
3D Surface Reconstruction from Voxel-based Lidar Data

Luis Roldão1,2, Raoul de Charette1 and Anne Verroust-Blondet1

Abstract— To achieve fully autonomous navigation, vehicles
need to compute an accurate model of their direct surrounding.
In this paper, a 3D surface reconstruction algorithm from
heterogeneous density 3D data is presented. The proposed
method is based on a TSDF voxel-based representation, where
an adaptive neighborhood kernel sourced on a Gaussian
confidence evaluation is introduced. This enables to keep a
good trade-off between the density of the reconstructed mesh
and its accuracy. Experimental evaluations carried on both
synthetic (CARLA) and real (KITTI) 3D data show a good
performance compared to a state of the art method used for
surface reconstruction.

I. INTRODUCTION

A robust and accurate model of the environment is crucial
for autonomous vehicles. In fact, imprecise representations of
the vehicle’s surrounding may lead to unexpected situations
that could endanger the passengers. Although many different
geometrical representations have been proposed by both the
robotics [1] and the graphics [2] communities, creating an
accurate 3D model of the surroundings from mounted sensors
remains a challenge.

In recent years, the constant evolution of Lidar sensors
enables to obtain rich and accurate information, even in large
and complex scenes. However, the size of the input data,
along with the noise, misaligned scans, missing data and
density variation, make the task a very challenging one. To
overcome this, coarse 3D representations are often used and
restrictive hypotheses are applied (i.e. planar assumptions for
road detection). While these representations can be sufficient
to perform path planning or obstacle avoidance, complex
maneuvers might require a more accurate description of the
scene’s geometry.

In this paper, we present an algorithm capable to
perform a fine and accurate 3D surface reconstruction of
the environment from depth sensors. From the statistics
of the input point cloud sampled into a voxel grid,
local approximations of the surface are performed using
an adaptive neighborhood capable to cope with the
heterogeneous density of the input scan. Then, a truncated
signed distance field (TSDF) is estimated to obtain a
continuous mesh that maintains a high level of detail and
density in areas close to the vehicle. Our output mesh
can be of special interest for both the robotics and the
graphics community to perform different tasks, such as
terrain traversability assessment or physical modeling.

1Robotics and Intelligent Transportation Systems (RITS) Team, INRIA
Paris, 2 Rue Simone Iff, 75012 France. {raoul.de-charette,
anne.verroust}@inria.fr.

2R&D Department of AKKA Technologies. 78280 Guyancourt, France.
{luis.roldao@akka.eu}.

Fig. 1. Our pipeline reconstructs 3D surfaces from input Lidar point clouds
(here KITTI dataset), keeping a good trade-off between accuracy and mesh
density. We first rely on the approximation with explicit local surfaces, and
then estimate a signed distance field from which the mesh is extracted at
zero-crossing.

This paper is organized as follows: section II reviews
existing works on 3D representations of the environment
used for mobile robotics. A detailed description of our
method is introduced in section III. An ablation study has
been performed to evaluate the validity of our proposals,
which is presented in section IV along with experimental
results in both real and synthetic data. Conclusions and future
work are presented in Sec. V.

II. RELATED WORK

The 3D geometry of a scene described from range sensors
can be represented in many different ways. The choice
of the representation is often related to its final purpose:
visualization, mapping, localization, terrain traversability,
among many others.

Some methods use directly the 3D set of points received
from the input sensor, which might be useful for visualization
or obstacle detection tasks. However, the level of details of
the representation depends on the amount of data used, that
rapidly becomes prohibitive for outdoor scenes. Conversely,
other works propose a regularly sampled grid as introduced
in [3], where occupancy information is stored into each cell.
This enables to handle big amounts of data more efficiently
and reduce memory needs, specially by using recursive
structures such as octrees [4], [5]. These approaches have
become widely used for terrain traversability assessment,
mapping and visualization. However, their discrete nature
does not enable a continuous representation, which might
be desirable for other tasks such as physical modeling.

Alternatively, the graphics community has explored
different methods to create a triangular mesh from the
3D points of the scanned surface. These methods have a
wide range of applications on completely different fields
as described in [2]. For simplicity, we distinguish between
explicit and implicit methods.

Explicit methods: These techniques are either parametric
or triangulated with respect to how they represent the

, ,...,

adaptive neighborhood

Explicit local surfaces
(Sec. III-B)

Point cloud ()

Voxel Representation
(Sec. III-A)

Implicit global surface
(Sec. III-C)

TSDF

Marching
cubes

3D Reconstruction

Fig. 2. Overview of our method. From left to right: the point cloud P; the voxel grid at where the statistical distribution of the points is updated (Sec.
III-A); local surface approximations at neighborhoods k ∈ [1, kmax] of the grid vertices (Sec. III-B.1); TSDF calculated from the planes by considering
its confidences from the statistics distribution (Sec. III-C); final 3D reconstruction.

reconstructed surface. For some applications, the continuity
of the reconstruction is not required. Some researchers
propose to fit local primitive shapes to the input point cloud
and obtain a segmented mesh with simple primitives for the
surface description [6], [7]. These approaches are not suitable
for reconstructing complex scenes.

Other methods create local descriptions of the surface by a
set of unoriented discs (-surfels-) calculated from the points
distribution inside defined neighborhoods. Surfels has been
used for traversability assessment [8], and more recently to
perform simultaneous localization and mapping (SLAM) in
outdoor urban environments [9].

Implicit methods: For other applications such as physical
modeling or detailed terrain traversability, a more accurate
and continuous representation might be preferred. To obtain
this, some approaches commonly define a Truncated Signed
Distance Field (TSDF) to represent the surface implicitly by
a gradient field [2]. This implicit representation needs to be
post-processed by meshification algorithms (e.g. Marching
Cubes [10]) to obtain the final mesh.

In [11], range information across different viewpoints are
integrated to average a TSDF from where the scalar field
is obtained. By using this technique, 3D modeling has been
performed in both small indoor [12] and large scale outdoor
scenes [13], [14]. These methods typically require a large
number of viewpoints to output a dense reconstruction and
are susceptible to outliers.

Other implicit methods tend to perform local
approximations of the surface from where the TSDF is
obtained. Poisson reconstruction [15], [16] is a well-known
technique for creating watertight surfaces from oriented
point samples. Point-based methods such as Hoppe’s [17]
or Implicit Moving Least Squares (IMLS) [18], [19], [20]
locally fit the data to a lower degree polynomial by using
a projection operator. For these methods, variable density
inputs might represent a challenge since the data is treated
equally along the complete space.

In contrast to most methods presented above, that are
unable to accommodate to the heterogeneous density of the
input data while keeping the accuracy of the reconstruction,
we introduce a method that is able to handle this variable

density while keeping a good trade-off between the accuracy
and the density of the outputted surface.

III. METHODOLOGY

Let us consider an input point cloud P obtained from
any range sensor at a known viewpoint and sampled by
a voxel grid, our aim is to reconstruct the underlying 3D
mesh. From the statistical distributions of the points in
each voxel (Sec. III-A), we first approximate local planar
surfaces (Sec. III-B), and then compute the implicit surface
representation (Sec. III-C) that encodes the distances to the
local planar surfaces. To accommodate to the input data
heterogeneous density, as well as to gain robustness to noise,
we use an adaptive neighborhood kernel, resulting in a denser
and smoother reconstruction. The overall overview of our
methodology is shown in Fig. 2.

A. Voxel representation

We benefit of the work of [21] to update efficiently
a regular voxel-wise representation of the point cloud
P → {V 1, V 2, ..., V n}, with voxel size ω. In addition
to the number of points |V |, each voxel V stores the 3D
statistical distribution of the points lying inside, that is: the
mean Vµ and the covariance Vσ . This enables a rich compact
representation of the points inside each voxel, while being
significantly lighter than storing all the points. The statistical
distribution is computed incrementally upon insertion of new
points.

B. Explicit local surfaces

It has been shown in [8], [9], that complex environments
are efficiently approximated as a set of primitive local
surfaces. This is especially suitable for mobile robotics,
as robots usually evolve in well structured environments.
Following this observation, we compute local planar surfaces
using the 3D statistical distribution described in the previous
section. While a naive implementation would fit planar
surfaces to each voxel independently, this would inherently
lead to a noisy reconstruction since some voxels may have
very few points, if not none, due to the heterogeneous density
of Lidar data.

Explicit
planar surface approximation

TSDF

Reconstructed
mesh

Fig. 3. Explicit local planar surfaces with their estimated normals for k = 1
(left) and its corresponding mesh reconstruction from the TSDF (right). Note
that applying k = 1 neighorhood leads to a noisy surface estimation (e.g.
car edges) that is overcomed with our adaptive neighborhood strategy.

In our pipeline we propose using an adaptive
neighborhood definition where local surfaces are estimated
from multi-scale voxels statistics. Our neighborhood
definition presents two main advantages: a) it increases the
statistical robustness which improves large planar surface
estimation (e.g. ground, walls), b) it counterbalances the
lack of local data due to low density or occlusion.

1) Neighborhood definition: We define the multi-scale
neighborhood at the vertices location rather than voxels,
since implicit surfaces will later be estimated at each vertex
of the voxel representation. Let’s consider v a vertex from
the voxel-grid representation, its 8 adjacent voxels make up
the first neighborhood level denoted H1(v). Subsequently,
the union of H1(v) and the voxels adjacent to H1(v)
make up the neighborhood H2(v). More formally, the
neighborhoodHk(v) is composed of the (2k)3 nearest voxels
surrounding v. A two-dimensional illustration of Hk(v) at
levels k = 1 and k = 2 is presented in Fig. 5.
Following [8], for a given neighborhood H (indices are
dropped for clarity) we obtain the cardinal |H|, statistical
mean Hµ, and covariance Hσ from the merging of statistical
data of all voxels in H.

2) Planar estimation: Having obtained the local statistics,
we use the covarianceHσ to estimate the local planar surface
of H through a Principal Component Analysis (PCA) if the
following equation is satisfied:

|H| ≥ Nmin , (1)

where Nmin is a hyper parameter. Suppose (−→e1 ,−→e2 ,−→e3)
the eigen vectors, and (λ1, λ2, λ3) the eigen values with
λ1 ≥ λ2 ≥ λ3, we define −→e3 (the least dominant axis) as
the unoriented normal of the planar estimation of the surface
at neighborhood H. Since normals need to be consistently
oriented, the normal −→n of the plane is oriented towards the
sensor pose sp as follows:

−→n =

{−→e3 if −→e3 · (sp −Hµ) > 0 ,

−−→e3 otherwise .
(2)

where · stands for the dot product. We denote Π the plane
formed by the pair of normal and center (−→n ,Hµ). An
example of the local planar surfaces estimation is visible
in Fig. 3.

e2n

e1
2

1

H

Fig. 4. The likelihood of w belonging to Π is estimated from
NPDF(w | Hµ,Σ) shown in red. The likelihood must be higher than τ in
order to consider Π as a valid plane for w. (k indices dropped for clarity.)

Neighborhood k=2

τ

Neighborhood k=1

τ τ

τ

Fig. 5. Analogous 2D representation of the dynamic neighborhood. Planar
surface approximations are performed at different neighborhood levels k ∈
[1, kmax]. The considered plane corresponds to the minimum neighborhood
level that satisfies Eq. 3, where the schematic 1D Gaussian distribution is
shown in red.

C. Implicit global surface

To reconstruct the global continuous surface, we compute
the Truncated Signed Distance Field (TSDF) for each vertex
v ⊆ V close to the scanned surface.

To cope with the varying density of points in the point
cloud, we first compute an optimal neighborhood level k′ at
each vertex, and then estimate the TSDF value given this
optimal neighborhood.

1) Adaptive neighborhood: A naive implementation of
our neighborhood definition would use a constant k
throughout the scene. However, large k values will over
smooth high density regions, while small values of k will
lead to noisy estimation in low density regions. Instead, we
compute the optimal neighborhood level k′ for each vertex
v, given the probability of v to belong to a multivariate
Gaussian distribution projected on Πk′ (the neighborhood
planar estimation).

For each vertex, we calculate the projection wk of v onto
the plane Πk(v) and evaluate the likelihood of this projection
to belong to the Gaussian N k, where N k is the 2D planar-
Gaussian of the statistical distribution of Hk projected onto
Πk, as illustrated in Fig. 4. The optimal neighborhood level
k′ is defined as the smallest level for which the projection
of v onto Πk has a probability to belong to the Gaussian
N k greater than τ (a hyper parameter). Formally, it is the
smallest integer for which the probability density function
NPDF satisfies

N k
PDF(wk | Hkµ,Σ) ≥ τ ; Σ =

[
λ1 0
0 λ2

]
. (3)

In practice, we compute the optimal k′ iteratively starting at
level 1 and stops when the above equation is satisfied as it
is shown in Fig. 5. To avoid exponential computation time,
k is bounded between [1, kmax].

2) TSDF computation: We now compute the TSDF
value for each vertex of the voxel grid, from the optimal
local neighborhood level, while accounting for the normal
estimation at the corresponding level. In other words, we
compute TSDF(v) such that:

TSDF(v) =
−→
nk

′
· (v −Hk

′

µ) . (4)

Our adaptive neighborhood level selection can efficiently
handle varying local density and fill gaps between missing
data, such as those between two adjacent Lidar layers.
Subsequently, the condition on the probability density
function given in Eq. 3 avoids the extension of the surface
at its borders which is visible in qualitative results.

After TSDF computation, we use the popular marching
cubes [10] to extract the mesh from the zero-crossing level
of the gradient field. Fig. 3 shows the reconstructed mesh
with constant neighborhood (k = 1).

IV. EXPERIMENTAL RESULTS

We evaluate our proposal on synthetic data from
CARLA [22] and real data from KITTI [23], and compare
our performance against the IMLS baseline [18]. For both
synthetic and real data we used 100 frames equi-sampled
from either an urban-like sequence for CARLA, or the
residential sequence 0018 for the public KITTI dataset.

A. Methodology

Unless stated otherwise, our hyper-parameters remain
unchanged in all experiments, with: ω = 0.2m, τ = 0.2,
Nmin = 10, and kmax = 5. For fair comparison, the spherical
neighborhood radius of IMLS is set to ω × kmax = 1m, and
its k-nearest neighbor search to Nmin. The noise parameter
of IMLS is set to h = 1/3(ω × kmax) = 0.33.

Noteworthy, it is impractical to have a real mesh ground-
truth and KITTI can only be used for qualitative evaluation.
Conversely, we use synthetic data from CARLA to evaluate
the benefit of each of our contributions. The setup in CARLA
replicates a top-mounted Velodyne HDL64E, similarly to the
real KITTI setup. We also simulate a collocated noise-free
lidar with abnormally high resolution (316 layers), which
serves as ground-truth for the reconstruction. Consequently,
we frame the evaluation as a set-to-set distance problem, and
measure the quality as the distance of the predicted mesh
vertices (P) to the ground-truth (GT) set.

We use two metrics derived from the literature: the
Average Error (AE), and the Haussdorf Distance (HD).
The former measures the average distance error from
one point to its nearest point in the other set, that

is: AEP→GT =
∑
a∈P

1

|P |
min
b∈GT

|a − b|. The Haussdorf

distance [24] is classically used for point set distances
and gives a sense of the largest minimum error, that is:
HDP→GT = max

a∈P
min
b∈GT

|a − b|. As each of the two metrics
are directed, we also report the symmetrical metric, as the
average of both directed metrics. For Haussdorf, HDsym =
0.5(HDP→GT + HDGT→P). We chose not to use the

TABLE I
PERFORMANCE ON SYNTHETIC DATA

Average Error (m) Hausdorff Distance (m)
Method P→GT GT→P Sym P→GT GT→P Sym

IMLS [18] 0.37 0.09 0.23 4.54 8.32 6.43

Ours AN+GC
kmax = 5 0.14 0.13 0.14 1.39 20.49 10.94
kmax = 3 0.09 0.26 0.17 0.69 30.84 15.77

Ours AN
kmax = 5 0.30 0.12 0.21 1.69 20.36 11.02
kmax = 3 0.14 0.25 0.19 0.87 30.83 15.85

Ours CN+GC
k = 5 0.15 0.16 0.15 1.38 20.50 10.94
k = 3 0.09 0.27 0.18 0.69 30.85 15.77
k = 1 0.03 3.44 1.73 0.24 65.28 32.76

Ours CN
k = 5 0.30 0.14 0.22 1.69 20.36 11.03
k = 3 0.14 0.26 0.20 0.87 30.83 15.85
k = 1 0.03 3.44 1.73 0.24 65.28 32.76

Ours AN+GC Ours AN

Ours CN+GC Ours CN

Fig. 6. Qualitative comparison of our method by removing the main
components of our proposal. Images correspond to a single frame of a point
cloud from CARLA. In shown images k or kmax equals 5.

Chamfer distance used in machine learning [25] because it
isn’t a metric-scale and is thus harder to interpret intuitively.

B. Ablation study

We assess the average performance on 100 frames from
CARLA and subsequently report quantitative performance in
Table I and qualitative results in Fig. 6. In the former, our
pipeline is compared to IMLS [18].

To evaluate the importance of our contributions, we
compare the benefits of our Adaptive Neighborhood (AN,
Sec. III-C.1) with or without the Gaussian Confidence (GC,
Eq. 3) and also with a naive Constant Neighborhood (CN)
approach. More precisely, the neighborhood Hk′ considered
for the plane estimation (cf. Sec III-B.2) is different:
AN+GC: Hk′ is the minimum neighborhood among{
H1, · · · ,Hkmax

}
that satisfies Eq. 1 and 3.

AN: Hk′ is the minimum neighborhood among{
H1, · · · ,Hkmax

}
that satisfies Eq. 1.

CN+GC: Hk′ with k′ = k, is considered only if Eq. 1 and
3 are satisfied.
CN: Hk′ with k′ = k, is considered only if Eq. 1 is
satisfied.

From Table I, the accuracy on the reconstruction directly
affects the P→GT distances while the GT→P distances are
mostly influenced by the reconstruction density.

As expected, the benefit of our adaptive neighborhood
strategy is noticeable when comparing AN+GC and CN+GC.
Not only AN+GC exhibits higher accuracy (lower P→GT)
but it also increases the reconstruction density (lower

CARLA input point cloud

Height [m]
2

2

RGB
(for visualization only)

IMLS

Ours

Fig. 7. Qualitative comparison on CARLA simulator. Notice that even though IMLS outputs a denser reconstruction, it also extend all surfaces at its
border and creates a higher number of artifacts as it can be seen by the red circles at rightmost images. Our method is able to keep the structure of the
surface and generates fewer artifacts, performing a more accurate reconstruction, while keeping a good density in areas near to the vehicle.

(a) Average error (b) Delta error

Fig. 8. Performance on the CARLA dataset from averaging of 100 frames
evaluation. While the average error grows with the distance, at 30m distance
our surface reconstruction error is ≈ 0.2m whereas IMLS [18] is ≈ 0.35m.

GT→P). When using our Gaussian Confidence (GC), there
is a slight density loss (lower GT→P) but a significant
accuracy increase. Qualitatively from Fig. 6, our adaptive
neighborhood helps to maintain the details of the surface by
not over-smoothing the data, while the Gaussian Confidence
strategy avoids to extend the surface, keeping its structure
and generating fewer artifacts.

Overall, we observe that our complete pipeline (AN+GC
with kmax=5) keeps a good trade-off between accuracy and
density, which is shown by the best result obtained AEsym
(0.14m vs. 0.23m for IMLS). With larger neighborhood
(bigger kmax), the density of the reconstruction increases but
at the expense of a lower accuracy which is intuitive as there
is a need to extrapolate more the data. Since IMLS performs
a denser reconstruction, lower GT→P distances are obtained,
which explains the best results on the symmetric Hausdorff
Distance (10.94m vs. 6.43m for IMLS). While our method
is less dense, our predicted mesh is significantly more precise
(1.39m vs. 4.54m for IMLS).

C. Synthetic data

To further evaluate the performance, we report the average
error as a function of the sensor distance in Fig.8a, and
the cumulative delta error that indicates the percentage of

vertices of the output meshes having an error lower than a
given value in Fig. 8b.

For both metrics, the accuracy of our reconstruction is
significantly higher than the one obtained by IMLS, as
the average error of our reconstruction is often 50% lower
(Fig. 8a). The percentage of vertices below a given error
exhibits the same behavior (Fig. 8b), with a significant
advantage for our method. Furthermore, almost 80% of the
vertices of our mesh have an error lower than 0.2m, while
40% of vertices lie below the same threshold with IMLS.

Finally, a qualitative comparison on CARLA is shown in
Fig. 7. Again, one can see that IMLS outputs a more dense
reconstruction of the scene but also that the method tends
to extend all surfaces, generating artifacts and inaccuracies
in the reconstruction. This can be observed in the circled
areas where lampposts, traffic signs and walls are abnormally
enlarged by IMLS. On the other hand, our method is able
to keep these details on the reconstruction and maintains a
high density in areas close to the vehicle, which confirms
the quantitative results obtained in Fig. 8.

D. Real data

Qualitative results on KITTI residential sequence 0018
are shown in Fig. 9. As for the results presented on
the synthetic data, IMLS outputs a denser reconstruction
but extends all surfaces out of the borders and generates
artifacts. This can be observed at the circled areas on the
rightmost images. Conversely, our method outputs a more
accurate reconstruction, keeping the structure of the scanned
surface and completing the surface at no data points areas
close to the sensor. Even though our method outputs a
less dense reconstruction, the density is still adequate for
further robotics tasks such as trajectory planning or obstacle
avoidance.

Height [m]
2

2

KITTI input point cloud

RGB
(for visualization only)

IMLS

Ours

Fig. 9. Visual comparison on KITTI dataset. The results on both methods show the same behavior than seen in synthetic data. IMLS performs a denser
reconstruction at expenses of accuracy. Our method keeps a good trade-off between density and accuracy on the reconstruction.

V. CONCLUSION

In this paper we presented a surface reconstruction
method based on a light voxel representation that benefits
of statistical information. Our pipeline uses an adaptive
neighborhood strategy coupled with a Gaussian confidence
estimation, to best estimate local surfaces and the implicit
surface estimation (TSDFs).

The performance of our method was demonstrated
on both synthetic (CARLA) and real data (KITTI),
significantly outperforming the classical IMLS though
sparser reconstruction. For mobile robots, an accurate
representation of the environment is a prerequisite. While
our results show that local planar surfaces are sufficient for
accurate reconstruction, we intend to extend this research
to a more complex surface definition, for example with
polynomials.

REFERENCES

[1] T. Stoyanov, M. Magnusson, and A. J. Lilienthal, “Comparative
evaluation of the consistency of three-dimensional spatial
representations used in autonomous robot navigation,” Journal
of Field Robotics, vol. 30, no. 2, pp. 216–236, 2013.

[2] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, and C. T. Silva, “A survey of surface
reconstruction from point clouds,” Comput. Graph. Forum, vol. 36,
no. 1, pp. 301–329, Jan. 2017.

[3] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in IEEE International Conference on Robotics and Automation,
vol. 2, Mar. 1985, pp. 116–121.

[4] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons,
and W. Whittaker, “Ambler: an autonomous rover for planetary
exploration,” IEEE Computer, vol. 22, no. 6, pp. 18–26, Jun. 1989.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: an efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, vol. 34, no. 3, pp.
189–206, Apr. 2013.

[6] C. A. Vanegas, D. G. Aliaga, and B. Benes, “Automatic extraction of
manhattan-world building masses from 3D laser range scans,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 10,
pp. 1627–1637, Oct. 2012.

[7] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud
shape detection,” Comput. Graph. Forum, vol. 26, no. 06, pp. 214–226,
2007.

[8] J. Ryde, V. Dhiman, and R. Platt, “Voxel planes: Rapid
visualization and meshification of point cloud ensembles,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Nov. 2013, pp. 3731–3737.

[9] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3D laser
range data in urban environments,” in Robotics: Science and Systems,
(RSS), Pittsburgh, Pennsylvania, USA, Jun. 2018.

[10] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” in SIGGRAPH, Jul. 1987, pp. 163–
169.

[11] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in SIGGRAPH, 1996, pp. 303–312.

[12] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in 10th
IEEE International Symposium on Mixed and Augmented Reality, Oct.
2011, pp. 127–136.

[13] T. Whelan, M. Kaess, M. F. Fallon, H. Johannsson, J. J. Leonard,
and J. McDonald, “Kintinuous: Spatially extended kinectfusion,” in
RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
Sydney, Jul. 2012.

[14] F. Steinbrucker, C. Kerl, D. Cremers, and J. Sturm, “Large-scale
multi-resolution surface reconstruction from rgb-d sequences,” in IEEE
International Conference on Computer Vision (ICCV), Dec. 2013, pp.
3264–3271.

[15] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Fourth Eurographics Symposium on Geometry
Processing (SGP’06), Cagliari, Sardinia, Italy, Jun. 2006, pp. 61–70.

[16] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Trans. Graph., vol. 32, no. 3, pp. 29:1–29:13, Jul. 2013.

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” in SIGGRAPH,
vol. 26, no. 2, Jul. 1992, pp. 71–78.

[18] C. Shen, J. F. O’Brien, and J. R. Shewchuk, “Interpolating and
approximating implicit surfaces from polygon soup,” in SIGGRAPH,
Los Angeles, USA, Aug. 2004, pp. 896–904.

[19] R. Kolluri, “Provably good moving least squares,” ACM Trans.
Algorithms, vol. 4, no. 2, pp. 18:1–18:25, May 2008.

[20] H. Bouchiba, S. Santoso, J. Deschaud, L. Rocha-Da-Silva, F. Goulette,
and T. Coupez, “Computational fluid dynamics on 3D point set
surfaces,” CoRR, vol. abs/1901.04944, 2019.

[21] L. Roldao, R. de Charette, and A. Verroust-Blondet, “A statistical
update of grid representations from range sensors,” arXiv preprint
arXiv:1807.08483, 2018.

[22] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[23] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

[24] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: measuring errors
between surfaces using the hausdorff distance,” in Proceedings. IEEE
International Conference on Multimedia and Expo, vol. 1, Aug 2002,
pp. 705–708 vol.1.

[25] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for
3d object reconstruction from a single image,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 605–613.

