-

for ap 1= ]T|1/2 HfHL2(T) and
2 ~
2 T2 Y Pl resoe Bro= T2 ST Bl
Ee&(T) EE&(T)

Convention for conforming P; FEM: Jumps on boundary edges vanish.

Then, n(T N ’T \/ZTeTan (T) and (T N ’T \/ZTGTﬁTn (T)
are Euclid norms of vectors in R for J := 2|7 N T].
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Thg reverseAd triangle ineqL{aIity in R’ boAunds the LH§ in (A1), namely
(T, TOT)=n(T, TNT)|=n(TNT)—n(TNT)|, from above by

> i@ e = | Y Veped - yaq ]

TeTNT TeTNT

§|[5’T—,8T|2 (triangle ineq. in R2)
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Thg reversgd triangle ineqL{aIity in R’ boAunds the LH§ in (A1), namely
(T, TOT)=n(T, TNT)|=n(TNT)—n(TNT)|, from above by

> i@ e = | Y Veped - yaq ]

TeTNT TeTNT

§|BT—,8T|2 (triangle ineq. in R2)

The reversed triangle inequality in R? and L?(E) show

Br — Br| = |T|"* Z E”L2 - Z EHLQ(E
Ec&(T Eec&(T)
< T4 Z [P — Plg|[%, 5 Altogether,
Ee&(T
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Thg reversgd triangle ineqL{aIity in R’ boAunds the LH§ in (A1), namely
(T, TOT)=n(T, TNT)|=n(TNT)—n(TNT)|, from above by

> i@ e = | Y Veped - yaq ]

TeTNT TeTNT

§|BT—,8T|2 (triangle ineq. in R2)

The reversed triangle inequality in R? and L?(E) show

Z E”L2 - Z EHL?(E

E€&(T E€&(T)

|Br — Br| = T|*

< T4 Z [P — Pgl%, p)- Altogether,
Ee&(T

ATAT) —a(TD) < | S T S 1P - Plelag,
TeTNT Ee&(T)
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Recall

ATAT)=a(TnT< | > 1T > P = Plallfs,

TeTNT Ee&(T)
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Proof of (A1) with 6(7,7) = ||P — Plz2q)

Recall

ATAT)=a(TnT< | > 1T > P = Plallfs,

TeTNT Ee&(T)

and apply the discrete jump control lemma for each component of the
piecewise polynomial vector field P — P € Py(T;R?).

This concludes the proof of (Al). O
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Proof of (A2)
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Proof of (A2) with g = 27%/% and Ay = A4

Recall that 7 is an admissible refinement of 7~ with respective discrete
fluxes P € Py(T;R?) and P € Py(T;R?) as before.
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Proof of (A2) with g = 27%/% and Ay = A4

Recall that 7 is an admissible refinement of 7~ with respective discrete
fluxes P € Py(T;R2) and P € Py(T;R?) as before. Given any refined
triangle T € T(K) :={T € T:T C K} for K € T\ T, recall

ar = ’T|1/2 ||f||L2(T) and

8= T2 3 [PlrlBagry resp. B2 =171 3 1IPlrlem
Fe&(T) Fe&(T)

Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 3 INRIA 2018 11 /36



Proof of (A2) with g = 27%/% and Ay = A4

Recall that T is an admissible refinement of 7 with respective discrete
fluxes P € Py(T;R?) and P € Py(T;R?) as before. Given any refined
triangle T € T(K):={T €T :TC K} for KeT\T, recall

T = ’T|1/2||f||L2(T) and
Fe= T Y NPlelGeey resp. B = IT1Y? D7 (I[Plell72em
Fe&(T) Fe&(T)

LHS in (A2) reads
WT\T) = Z Z (a2 + BT (triangle ineq. in /%)

KeT\T TeT(K)
<D D er+B+ | > D) (Br — Br)?
KeT\T TeT(K) KeT\T TeT(K)

(@) (i)
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Proof of (A2) with g = 27%/% and Ay = A4

Recall that T is an admissible refinement of 7 with respective discrete
fluxes P € Py(T;R?) and P € Py(T;R?) as before. Given any refined
triangle T € T(K):={T €T :TC K} for KeT\T, recall

T = ’T|1/2||f||L2(T) and
Fe= T Y NPlelGeey resp. B = IT1Y? D7 (I[Plell72em
Fe&(T) Fe&(T)

LHS in (A2) reads
WT\T) = Z Z (a2 + BT (triangle ineq. in /%)

KeT\T TeT(K)
<D D er+B+ | > D) (Br — Br)?
KeT\T TeT(K) KeT\T TeT(K)

(@) (i0)
Observe [P]p = 0 for F € E(int(K)) and |T| < |K|/2 for T € T(K).
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Proof of (A2) with g = 27%/% and Ay = A4

Since [P|p = 0 for F € E(int(K)) and |T| < |K|/2 for T € T(K) and
KeT\T,

. K K 1/2

@)= 3 (0 + 38 < 5B + o 3 11Plel e

TeT(K) Ec&(K)
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Proof of (A2) with g = 27%/% and Ay = A4

Since [P|p = 0 for F € E(int(K)) and |T| < |K|/2 for T € T(K) and
KeT\T,

K K 1/2
@)= 3 (e + 88 < S Bagry + 0 3 NPl

TeT(K) Ec&(K)

Reversed triangle inequalities in the second term prove

> Plp|[2a ) — Z Plr|[7.

Fe&(T) Fe&(T

|Br — Br| = T|"/*

< TV Z P P] FHL2 and so lead to
Fe&(T)

=) ZﬁT*ﬁT <y Z|T|1/2ZHP Plrl[Z2p

KeT\T TeT(K) KeT\T TeT(K) Fe&(T)
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Proof of (A2) with g = 27%/% and Ay = A4

Since [P|p = 0 for F € E(int(K)) and |T| < |K|/2 for T € T(K) and
KeT\T,

K K 1/2
@)= 3 (e + 88 < S Bagry + 0 3 NPl

TeT(K) Ec&(K)

Reversed triangle inequalities in the second term prove

Br = Brl = TM*| | > IPpl2a — Z PIr|7,

Fe&(T) Fe&(T

< TV Z [P — P FHL2 and so lead to

Fe&(T)
=Y ) | (Br — Br)* < S TRy P - Ple|[f2)
KeT\T TeT(K) KeT\T TeT(K) Fe&(T)
This and the discrete jump control lemma conclude the proof. []
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Quasiinterpolation
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Discrete Quasiinterpolation

Notation || o | := || [|2(ay and ||| ||| == [V o | == | » 10

Theorem (approximation and stability). 30 < C' = C(min £T) <

VT e TVYT e T(T) VYV eSy(T)3V e ST
V=VonTnT and [a'(V-V)[+]IVII<CIIVII.

(0,9)
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Discrete Quasiinterpolation

Notation || e[| := [| @ [[12(q) and [[| e || := |V & || := [ @ [1(q)
Theorem (approximation and stability). 30 < C' = C'(min £T) < oo
VT € TVT € T(T) VYV eSHT)3V e S;(T)

V=VonTNT and [hZ(V-V)|[+]IVI]<CIVIII.

Proof. Define V' € S3(T) by linear interpolation of nodal values

V(z) if ze N(Q)NN(T) forsome T € TNT
Vi(z) =1 [, Vda/|lw| ifzeN(Q) and T(2)NT(z) =0
0 if 2 € N'(09)

Since V and V are continuous at any vertex of any T € T N T, the first

case applies in the definition of V'(z) = V(2) for all z € N(T).
This proves V=V onTeTNT. O
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Given any node z € N in the coarse triangulation, let w, = int(UT (2))
denotes its patch of all triangles 7 (2) in T with vertex z.
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Given any node z € N in the coarse triangulation, let w, = int(UT (2))
denotes its patch of all triangles 7 (2) in T with vertex z.

Lemma A. There exists C'(z) ~ diam(w;) with
IV = V(@) < C@) VY2200

Proof4Case Il: z € N(2) and T(2) N T (z) = 0 with V(2) = fwzf/dx/|wz|.
Then, the assertion is a Poincare inequality with C'(z) = Cp(w,). O
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Given any node z € N in the coarse triangulation, let w, = int(UT (2))
denotes its patch of all triangles 7 (2) in T with vertex z.

Lemma A. There exists C'(z) ~ diam(w;) with

IV = V(@) < C@) VY2200
Proof4Case Il: z € N(2) and T(2) N T (z) = 0 with V(2) = fwzf/dx/|wz|.
Then, the assertion is a Poincare inequality with C(z) = Cp(w.). O
Proof4Case Ill: z € N(0€2) and V(z) = 0. Since V — V vanishes along the

two edges along J€) of the open boundary patch w, with vertex z. Hence
the assertion is indeed a Friedrichs inequality with C(z) = Cp(w;). O
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Given any node z € N in the coarse triangulation, let w, = int(UT (2))
denotes its patch of all triangles 7 (2) in T with vertex z.

Lemma A. There exists C'(z) ~ diam(w;) with
IV = V(@) < C@) VY2200

Proof4Case II: z € N'(Q) and T(2) N T (2) = 0 with V(2) = [, Vda/|w.|.
Then, the assertion is a Poincare inequality with C'(z) = Cp(w;). O
Proof4Case Ill: z € N(8Q) and V(z) = 0. Since V — V vanishes along the
two edges along J€) of the open boundary patch w, with vertex z. Hence
the assertion is indeed a Friedrichs inequality with C(z) = Cp(w;). O
ProofdCase |: 3T € T(2) N T (z) for z € N(Q) and V =V on T. This
leads to homogenous Dirichlet boundary conditions on the two edges of
the open patch w, \ T with vertex z and V — V allows for a Friedrichs
inequality (on the open patch as in Case Il for a patch on the boundary)

IV = V2. < Crlw \T) IV(V = V)ll12(0.)
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However, this is not the claim! The idea is to realize that LHS=|[w]|2(,,,)
for w := V — V(z), which is affine on T and vanishes at vertex z.
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However, this is not the claim! The idea is to realize that LHS=|[w]|2(,,,)

for w := V — V(z), which is affine on T and vanishes at vertex z. Hence
(as an other inverse estimate or discrete Friedrichs inequality)

[[w||r2(ry < Car(T) ||Vwl|p2(ry < Car(T) [[Vwl|r2(,)
E.g. the integral mean wr := [ wdxz/|T| of w := V —V(z) on T satisfies

lwr|? |T| < Car(T)? || Vw|[72 .
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However, this is not the claim! The idea is to realize that LHS=|[w]|2(,,,)

for w := V — V(z), which is affine on T and vanishes at vertex z. Hence
(as an other inverse estimate or discrete Friedrichs inequality)

[[w||r2(ry < Car(T) ||Vwl|p2(ry < Car(T) [[Vwl|r2(,)
E.g. the integral mean wr := [ wdxz/|T| of w := V —V(z) on T satisfies

lwr|? |T| < Car(T)? || Vw|[72 .

Compare with integral mean w := /wdx/|wz| and compute

@ — wrl |T| = |7 /T (@ — w)dal? < |jw — 22,
< ||w - @’|i2(wz) < CP(WZ)2 vaH%Q(wz)

Consequently, W — wr|? |w,| < |w.|/|T| Cp(w,)? HVwHQLQ(w )
—— =z

<Csr
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The orthogonality of 1 and w — @ in L?(w,) is followed by Poincare’s and
geometric-arithmetic mean inequality to verify

lwll2,) = [@* lw:| + llw = |72,

< 20w — wrl? .| + 2wrf? .| + Cp(ws)? Vel

The above estimates for |wr|? |T'| and [w — wr|? |T| lead to

]2y < (2wsl/IT] (Car(T) + Cp(w:)?) + Cp(w.)?) IVl e,y O

=:C(z)2
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The orthogonality of 1 and w — @ in L?(w,) is followed by Poincare’s and
geometric-arithmetic mean inequality to verify

lwll2,) = [@* lw:| + llw = |72,

< 20 — wrl? | + 2Jwr[ws] + Cp(w)? [Vl 2.,
The above estimates for |wr|? |T'| and [w — wr|? |T| lead to

]2y < (2wsl/IT] (Car(T) + Cp(w:)?) + Cp(w.)?) IVl e,y O

=:C(z)2

W.r.t. triangulation 7" and nodal basis functions ¢1, @2, @3 in SY(T), let
T = conv{ Py, P, Ps} € T and Q7 := wi Uws Uws for w; := {¢; > 0}

Lemma B. There exists C'(1T") ~ hr with

IV = Vllr2) < CDIVVI2(0y)-
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Proof of Lemma B. N.B. V = Z V(Pj)pj and 1 = 25:1 pjonT
Hence

1V = Vs —/|Zv V() o2 de

3 3
< / SOV V@RS B dr (CSinRY)
T =1 k=1
<1

< ZHV V(P)|[72(r

< ZC |VV|]L2 (Lemma A)

ZC ) IVVIE2 0 O

%,_/
c2(T)
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Lemma C. There exists C' > 0 (which solely depends on min ZT) with
IVVIIz2(r) < ClIIVVI L2009
Proof. ~ N.B.VV =2 V(P;)Vi; and 0= 33, Vip; on T
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Lemma C. There exists C' > 0 (which solely depends on min ZT) with
IVVIIz2(r) < ClIIVVI L2009

Proof. ~ N.B.VV =2 V(P;)Vi; and 0= 33, Vip; on T
Hence

3
VY2 —/|Zv V(P Vi, da
3. 3
S/T(Z\V—V(Pj)P)( ST IVer? )dz (CSin RY)
J=1 k=1

—_———
<C(min £T)?/hZ

< C(min £T)? 22/\1/ V(P;)? dx

< ...(as before) ...
< C(min ZT)? hz2C3(T) [[VV 320, -

=:0?
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Finish of proof of theorem: ||h7_-1(V W2 + VIl S V1.
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Finish of proof of theorem: Hh}l(f/ W2 + VIl S V1.

Lemma B and C show for some generic constant C' > 0 hidden in the
notation < and any 7' € T that

1A7 (V= V)2 + IVVIE 20y S TVVIZ2 000

Notation Q27 := U (1)ws is the interior of the set of T' plus one layer of
triangles of 7 around.
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Finish of proof of theorem: Hh}l(f/ W2 + VIl S V1.

Lemma B and C show for some generic constant C' > 0 hidden in the
notation < and any 7' € T that

1A7 (V= V)2 + IVVIE 20y S TVVIZ2 000

Notation Q27 := U (1)ws is the interior of the set of T' plus one layer of
triangles of 7 around.

The sum over all those inequalities for T' € T concludes the proof because
the overlap of (Q7)re7 is bounded by generic constant C'(min £T). Ol
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Proof of (A3)
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Proof of (A3)

Given discrete solution U (resp. U) of CFEM in PMP w.r.t. T (resp.
refinement 7), set é := U — U € S}(T) with quasiinterpolant e € S}(T)
as above. Then, v := é — e satisfies

(T, T) = lllelll* = a(é,v) = F(v) — a(U, v)
—_——

Res(v)

Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 3 INRIA 2018 22 /36



Proof of (A3)

Given discrete solution U (resp. U) of CFEM in PMP w.r.t. T (resp.

refinement 7), set é := U — U € S}(T) with quasiinterpolant e € S}(T)

as above. Then, v := é — e satisfies

(T, T) = lllelll* = a(é,v) = F(v) — a(U, v)
—_——

Res(v)
A piecewise integration by parts with a careful algebra with the jump
terms for appropriate signs shows

- > / [OU /0vg)p ds

E€E(Q)
Z BTl g > IE||[oU/0ve] sl 2.
E€E(Q EeE(Q)

Recall trace inequality
B[ [olBa gy < Cor(h32l0IBa(,,, + V0l 22
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Finish of Proof of (A3)

to estimate
B IRem S D ool + 1V0l72(0p)
EeE(Q) EeE(Q)

S 17 0l f2q) + Mol S [llellf?
with the approximation and stability of the quasiinterpolation.
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Finish of Proof of (A3)

to estimate
B IRem S D ool + 1V0l72(0p)
E€E(Q) E€E(Q)

S ol F2 gy + [0l S Hllellf?
with the approximation and stability of the quasiinterpolation.
A weighted Cauchy inequality followed by approximation property of quasi-
interpolation show

F(v) < |Ih7fll2(0) 1h7 0l 220) < ClIATfll 20 [llell]
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Finish of Proof of (A3)

to estimate
B IRem S D ool + 1V0l72(0p)
E€E(Q) E€E(Q)

S ol F2 gy + [0l S Hllellf?
with the approximation and stability of the quasiinterpolation.
A weighted Cauchy inequality followed by approximation property of quasi-
interpolation show

F(v) < ||h7fll2@ |7 oll 2 ) < CllbT fllc2) 1€
All this plus shape-regularity (e.g. |T'| ~ h% ~ hZ%) lead to reliability
(T, 7) = lllelll> < Asn(T)11él]]

The extra fact v =0 on 7 N7 and a careful inspection on disappearing
integrals in the revisited analysis prove the asserted upper bound in (A3),
o(T,T) <Asn(T,T\T) O

Carsten Carstensen (HU Berlin) Axioms of Adaptivity Lecture 3 INRIA 2018 23/36



Proof of (A4)
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(A4) follows from (A3) for CFEM with Ay, = A2

The pairwise Galerkin orthogonality in the CFEM allows for the (modified)
LHS in (A4) the representation

l+m

Z 0*(Ths Te1) = 0%(Te, Tem+1)
k=t

for m € No. (A3) shows that this is bounded from above by A3nZ. Since
m € Ny is arbitrary, this implies

(9 l+m
Z (T, Thrr) = lim > 6%(Th, Tawr) < A O
k= k 0
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Outlook at Applications
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Elastoplasticity
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An Optimal Adaptive FEM for Elastoplasticity

. . f
[Carstensen-Schroder-Wiedemann: An optimal adaptive FEM for
elastoplasticity, Numer. Math. (2015)]
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Computational Benchmark in Elastoplasticity
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Convergence History in Computational Benchmark
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Affine Obstacle Problem
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An Optimal Adaptive FEM for an Obstacle Problem

Reference: An optimal Adaptive FEN for an obstacle problem.
Carstensen-Hu Jun, CMAM [Online Since 13/06/2015]

Given RHS F € H~1(Q) (dual to H}(2) w.r.t. energy scalar product a)
and affine obstacle x € P1(Q) s.t.

K = {vecH}Q): x<v ae inQ}#0,
the obstacle problem allows for a unique weak solution u € K to

Flv—u)<a(u,v—u) forallv € K.
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An Optimal Adaptive FEM for an Obstacle Problem

Reference: An optimal Adaptive FEN for an obstacle problem.
Carstensen-Hu Jun, CMAM [Online Since 13/06/2015]

Conforming discretization leads to discrete solution u, and a posteriori
error control via

g = he |[[Vude - vell72 g + Osc®(f,wp)

for any interior edge FE.

Theorem (Carstensen-Hu 2015). AFEM leads to optimal convergence
rates.
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Eigenvalue Problems
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SIAM Student Paper Prize 2013 for Joscha Gedicke

Eigenvalue Problem

and u =0 on 909

—Au =M uin Q
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Optimal Computational Complexity - 3D [Carstensen-Gedicke (2013)
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