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THÈSE

présentée et soutenue publiquement le 12 Octobre 2009

pour l’obtention du
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Roueff et Patrick Thiran, mes rapporteurs, pour leurs remarques et suggestions sur la version
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Introduction

Le rêve ultime des opérateurs de télécommunications est de savoir à tout instant qui fait
quoi sur leurs liens où les débits n’ont cessé d’augmenter ces dernières années. La mesure de
trafic est une tâche indispensable pour une meilleure compréhension de sa composition et de
l’évolution de ses caractéristiques due à l’émergence de nouvelles applications. Le but final étant
de superviser le réseau, d’améliorer la qualité des services offerts aux clients, et de s’adapter à
leurs nouveaux besoins.

Pour accéder aux informations relatives aux clients, il est indispensable de faire des mesures
de trafic à l’échelle des flots. Un flot est un ensemble de paquets IP ayant certains identifiants
communs. Ces identifiants dépendent de l’objectif de la mesure. Par exemple, pour facturer les
clients en fonction de leur consommation, il suffit d’agréger les paquets par adresse source. Par
contre, pour détecter une attaque par déni de service vers une cible particulière, il faut mesurer
le trafic reçu par une cible potentielle et donc il est plus convenable d’identifier le flot par son
adresse destination. L’analyse des statistiques sur les flots permet aussi de mieux comprendre le
fonctionnement de nouvelles applications comme le Pair à Pair et de prédire leur impact sur le
réseau. En effet, les applications Pair à Pair représentent aujourd’hui la majeure partie du trafic
commercial dans les réseaux IP des opérateurs de télécommunications quasiment dans le monde
entier. Notamment elles engendrent plus de 70%du volume total des données acheminées par le
réseau de France Télécom. Les statistiques sur les flots fournissent des informations utiles sur les
clients (le nombre de clients actifs, leur débit, leurs comportements, le temps de téléchargement
des fichiers...). Ces informations sont exploitables dans différents domaines comme l’ingénierie
du trafic ou la sécurité.

La méthode préalablement utilisée par les opérateurs de télécommunication pour faire des
statistiques sur les flots de données consiste à stocker tous les paquets, reconstituer les flots et
extraire les statistiques sur ces flots. Cette méthode souffre clairement du problème de passage
à l’échelle puisqu’elle nécessite une mémoire proportionnelle au nombre de flots. Elle a donc vite
vu ses limites suite à l’explosion des volumes de données qui sont transférées. En effet, le stockage
d’une heure de trafic sur un lien haut débit nécessite aujourd’hui une mémoire de plusieurs di-
zaines de giga-octets et pour analyser ce volume gigantesque de données, cette ancienne méthode
demande de grandes capacités calculatoires et un temps de traitement considérable. Ce nouveau
contexte a poussé la communauté scientifique à réfléchir sur de nouvelles techniques et approches
permettant d’accéder à moindre coût (mémoire, temps de traitement) aux statistiques sur les
flots. De plus, l’analyse du trafic doit aussi être suffisamment rapide pour répondre aux exigences
de réactivité des applications comme par exemple la détection des attaques. Un traitement en
ligne du trafic doit être évidemment plus rapide que le débit de réception des données à analyser.
Cette contrainte impose un nombre très limité d’instructions ainsi qu’un temps d’exécution ex-
trêmement court car le temps d’interarrivée des paquets est de l’ordre de quelques nanosecondes.
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Introduction

Le point commun de toutes les méthodes récemment conçues est qu’elles ne fournissent pas
de statistiques exactes sur les flots, mais uniquement une estimation. C’est le prix à payer pour
limiter les ressources (CPU, mémoire) nécessaires au traitement.
Ces méthodes peuvent être divisées en deux catégories en se basant sur leurs principes. Ces
deux catégories sont utilisées dans des contextes différents qui dépendent de la nature du trafic
disponible :

– Des algorithmes qui utilisent le trafic exhaustif
Ce sont des algorithmes qui traitent la totalité du trafic et fournissent des estimations sur
les statistiques des flots. Pour supporter le passage à l’échelle, ces méthodes sont soumises
à deux conditions nécessaires : D’une part, le traitement des données doit se faire à la volée,
en une seule passe. D’autre part, la mémoire utilisée doit être constante, indépendante du
volume des données à analyser. Ces algorithmes sont essentiellement basés sur le hachage
des flots et les filtres de comptage. La connaissance à priori des caractéristiques du trafic
n’est pas indispensable pour ce genre d’algorithmes.

– Des algorithmes qui analysent une fraction du trafic
L’échantillonnage du trafic est le fait de sélectionner une petite partie du trafic réel
(1/100, 1/500, 1/1000...) et de l’utiliser comme support pour faire des analyses et des
statistiques. En considérant ainsi un volume de données plus réduit, on arrive à baisser
sensiblement le coût de l’analyse en terme de temps de traitement et de mémoire. En
revanche, l’analyse du trafic échantillonné peut induire des interprétations erronées, vu
qu’on n’a pas une connaissance précise de tout le trafic, mais simplement celle d’un échan-
tillon de ce trafic. Le trafic échantillonné contient en effet très peu d’information sur les
flots initialement présents dans le trafic original. Même avec un taux d’échantillonnage
de 1/100, la majorité de ces flots ne seront pas identifiés suite à l’échantillonnage. Les
quelques paquets des flots capturés sont insuffisants pour reconstituer les propriétés sta-
tistiques des flots dans le trafic d’origine (nombre de flots, distribution de leur taille...).
L’inférence des caractéristiques du trafic original nécessite donc une compensation de la
perte d’information causée par l’échantillonnage. Ainsi, il est indispensable de s’appuyer
sur un modèle statistique sur la composition du trafic original pour aboutir à des résultats
significatifs. Ces hypothèses, souvent présentées sous forme de modèle statistique décrivant
la structure du trafic, doivent bien sûr être testées et validées.

Ces deux cadres algorithmiques sont plus longuement expliqués et illustrés par plusieurs exemples
dans ce qui suit.

1 Comptage probabiliste dans le trafic exhaustif

1.1 Etat de l’art

On trouve dans la littérature plusieurs algorithmes probabilistes qui traitent le trafic exhaus-
tif et fournissent des estimations sur les statistiques des flots. Notamment, le nombre de flots
dans le trafic est l’un des paramètres les plus intéressants à calculer. Ce paramètre est particu-
lièrement utile pour la détection des attaques. En effet, si on définit le flot comme une connexion
active, l’augmentation brusque du nombre de flots peut être due à la propagation d’un vers ou
à une attaque par port scan consistant à balayer les ports d’une ou de plusieurs machines en les
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1. Comptage probabiliste dans le trafic exhaustif

interrogeant pour identifier les ports ouverts.

Il est clair que, pour un comptage exact du nombre n de flots dans une trace de trafic, on
a besoin d’une mémoire de taille linéaire en n. C’est pour cette raison que le comptage exact a
été abandonné au profit du comptage probabiliste qui s’avère suffisant dans plusieurs applica-
tions. Le comptage des flots dans le trafic Internet s’inscrit dans un cadre plus général qui est le
comptage de la cardinalité d’un multi-ensemble. Un multi-ensemble est un ensemble où les élé-
ments peuvent être répétés. Sa cardinalité est le nombre de ses éléments distincts. Il s’agit d’un
problème intéressant qu’on retrouve sous différentes autres formulations comme le comptage de
mots différents dans un texte. Parmi les pionniers qui se sont intéressés à ce problème, on trouve
Flajolet et Martin avec leur algorithme “Probabilistic Counting” [42]. L’idée de base de cet algo-
rithme est de hacher n flots sur L bits, et de remarquer que la probabilité d’obtenir une séquence
du type “0k1...” dans la représentation binaire des valeurs hachées est 1/2k+1. En notant R la po-
sition du 0 le plus à gauche après hachage des n flots, les auteurs proposent d’utiliser n̂= 2E(R)/φ,
comme estimateur du nombre de flots, φ étant un facteur correctif. Pour évaluer E(R), le même
traitement est effectué en parallèle pour m fonctions de hachage différentes. L’erreur standard
de l’estimateur est 0.78/

√
m et la mémoire totale utilisé par l’algorithme est M = m log2 n. La

taille de la mémoire utilisée a été encore plus optimisée dans le cadre d’un autre algorithme “Lo-
gLog Counting” conçu par Durand et Flajolet dans [31]. Le principe de cet algorithme s’inspire
beaucoup de la technique utilisée dans l’algorithme précédent “Probabilistic counting”. L’amé-
lioration consiste à stocker uniquement la position du bit intéressant (R pour “Probabilistic
counting”) au lieu de stocker toute la séquence des L bits. Ainsi la mémoire totale utilisée de-
vient M = m log2 log2 n, d’où le nom de l’algorithme. Dans la pratique log2 log2 n = 5 bits.
L’erreur standard de l’estimateur fourni par cet l’algorithme “LogLog counting” est 1.04/

√
m

pour sa dernière version “HyperLogLog” par Flajolet, Fusy, Gandouet et Meunier [41].
Toujours dans le même contexte, on trouve aussi l’algorithme “mincount” décrit et analysé par
Giroire dans [44]. L’idée cruciale de cet algorithme est que l’espérance du minimum de n variables
aléatoires tirées au hasard dans [0,1] est 1/(n+ 1). Il est donc possible d’avoir une estimation
de n à partir de ce minimum. Le simple passage à l’inverse ne résout pas le problème car cet
inverse a une espérance infinie. Pour surmonter cet obstacle, l’auteur estime la moyenne du kème

minimum en utilisant des fonctions sous-linéaires. La précision de cet algorithme est 1/
√

m pour
une mémoire totale de l’ordre de m log2 n.

Bien que ces algorithmes fournissent une bonne estimation du nombre de flots en utilisant
une mémoire limitée, l’information qu’ils donnent en sortie reste assez réduite. Ils sont essentiel-
lement basés sur l’analyse de l’empreinte obtenue suite au hachage des flots. Dès qu’un flot est
haché on perd toute information sur son identifiant ou sa taille. Dans le cadre de la détection
des attaques par exemple, ces algorithmes sont incapables d’identifier les victimes ou les atta-
quants. Ces informations sont nécessaires pour un opérateur réseau afin de pouvoir intervenir
efficacement et arrêter l’attaque.

Outre ces algorithmes de comptage probabiliste, on trouve dans la littérature une deuxième
famille d’algorithmes adaptés à l’analyse du trafic Internet. Ces algorithmes sont basés sur les
tables de hachage (bitmap) appelées aussi filtres. Le premier filtre a été conçu par Bloom en
1970 [15]. Il s’agit d’une structure de données de taille fixe (m bits) qui à l’origine était conçue
pour répondre au problème d’appartenance d’un élément à un ensemble. Plus précisément, on
suppose que l’on dispose d’un ensemble de n éléments A = {x1,x2, ..,xn} et d’un élément x. En
utilisant le filtre de Bloom, on veut tester rapidement l’appartenance de x à A. L’idée est de
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Introduction

stocker dans le filtre une représentation abstraite de A. Pour cela, on initialise les m bits du filtre
à 0, et on utilise k fonctions de hachage hi aléatoires, indépendantes et à valeurs dans [1,m].
Pour chaque élément de A, les bits aux positions h1(xi),h2(xi), ..,hk(xi) sont mis à 1. Ensuite
pour tester si x appartient ou non à A, on considère les bits aux positions h1(x),h2(x), ..,hk(x).
Si au moins l’un de ces bits est nul, alors x n’appartient certainement pas à A, sinon il y a de
fortes chances que x soit dans A. Dans ce dernier cas, on ne peut pas affirmer avec certitude
l’appartenance de x à A à cause des collisions possibles entre x et les autres éléments de A. Une
collision entre deux éléments consiste à les associer à une même valeur par l’une des fonctions
de hachage. L’utilisation des filtres de Bloom a été ensuite étendue pour d’autres types d’appli-
cations notamment le comptage des flots par Estan et Varghese. En effet dans [35], les auteurs
proposent un algorithme “multiresolution bitmap” qui donne en ligne une bonne estimation du
nombre de flots en utilisant une mémoire fixe m (taille du filtre de Bloom). L’idée de départ de
cet algorithme est de hacher vers l’intervalle [1,m] l’identifiant du flot pour chaque paquet et de
mettre à 1 le bit indexé par cette valeur dans le filtre, tous les bits du filtre étant initialisés à 0 au
début. Le nombre de flots sera à la fin estimé par le nombre de bits à 1. Cette première version
de l’algorithme donne une bonne estimation du nombre de flots n sous condition d’utiliser une
mémoire linéaire en n. Cette restriction a été assouplie en divisant le filtre d’une façon astucieuse
en plusieurs parties correspondant à différentes résolutions.
Whang et al. utilisent dans [74] le même procédé de hachage mais, pour estimer le nombre de
flots, ils tiennent compte des collisions possibles entre les différents flots. Pour cela, ils intro-
duisent la proportion Vn de cases vides dans le filtre après hachage des n flots. Leur estimateur
est alors donné par n̂=−m log Vn. Ceci nous rappelle le problème du collectionneur de coupons.
Il s’agit en effet du nombre moyen de coupons à acheter pour remplir une proportion 1−Vn

des m places de l’album. Cet estimateur donne une erreur standard de l’ordre de 5% pour une
mémoire de taille m= n/10. On voit qu’un tel estimateur n’est pas adapté aux débits actuels.
On trouve aussi dans la littérature des études qui ne s’intéressent pas à tous les flots, mais fo-
calisent sur un type particulier à savoir les longs flots. Ces longs flots appelés aussi “éléphants”
ont suscité un intérêt particulier dans la communauté scientifique. Cet intérêt est motivé par
l’impact significatif de ce type de flots sur les performances du réseau. Bien que peu nombreux,
les éléphants contribuent au volume total du trafic dans une forte proportion. Contrairement
aux petits flots, le débit des éléphants est régulé par la boucle de contrôle de TCP. Les statis-
tiques sur les éléphants sont très utiles pour différents domaines comme la sécurité et l’ingénierie
du trafic. De plus dans certaines applications comme la facturation ou la détection d’attaques,
l’opérateur a besoin de la liste des éléphants (caractérisés par leurs adresses).

Les filtres de Bloom ont aussi été utilisés par Estan et Varghese dans [34] pour l’identification
des éléphants et l’estimation de la distribution de leur taille. Leur algorithme “Multistage filters”
utilise k filtres associés à k fonctions de hachage aléatoires et indépendantes hi ,1≤ i ≤ k. Chaque
filtre est une mémoire de m compteurs cette fois et non m bits. Pour chaque paquet reçu,
l’identifiant x du flot est haché et pout tout i, le compteur à la position hi(x) est incrémenté de
1, dans le ième étage. L’estimation de la taille du flot x est alors donnée par le minimum des
compteurs qui lui sont associés mini(hi(x)). Ces compteurs ne sont pas forcément égaux à cause
du problème de collision entre les flots. C’est le fait que deux flots différents peuvent être hachés
vers la même valeur par l’une des fonctions de hachage. Les deux flots vont donc incrémenter
le même compteur dont la valeur ne sera plus significative. Pour faire face à ce problème, un
mécanisme d’incrémentation conservative a été introduit. Il s’agit simplement d’incrémenter le
minimum des k compteurs mini(hi(x)) et non pas tous les compteurs. Ainsi l’utilisation de k
filtres réduit les collisions entre les flots et atténue par conséquent la surestimation de la taille
des flots. Quand tous les compteurs relatifs à un flot donné dépassent un certain seuil S, ce flot
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sera déclaré comme éléphant et sera stocké dans une mémoire dédiée. Quelle que soit la taille
des filtres, ce comptage ne peut pas être effectué sur le trafic Internet indéfiniment. En effet, vu
le nombre gigantesque de flots, les compteurs des filtres vont tous augmenter au fur et à mesure
que les paquets arrivent et, à partir d’un certain moment, ils dépasseront tous le seuil S. Dans
ce cas, tous les nouveaux flots seront déclarés éléphants. Pour remédier à ce problème, Estan
et Varghese proposent de rafrâıchir les filtres en réinitialisant tous les compteurs à 0 toutes les
5 secondes. Les résultats par cette méthode dépendent fortement de l’intensité du trafic. Les
éléphants risquent d’être manqués s’ils ne parviennent pas à émettre S paquets en 5 secondes.
Inversement, dans le cas d’un trafic très intense, cette fréquence de rafrâıchissement des filtres
peut s’avérer insuffisante, auquel cas le nombre d’éléphants sera surestimé. Ce paramètre de 5
secondes ne doit donc pas être statique, et préalablement fixé. Il faut que l’algorithme puisse
choisir cette durée automatiquement et la changer au cours du temps en fonction des variations
de l’intensité du trafic.

Dans sa thèse [6], Azzana s’est particulièrement intéressé à ce problème. Rappelons que l’ob-
jectif de cette méthode est de fournir la liste des éléphants. Azzana a introduit un mécanisme
d’effacement adaptatif qui permet de rafrâıchir les filtres avec une fréquence qui dépend de l’in-
tensité du trafic. Cette fréquence est choisie d’une façon dynamique au cours du déroulement de
l’algorithme de façon à s’adapter aussi aux variations du trafic. Nous avons ici repris la méthode
pour la développer, l’améliorer et l’adapter à la détection des attaques dans le trafic Internet.

Les algorithmes d’identification des grands flots ont plusieurs domaines d’application notam-
ment la détection d’attaques par déni de service (DoS). Ces attaques affectent la disponibilité
des ressources en empêchant un réseau ou un ordinateur de fournir son service habituel. Les at-
taques DoS les plus fréquentes visent la connectivité ou la bande passante d’un ordinateur. Elles
empêchent les utilisateurs légitimes de se connecter sur le serveur soit en inondant le réseau par
un grand volume de trafic qui consomme la totalité de la bande passante (Volume flood) ou en
envoyant au serveur un grand nombre de demandes de connexions qui épuisent sa capacité (Syn
flood). Hussain et al. proposent dans [52] une classification plus complète des attaques DoS.
Selon une étude réalisée en 2001, 90% des attaques DoS utilisent TCP précisément le Syn flood
[32]. Tout système qui offre un service basé sur TCP est donc vulnérable aux attaques DoS par
Syn flood (serveur Web, serveur FTP, serveur mail....). Le Syn flood exploite une faiblesse dans
la conception de la phase de connexion de TCP : Pour chaque demande, le serveur maintient
une connexion semi-ouverte pendant un délai de 75 secondes en attendant la réponse pour fi-
naliser l’établissement de la connexion. Pour épuiser la capacité d’un serveur, il suffit donc de
lui envoyer plusieurs demandes de connexion, sous forme d’un grand nombre de paquets Syn,
en une brève durée. Un paquet Syn est simplement un paquet IP avec l’option Syn dans l’en-
tête, il se traduit par une demande d’établissement de synchronisation de numéro de séquence.
L’établissement des connexions n’étant jamais achevé, on arrive alors à occuper inutilement une
partie des ressources du serveur pendant une certaine durée. Quand le nombre de demandes de
connexions est suffisamment grand, le serveur doit rejeter toute nouvelle demande car toutes ses
ressources sont occupées.
En utilisant une définition adéquate d’un flot, certaines attaques DoS peuvent se traduire au
niveau réseau par un très grand flot. Pour détecter un Syn flood par exemple, il est naturel
de commencer par agréger les paquets Syn par adresse de destination et de chercher ensuite les
destinations qui reçoivent un nombre inhabituel de paquets Syn. Autrement dit, on définit le flot
comme un ensemble de paquets Syn ayant même destination et on cherche les flots ayant une
taille “anormale”. Il faut bien sûr fixer des seuils pour faire la différence entre le trafic légitime
et les attaques. En général, une attaque est définie comme une déviation notable par rapport à
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un comportement standard, mais il n’existe pas de seuil universel pour caractériser cette dévia-
tion. D’où une difficulté supplémentaire du problème de détection des attaques par rapport à
l’identification des grands flots.
Dans la littérature sur la détection d’attaques, les méthodes basées sur l’analyse de flots souffrent
en général d’un problème de passage à l’échelle. Elles sont applicables sur une centaine de flots
mais elles ne sont pas adaptées à un trafic intense avec des millions de flots. Dans ce contexte,
Lakhina et al. [61] proposent une méthode de détection des attaques DoS utilisant comme obser-
vable le nombre de paquets par flot sous forme de séries temporelles. L’idée est de surveiller au
cours du temps l’évolution du nombre de paquets pour chaque flot. Étant basée sur un comptage
exact, cette méthode devient très vite lente et gourmande en mémoire pour un grand nombre
de flots. Dans [71] Cheng et al. proposent une méthode similaire analysant le taux d’arrivée des
paquets par flot. Par un procédé de traitement de signal, ils remarquent que RTT (Round-Trip
Time) impose une certaine périodicité dans le signal lié à l’arrivée des paquets par flot. Une
attaque sera alors définie comme une perturbation de cette périodicité. L’inconvénient de cette
méthode est que si l’attaquant envoie des attaques périodiques, elles ne seront pas détectables. De
plus, la périodicité liée à RTT ne semble pas très robuste. Le problème majeur avec ces méthodes
demeure celui du passage à l’échelle. Une façon de surmonter ce problème est de compacter l’in-
formation sur les flots en utilisant les filtres appelés aussi “sketches”. Les sketches permettent de
réduire la dimension et d’éviter de maintenir un état par flot. L’avantage des sketches est le fait
qu’ils utilisent une mémoire constante, indépendante du nombre de flots. Ils assurent aussi un
traitement assez rapide. Dans ce contexte Zhang et al. [70] proposent une méthode utilisant les
séries temporelles calculées à l’aide des sketches. Les sketches permettent d’estimer rapidement
le nombre de paquets par flot. Pour détecter l’attaque, les auteurs utilisent la méthode suivante :
on commence par estimer les valeurs futures des sketches en se basant sur les observations pas-
sées, puis on compare cette estimation aux valeurs réelles. Si la différence dépasse un certain
seuil, une alarme sera déclenchée. Une approche récente développée par Benmammar et al. dans
[13] consiste à filtrer d’abord le trafic avec les sketches, afin d’identifier et mettre à jour le top
M correspondant à la liste des M adresses les plus sollicitées. Ensuite les données censurées sont
analysées grâce à une méthode statistique de détection de ruptures fondée sur un test de rang
non-paramétrique. L’idée de cette méthode est de suivre au cours du temps la variation du trafic
reçu par chaque destination faisant partie des machines les plus sollicitées. Si cette variation
correspond à une augmentation importante, l’adresse en question sera considérée comme atta-
quée. L’inconvénient de cette approche est qu’elle permet de détecter au plus M attaques à un
instant donné. Toujours dans le même esprit Chatelain et al. proposent dans [21] un algorithme
de détection des attaques basé sur les sketches. La détection des anomalies est formulée comme
un test statistique de valeurs aberrantes, le trafic normal étant modélisé par des lois Gamma.
La faiblesse de cette méthode est qu’elle est incapable de déterminer la nature de l’attaque car
elle ne manipule pas les flots.

1.2 Notre contribution

Définition éléphant/souris
Nous nous sommes particulièrement intéressés à l’étude des longs flots (appelés aussi éléphants
par opposition à souris). La dichotomie éléphant/souris a été largement abordée dans la littéra-
ture car elle facilite l’analyse des caractéristiques du trafic. En effet, ces deux types de flots ont
des caractéristiques différentes et agissent différemment sur les performances du réseau. A l’ori-
gine, la notion éléphant/souris était liée au mécanisme de contrôle de congestion du protocole
TCP. Les éléphants correspondent à des volumes de transferts assez importants et leurs débits
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sont régulés par la boucle de contrôle de TCP afin de partager la bande passante d’une façon
équitable. Par contre, les souris sont des transferts de données de courte durée. Elles ne sont
pas assez volumineuses pour pouvoir s’adapter au mécanisme de contrôle de congestion imposé
par TCP. En effet, elles ne dépassent pas la phase de slow start. Une souris est souvent définie
comme un flot comprenant un nombre de paquets inférieur à 20. Un éléphant est un flot qui
n’est pas souris. Cette définition a été ensuite élargie à différents autres contextes.

La définition éléphant/souris utilisée dans cette thèse n’est pas unique, mais varie suivant
le contexte. Cette classification est essentiellement basée sur la taille du flot, mais la frontière
séparant les deux catégories est variable en fonction du problème traité. Nous établissons dans
le chapitre 5 une méthode permettant d’estimer le seuil (en nombre de paquets) séparant les
éléphants et les souris, en se basant sur un changement de l’allure de la distribution de la taille
des flots . Nous montrons également que ce seuil dépend du trafic considéré. Par contre, dans
le domaine des attaques, nous proposons une autre définition d’éléphants/souris car dans ce
contexte l’éléphant représente l’attaque et se traduit par une nette déviation par rapport à un
comportement standard. De plus, la définition du flot dépend à son tour de l’application. Un flot
est un ensemble de paquets IP avec certains champs communs, choisis en fonction de l’objectif de
la mesure. La notion d’éléphant/souris sera définie dans chaque chapitre de cette thèse suivant
le contexte.

La majorité des algorithmes proposés dans la littérature fournissent une information réduite
sur les flots. Ils estiment en général le nombre total de flots sans pouvoir donner plus de dé-
tails sur la distribution des tailles des flots ou sur les identifiants des longs flots. Pourtant, ces
informations sont très intéressantes et très utiles pour l’opérateur réseau. De plus, même si ces
algorithmes peuvent fonctionner en ligne grâce au mécanisme de hachage des flots, ils ont sou-
vent un problème d’adaptation aux variations du trafic.

Dans cette thèse nous avons choisi d’étudier plus en profondeur et d’améliorer l’algorithme
proposé par Azzana. Rappelons que cet algorithme permet d’identifier et de compter les longs
flots en se basant sur les filtres de Bloom. Pour éviter de saturer les filtres, Azzana introduit
un mécanisme de rafrâıchissement dont la fréquence suit les variations de l’intensité du trafic.
Le principe du rafrâıchissement est de maintenir le taux de remplissage des filtres au dessous
d’un certain seuil. Le taux de remplissage est défini comme la proportion de cases non nulles.
Intuitivement, moins les filtres sont remplis, moins un nouveau flot risque d’être haché vers
des compteurs associés à d’autres flots. Contrôler le taux de remplissage est donc une façon
d’atténuer les collisions entre les flots. Il est très important de limiter les collisions, faute de
quoi le comptage sera erroné et les tailles de tous les flots seront surestimés. En particulier, s’il
y a beaucoup de collisions, une souris a toutes les chances d’être hachée vers des compteurs
égaux à la taille minimale des éléphants, elle sera donc considérée comme éléphant. Les détails
de l’algorithme sont expliqués dans le Chapitre 2. Dans ce chapitre, nous proposons également
une étude théorique des performances de l’algorithme pour évaluer son erreur moyenne sur
l’estimation du nombre d’éléphants. On cherche en particulier à quantifier les faux positifs, c’est
à dire le nombre de petits flots (appelés aussi souris) que l’algorithme considère comme des
éléphants. Pour ce faire, nous utilisons un modèle simplifié où le trafic est uniquement composé
de flots à un seul paquet. Nous montrons que le problème peut être formulé avec une file d’attente
M/G/1/C, ce qui facilite l’étude et nous permet moyennant quelques hypothèses d’exprimer le
nombre de faux positifs en fonction des différents paramètres de l’algorithme. L’analyse a été
ensuite généralisée à des souris de taille quelconque.

Une nouvelle version de l’algorithme est proposée dans le chapitre 1. Intuitivement, pour
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limiter les faux positifs (les souris considérées comme éléphant par l’algorithme), il faut que les
compteurs aient des valeurs suffisamment basses comparées à la taille minimale des éléphants.
Dans certaines configurations, le contrôle du taux de remplissage des filtres est insuffisant à la
réalisation de cette condition. En se basant sur cette remarque, nous introduisons un nouveau
mécanisme de rafrâıchissement contrôlé par la valeur moyenne des compteurs non nuls. Il s’agit
d’une nouvelle façon de caractérisation de la charge des filtres. L’idée est de procéder au rafrâı-
chissement dès que cette valeur atteint un certain seuil. Cette méthode améliore les résultats de
l’ancien algorithme dans le cas où la taille moyenne des souris n’est pas très petite comparée
à la taille minimale des éléphants. A titre d’exemple, si on considère un trafic avec des souris
de taille moyenne la moitié de la taille minimale C d’un éléphant, il suffit que deux souris col-
lisionnent pour que leur compteur associé soit à C générant ainsi un faux positif. Pour éviter
cette situation, on se fixe un seuil pour la valeur moyenne des cases remplies. L’algorithme ainsi
obtenu est testé sur différents types de trafic. Les résultats sont comparés à ceux de l’algorithme
d’origine.

Dans le chapitre 1, nous développons aussi un nouvel algorithme de détection en ligne des
attaques par Syn flood et par Volume flood. Cet algorithme s’inspire de l’algorithme d’identi-
fication des grands flots discuté dans le chapitre 2. Pour repérer les attaques, les paquets sont
agrégés par adresse de destination, d’où une nouvelle définition du flot. L’algorithme proposé
est aussi basé sur les filtres de Bloom, mais avec un mécanisme de rafrâıchissement plus agressif.
En effet, dans ce nouveau contexte, le but du rafrâıchissement des filtres est d’éliminer rapide-
ment le trafic normal pour ne garder dans les filtres que les flots susceptibles de correspondre
à des attaques. Même avec un rafrâıchissement agressif, l’attaque sera toujours détectable car
elle s’écarte d’une façon considérable du comportement standard. Ceci n’est pas vrai dans le
cas de la détection des éléphants car la frontière entre souris et éléphants est très sensible (plus
ou moins de C paquets). Le nouvel algorithme a été testé en ligne sur un trafic contenant des
attaques et a fourni de bons résultats avec un délai de détection suffisamment court.

2 Inférence des paramètres du trafic par échantillonnage

2.1 Les méthodes existantes

Plusieurs travaux de recherche ont été menés autour de l’échantillonnage, dont les RFC et
les spécifications récemment réalisées par le groupe de travail “PSAMP” (Packet SAMpling) de
l’IETF [1]. PSAMP spécifie plusieurs méthodes d’échantillonnage que l’on va décrire.

L’échantillonnage est dit déterministe lorsque les instants d’échantillonnage sont connus à
l’avance. Il peut être, soit basé sur le temps (par exemple, on sélectionne un paquet toutes les 5s),
ou sur le nombre de paquets (par exemple, on sélectionne un paquet sur 100). L’échantillonnage
déterministe peut aussi être apériodique.

Un deuxième type d’échantillonnage est l’échantillonnage aléatoire ou probabiliste. Pour ce
type d’échantillonnage, chaque paquet a une probabilité p d’être sélectionné. L’échantillonnage
est uniforme si p est constante. Dans le cas contraire, les paquets n’ont pas la même chance
d’être sélectionnés, mais on donne plus de chance à certains paquets en fonction de leur contenu,
taille... Pour la facturation, par exemple, Duffield et al. [59] proposent une méthode d’échan-
tillonnage probabiliste basée sur la taille des flots. Cette méthode permet d’échantillonner avec
une grande probabilité les flots ayant un volume assez important. Ainsi, ils estiment le volume
de trafic appartenant à un client particulier si sa consommation dépasse un certain seuil. Cette
mesure est utilisée comme base de facturation de ce client en fonction de son usage. Duffield et
al. montrent que les résultats obtenus par un tel échantillonnage sont nettement meilleurs que
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ceux issus d’un échantillonnage déterministe. Cette idée est théoriquement intéressante, mais
elle est incompatible avec un fonctionnement en ligne. Elle nécessite le traitement de chaque
paquet pour calculer la probabilité de le sélectionner en fonction de sa taille, ce qui représente
une tâche lourde. Outre la facturation, l’échantillonnage est utilisé afin de détecter les variations
des caractéristiques du trafic qui peuvent être causées par le changement de comportement des
utilisateurs ou simplement par des accidents au niveau des équipements réseau. Il est nécessaire
de s’apercevoir assez rapidement de ces variations pour pouvoir intervenir d’une manière efficace.
Dans ce contexte, Choi et al. [22] proposent un mécanisme d’échantillonnage probabiliste avec
un taux adaptatif permettant d’estimer avec une bonne précision le volume total du trafic en
octets. Le taux d’échantillonnage dépend d’une part de l’erreur tolérée sur l’estimation de la
charge du lien et d’autre part de la distribution des tailles des m derniers paquets reçus. Il est
proportionnel au coefficient S= (ν/σ)2 où σ et ν sont respectivement la moyenne et l’écart type
des tailles des paquets. Un modèle auto-régressif est utilisé afin d’actualiser le taux d’échantillon-
nage. La fréquence de la mise à jour doit être convenablement choisie pour résoudre le problème
du compromis entre la rapidité de la détection de la variation de la charge et la quantité des
calculs à réaliser. Ainsi le mécanisme d’échantillonnage adaptatif présenté dans leur étude dé-
termine d’une manière dynamique le taux d’échantillonnage minimal permettant d’atteindre le
niveau d’exactitude souhaité pour l’estimation du volume du trafic. D’un point de vue pratique,
l’échantillonnage s’effectue au niveau du routeur qui a des ressources limitées consacrées essen-
tiellement à sa fonction principale à savoir le routage. L’échantillonnage doit donc surcharger
au minimum le routeur. Sur le plan opérationnel, seul l’échantillonnage déterministe est implé-
menté dans les routeurs, notamment par les sondes NetFlow de Cisco. Sur un lien haut débit, il
parâıt inconcevable qu’un routeur teste certains champs ou le contenu de chaque paquet pour le
sélectionner. Ainsi les deux algorithmes présentés ci-dessus ne sont pas adaptés à un traitement
en ligne car ils sont tous les deux basés sur l’étude des tailles des paquets (moyenne, variance).

Aboutir à des statistiques sur le trafic réel en examinant uniquement le trafic échantillonné
est une tâche difficile. En effet, il faudra compenser la perte d’information causée par l’échan-
tillonnage en tenant compte de son effet sur les différentes statistiques. Toutefois, certaines
caractéristiques générales du trafic sont relativement simples à inférer à partir du trafic échan-
tillonné. A titre d’exemple, il est tout à fait simple d’estimer le volume total du trafic réel en
octets ou en paquets à partir de l’échantillonnage déterministe de taux 1/N. En effet, le volume
du trafic échantillonné n’est par définition de l’échantillonnage qu’une fraction 1/N du volume
du trafic original. Ceci est dû au fait que grâce à l’échantillonnage déterministe, on sélectionnera
exactement un paquet tous les N paquets. Ainsi, si on note P et p̂ le nombre de paquets respec-
tivement dans le trafic original et échantillonné, alors P̂ = Np̂ est un estimateur non biaisé de
P. De même, soit B le volume du trafic original en octets et b̂ le volume du trafic échantillonné,
alors B̂ = Nb̂ est un estimateur non biaisé de B. Pour le cas de l’échantillonnage probabiliste
1/N, Duffield et al. [29] montrent que P̂ et B̂ sont aussi deux estimateurs non biaisés de P et B.
Les erreurs standards de ces deux estimateurs sont respectivement :

√
VarP̂
P

≤
√

N
P

et

√
VarB̂
B

≤
√

N
P

bmax

bavr

avec bmax et bavr sont respectivement la taille maximale et moyenne des paquets.
Le débit global du trafic original peut simplement être obtenu en divisant le débit du trafic
échantillonné par le taux d’échantillonnage.
De plus, avec l’échantillonnage probabiliste ou déterministe, la sélection d’un paquet est com-
plètement indépendante de sa taille. Ainsi, le trafic échantillonné est constitué d’un ensemble de
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paquets choisis aléatoirement parmi les paquets du trafic original. La taille moyenne des paquets
dans le trafic original peut donc être estimée par la taille moyenne des paquets dans le trafic
échantillonné.

Contrairement aux caractéristiques générales du trafic, les paramètres de composition en flots
du trafic sont très sensibles à l’échantillonnage. Il n’est pas évident d’inférer des informations
sur les flots du trafic original en examinant simplement le trafic échantillonné. En effet, suite à
l’échantillonnage, certains flots du trafic réel ne sont pas détectés et ne seront pas pris en compte
dans les mesures faites sur le trafic échantillonné. Dans ce contexte, Duffield et al. proposent
une méthode d’estimation du nombre de flots TCP basée sur les paquets SYN qui annoncent
les débuts des connexions TCP [28]. Ils supposent pour cela que chaque flot TCP comporte un
seul paquet SYN émis au début du transfert. Si on note P̂SYN le nombre de paquets SYN dans
le trafic échantillonné, alors le nombre de flots TCP dans le trafic réel est donné par F̂ = NP̂SYN,
où 1/N est le taux d’échantillonnage. L’efficacité de cette estimation dépend de la réalisation de
leur hypothèse. En effet, dans le cas des applications pair à pair, par exemple, un flot contient
en général plusieurs paquets SYN, d’où une surestimation du nombre total de flots (voir [7]).

Dans [64], Mori et al. proposent une technique basée sur l’échantillonnage déterministe pour
identifier les éléphants. A l’aide du théorème bayésien, on calcule le seuil du nombre de paquets
échantillonnés pour un flot donné pour que ce dernier soit considéré comme éléphant. La valeur
du seuil est choisie de telle façon à minimiser la proportion de faux négatifs tout en vérifiant que
la proportion de faux positifs reste assez faible. Les auteurs supposent une connaissance à priori
de la distribution des tailles des flots qu’ils considèrent à queue lourde. Avec cette méthode et
en utilisant un taux d’échantillonnage modéré, ils estiment avec une bonne précision le nombre
d’éléphants et les identifient.
Toujours dans le même contexte, Jean-Marie et Gandouet ont récemment proposé une autre
approche pour estimer le nombre d’éléphants (voir [43]). Pour cela, ils comptent par l’une des
méthodes existantes dans la littérature le nombre total de flots. Ils prennent le cas idéal où le
trafic est composé uniquement de deux types de flots : les petits flots ont exactement α paquets
et les grands flots ou les éléphants contiennent exactement αλ paquets. Sous ces conditions, et
en utilisant l’échantillonnage probabiliste de taux p, la probabilité d’échantillonner un petit flot
ou un éléphant est respectivement donnée par f = 1− (1− p)α, et g= 1− (1− p)αλ. L’estimateur
ne du nombre d’éléphants se déduit alors facilement de la résolution du système suivant :

n = ne+nm et n′ = gne+ f nm

où n et n′ sont respectivement le nombre de flots dans le trafic réel et échantillonné et nm est
l’estimation du nombre de petits flots. L’inconvénient de cette méthode est qu’elle nécessite une
séparation nette entre les tailles des éléphants et des petits flots, ce qui n’est pas forcément le
cas dans le trafic Internet.
Dans [9], Ben Azzouna et al. proposent de déterminer la distribution de la durée des éléphants
à partir du trafic échantillonné. Pour cela, les flots actifs sont modélisés comme les clients dans

une file M/G/∞ avec un temps de service qui suit une loi de Weibull (P(σ ≥ x) = e−( x
η )β

avec
β > 0 et η > 0). Ils montrent qu’il est possible d’inférer les deux paramètres de cette loi par
analyse du trafic échantillonné, car la loi de la durée de transmission dans le trafic échantillonné
est de même nature. Mais cette méthode manque de robustesse car elle repose sur les queues
des distributions difficiles à déterminer dans le trafic échantillonné.

Outre l’échantillonnage des paquets, on trouve dans la littérature un deuxième type d’échan-
tillonnage moins connu qui est l’échantillonnage des flots. Cet échantillonnage a pour but la
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constitution d’un échantillon aléatoire et représentatif de l’ensemble de tous les flots. Son prin-
cipe est de sélectionner tous les flots avec la même probabilité indépendamment de leurs tailles.
Un flot choisi sera entièrement (par tous ses paquets) présent dans le trafic échantillonné. Flajo-
let montre dans [40] qu’à partir de cet échantillon aléatoire, on peut estimer le nombre total de
flots et même la distribution de leur taille dans le trafic réel. Pour cela il analyse un algorithme
d’échantillonnage adaptatif des flots conçu par Wegman. Le principe de cet algorithme est de
hacher sur D bits l’identifiant du flot pour chaque paquet et de stocker dans une mémoire de
taille m uniquement les flots dont les d premiers bits sont des 0. Ceci revient à échantillonner
les flots avec une probabilité de 1/2d. Le paramètre d est configuré dynamiquement au cours du
déroulement de l’algorithme de telle façon à optimiser l’utilisation de la mémoire. F̂ = 2d f̂ , où f̂
est le nombre de flots dans le trafic échantillonné, est un estimateur non biaisé du nombre total
de flots dans le trafic original. L’erreur standard de cet estimateur est 1.20/

√
m.

2.2 Contribution

L’échantillonnage du trafic réduit certes le volume de données à traiter mais il engendre
aussi une perte d’information considérable. Par conséquent il est très difficile d’aboutir à des
informations à l’échelle du flot à partir du trafic échantillonné. Ceci explique le fait que dans la
littérature on trouve très peu de méthodes robustes permettant d’inférer les caractéristiques des
flots par échantillonnage.

Dans cette thèse, nous nous sommes particulièrement intéressés à ce problème. D’abord, dans
le chapitre 4 nous avons comparé les deux types d’échantillonnage (déterministe et probabiliste).
Dans la pratique c’est l’échantillonnage déterministe qui est le plus utilisé, mais pour modéliser
et analyser théoriquement les résultats de l’échantillonnage, il est plus intéressant de considérer
l’échantillonnage probabiliste. Nous avons donc montré que, sous condition que les paquets des
différents flots soient suffisamment mélangés, ces deux méthodes d’échantillonnage donnent des
résultats équivalents du point de vue composition du trafic échantillonné (nombre de flots, tailles
des flots). Nous avons aussi montré que si la queue de distribution des flots est lourde (loi de
Pareto par exemple), ce qui est souvent le cas, elle peut être inférée à partir de la queue de
distribution de la taille des flots dans le trafic échantillonné par une simple division par le taux
d’échantillonnage.

Les chapitres 5 et 6, sont dédiés à la caractérisation de la distribution de la taille des longs
flots. Dans un premier temps, en considérant différents types de trafic (académique et commer-
cial), on a remarqué que sur une échelle de temps assez longue (de l’ordre de quelques heures), la
distribution de la taille des éléphants présente une allure multi-modale. Elle peut être approchée
par deux ou trois lois de Pareto, en fonction de l’intervalle de taille considéré. Cependant, sur
une petite fenêtre de temps ∆ convenablement choisie, la distribution de la taille des éléphants
a clairement un unique comportement et peut être représentée par une seule loi de Pareto. Le
choix de ∆ est soumis au compromis suivant : il faut considérer une durée assez courte pour éviter
le comportement multi-modal, en même temps, le nombre de flots observés sur cette durée doit
être significatif pour pouvoir faire des statistiques. On propose dans le chapitre 5 une méthode
expérimentale permettant de bien choisir la durée ∆ et de trouver les différents paramètres de la
loi de Pareto à partir du trafic total. Cette méthode permet en particulier de trouver, en fonc-
tion du trafic considéré, les tailles des flots pour lesquels l’approximation par la loi de Pareto
est valable. En effet, les petits flots (souris) sont exclus car ils ont un comportement différent.
De même pour les très grands flots, l’approximation avec la loi de Pareto n’est pas bonne car
expérimentalement les tailles des flots sont bornées sur une durée ∆, alors que théoriquement ce
n’est pas le cas. Les tailles sont distribuées suivant une loide Pareto. L’avantage de cette méthode
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est qu’elle est générale et ne nécessite aucune information à priori sur le trafic en question. Elle a
été testée et validée sur des traces de trafic appartenant à France Télécom et au réseau Abilène.
Dans un deuxième temps, on suppose qu’on ne dispose que du trafic échantillonné. En faisant
l’hypothèse que la distribution de la taille des flots dans le trafic original suit une loi de Pareto,
on cherche à caractériser cette loi à partir des informations contenues dans le trafic échantillonné
uniquement. Nous avons développé une nouvelle méthode permettant d’estimer, à partir du tra-
fic échantillonné, les paramètres de cette loi de Pareto, la durée d’observation ∆, et le nombre
total d’éléphants présents dans le trafic réel. Cette méthode est basée sur Wk le nombre de flots
vus k fois après échantillonnage, c’est-à-dire le nombre de flots ayant k paquets dans le trafic
échantillonné. Cette observable peut être facilement obtenue par comptage dans le trafic échan-
tillonné. La durée ∆ est par exemple choisie de telle façon que W2 soit assez grand pour garantir
un nombre de flots suffisamment grand dans le trafic initial. On montre aussi que sous certaines
conditions, on peut exprimer les paramètres de la loi de Pareto en fonction de Wk et Wk+1, pour
un k convenablement choisi. Ainsi, en faisant une hypothèse sur la distribution de la taille des
éléphants, nous avons pu exploité l’information réduite donnée par l’échantillonnage pour inférer
les caractéristiques des longs flots dans le trafic d’origine. Cette hypothèse compense en quelque
sorte la perte d’information causée par l’échantillonnage.
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Introduction

To be efficient, network traffic measurement methods have to be adapted to the actual traffic
characteristics. Internet links currently carry a huge amount of data at a very high bit rate (40
Gb/s in OC-768). To analyze on-line this traffic, scalable algorithms are required. They have
to operate fast, using a limited small memory. The traffic is mainly analyzed at the flow level.
A flow is a sequence of packets defined by the classical 5tuple composed of the source and
destination addresses, the source and destination port numbers together with the protocol type.
Flow statistics are very useful for traffic engineering and network management. In particular,
information about large flows (also called elephants) is very interesting for many applications.
The convention is to fix a threshold C and to call elephant any flow having more than C packets.
Elephants are not numerous (around 5 to 20% of the number of flows), but they represent the
main part (80-90%) of the traffic volume in terms of packets. Elephant statistics can be exploited
in various fields such as attack detection or accounting. For many applications, it is important
to design on-line algorithms that can identify some of these long flows on the fly.

Due to the very high bit rate and the huge number of flows in IP traffic, it is unrealistic to
maintain data structures that can handle the set of active flows. Indeed, maintaining the list
of active flows and updating counters for each of them is hardly possible in an on-line context.
Consequently, only an estimation of the characteristics of elephants can be expected within these
constraints.

A natural solution to cope with the huge amount of data in IP traffic is to use hash tables.
A data structure using hash tables, a Bloom filter, proposed by B. Bloom [15] in 1970, has been
used to test whether an element is a member of a given set. Bloom filters have been used in
various domains : database queries, peer-to-peer networks, packets routing, etc. See Broder and
Mitzenmacher [16] for a survey. Bloom filters have been used by Estan and Varghese [34] to
detect large flows, see the discussion below.

A Bloom filter consists of k tables of counters indexed by k hash functions. The general
principle is the following : for each table, the flow ID of a given packet is hashed onto some
entry and the corresponding counter is incremented by 1. Ideally, as soon as a counter exceeds
the value C, it should be concluded that the corresponding flow has more than C packets.

Unfortunately, since there is a huge number of small flows, it is very likely for instance
that a significant fraction (i.e. more than C for example) of them will have the same entry,
incrementing the same counter, thereby creating a false large flow. To avoid this problem, Estan
and Varghese [34] propose to periodically erase all counters. Without any a priori knowledge on
traffic (intensity, flow arriving rate, etc.) which is usually the case in practical situations, the
erasure frequency can be either

1. too low, and, in this case, the filters can be saturated : Because of the large number of small

15



flows, many of them may be hashed on the same entry of the hash table and, therefore, the
corresponding counter is increased accordingly, and consequently creating a “false” large
flow.

2. too high and a significant fraction of elephants can be missed in this case : Indeed, the
value of the counter of a given entry corresponding to a large flow with a low throughput
may not reach the value C if the value of this entry is set to 0 too often.

The efficiency of the algorithm is therefore highly dependent on the period T of the erasure
mechanism of the filters. This quantity is clearly related to the traffic intensity.

Azzana in [6] proposes an improvement for this algorithm by adding a refreshment mecha-
nism that depends on traffic variations. The idea is to decrease all counters by one every time
the proportion of non null counters reaches a given threshold r. In this way, the refreshment
frequency of the filter depends closely on the actual traffic intensity. Notice that the algorithm
uses an improvement, the min-rule, also called conservative update in [34]. It consists in incre-
menting only the counters among k having the minimum value, for an arriving packet. Indeed,
because of collisions, the flow size is greater than or equal to the smallest associated counters,
in the ideal configuration where no packet is lost because of the refreshment mechanism. So the
min-rule tends to reduce the overestimation of flow size.

Our contribution is the following : In chapter 1, we propose an improvement to the algorithm
proposed by Azzana using a new refreshment mechanism. A modified version of the algorithm
is also designed in this work to attacks detection. A theoretical analysis of Azzana algorithm is
presented in chapter 2. The aim of the analysis is to evaluate the proportion of false positives
generated by the algorithm, using a simple model. In chapter 3, we use the supermarket model
to study the impact of the min-rule (described above) on the performance of the algorithm.
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We propose in this chapter an on-line algorithm based on Bloom filters for identifying large
flows in IP traffic (a.k.a. elephants). Because of the large number of small flows, hash tables of
these algorithms have to be regularly refreshed. Recognizing that the periodic erasure scheme
usually used in the technical literature turns out to be quite inefficient when using real traffic
traces over a long period of time, we introduce a simple adaptive scheme that closely follows
the variations of traffic. When tested against real traffic traces, the proposed on-line algorithm
performs well in the sense that the detection ratio of long flows by the algorithm over a long
time period is quite high. Beyond the identification of elephants, this same class of algorithms is
applied to the closely related problem of detection of anomalies in IP traffic, e.g., SYN flood due
for instance to attacks. For that purpose, an original algorithm for detecting SYN and volume
flood anomalies in Internet traffic is designed. Experiments show that an anomaly is detected in
less than one minute and the targeted destinations are identified at the same time.
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Chapitre 1. Adaptive algorithms for the identification of large flows

1.1 Introduction

Problem statement

We address in this chapter the problem of designing an on-line algorithm for identifying long
flows in IP traffic. From the point of view of traffic engineering, this is an important issue. This is
also an illustrative and simple example exhibiting the importance for on-line algorithms to adapt
to traffic variations. Traffic variations within a flow of packets may be due to several factors but
the way the TCP protocol adapts the throughput of connections based on the congestion of the
network, notably through the number of packet losses, naturally leads to a stochastic behavior
in the arrival patterns of packets. This is a crucial issue which is sometimes underestimated in
the technical literature. Moreover, as it will be seen in the second part, the methods developed
for this problem can be in fact used to design a quite efficient anomaly detection algorithm.

An algorithm which can satisfactorily run in some instances on limited traces can fail when
handling a large traffic trace (e.g., several hours of transit network IP traffic) because of various
reasons :

1. Performances deteriorate with time. The size of data structures increases without bounds
as well as the time taken by the algorithm to update them.

2. Poor performances occur even from the beginning. Quite often, algorithms depend (so-
metimes in a hidden way in the technical literature) on constants directly related to the
traffic intensity. For a limited set of traces, they can be tuned “by hand” to get reasonable
performances. This procedure is, however, not acceptable in the context of an operatio-
nal network. As a general requirement, it is highly desirable that the constants used by
algorithms automatically adapt, as simply as possible, to varying traffic conditions.

Identification of large flows

Starting from Estan and Varghese’s algorithm, an algorithm based on Bloom filters with an
additional structure, the virtual filter, and a completely adaptive refreshment scheme is proposed.
As it will be seen, the proposed algorithm, based on simple principles, significantly improves the
accuracy of algorithms based on Bloom filters. Moreover, the role of the constants used by the
algorithm is thoroughly discussed to avoid the shortcomings mentioned above.

Anomaly detection

An interesting application field of these methods is the detection of anomalous behavior, for
instance due to denial of service. During such an attack, a victim is the target of a huge number
of small flows coming from numerous sources connected to the network. An on-line identification
of such anomalous behavior is necessary for a network administrator to be able to react quickly
and to limit the impact of the attack on the victim. The main problem is in this case to be
able to separate quantitatively “normal” variations of traffic from these sudden bursts of traffic.
Here again, adaptive properties of the detection algorithms to traffic conditions are essential to
distinguish between normal variations of traffic and attacks.

Via an adequate aggregation by destination addresses, the problem is expressed in terms of
the detection of a single large flow. The problem is then analogous to the one considered in the
detection of large flows : Most flows have to be quickly discarded so that only anomalous flows
show up. Another algorithm using Bloom filters with an adaptive refreshment mechanism is also
proposed in this case : It is based on a fast refreshment scheme depending on the traffic intensity
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and on an adaptive estimation of some constants. This algorithm offers good performances to
detect SYN flooding attacks and also, via a variant, to detect more subtle (i.e. progressive)
attacks such volume flood attacks.

The organization of this chapter is as follows : A detailed description of the algorithm iden-
tifying large flows is given in Section 1.2. The algorithm proposed is tested against experimental
data collected from different types of IP networks in Section 1.3. The application to the detection
of denial of service (DoS) attacks is developed in Section 1.4. Some performance issues of the
algorithm are discussed in Section 1.5. Concluding remarks are presented in Section 1.6.

1.2 Algorithms with Bloom Filters

1.2.1 Preliminary definitions

In this section, we describe the on-line algorithm used to identify large flows and estimate
their volume. Recall that a flow is the set of those packets with the same source and destination
IP addresses together with the same source and destination port numbers and of the same
protocol type. In the following, we shall consider TCP traffic only.

To simplify the notation, large flows will be sometimes referred to as elephants and small flows
as mice. For several reasons, this dichotomy is largely used in the literature, see the discussion
in Papagiannaki et al. [65] for example.

Definition 1 (Mouse/Elephant). A mouse is a flow with less than C packets. An elephant is a
flow with at least C packets.

The constant C is left as a degree of freedom in the analysis. Depending on the target
application, C can be chosen to be equal to a few tens up to several hundreds of packets. The
choice of C is left to the discretion of the operator.

In this first part, one investigates the problem of on-line estimation of the number of ele-
phants. This is probably the simplest problem with all the main common difficulties in the design
of algorithms handling Internet traffic : large order of magnitudes and reduced computing and
memory capacities.

Note that the estimation of the total number of flows in an efficient and nearly optimal way
is a quite different problem. Several on-line algorithms have recently been proposed by Flajolet
et al. [41] and Giroire and Fusy [45]. Unfortunately, the corresponding algorithms are not able
to identify elephants as previously defined.

1.2.2 Bloom filters

The starting point is the algorithm based on Bloom filters designed by Estan and Var-
ghese [34]. The filter, see Figure 1, consists of k stages. Each stage i ≤ k contains m counters
taking values from 0 to C. It is assumed that k independent hash functions h1, h2, . . . , hk are
available. The total size of the memory used for the filter is denoted by M, recall that M should
be of the order of several Mega-Bytes. An additional auxiliary memory is used to store the
identifiers of detected elephants.

The algorithm works as follows : All counters are initially set equal to 0 ; if a packet belonging
to a flow A is received then :
— If A is in the memory storing elephant IDs then next packet.
— If not, let min(A) the minimum value of the counters at the entries h1(A), . . . , hk(A) of the k
hash tables.
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Fig. 1 – The Bloom filter

– If min(A) < C, all the corresponding counters having the value min(A) are incremented by
1.

– If min(A) = C, the flow of A is added to the memory storing elephant IDs. The flow is
detected as an elephant.

The algorithm as such is of course not complete since small flows can be mapped repeatedly
to the same entries and create false elephants. One has therefore to clear the filters from the
influence of these undesirable flows. Estan and Varghese [34] proposed to erase all counters of
the filters on a periodic basis (5 seconds in their paper) :

Estan and Varghese’s refreshing mechanism

– Every T time units :
All counters are re-initialized to 0.

Ideally, the constant T should be directly related to the traffic intensity. On the one hand, if
the refreshment mechanism occurs frequently, the counters corresponding to real elephants are
decreased too often and a significant fraction of them may not reach the value C and therefore
many elephants will be missed. On the other hand, if T is too large then, because of their huge
number, small flows may be mapped onto the same entry and would increase the corresponding
counter to the value C, creating a false elephant. This periodic refreshing mechanism could
perfectly work if there would be a way to change the value of T according to the order of
magnitude of the number of small flows. Such a scheme is however not easy to implement in
practice. Moreover, in Section 1.3 experiments based on real traffic traces show that the periodic
erasure scheme leads to a poor detection ratio of elephants. This clearly exemplifies the fact that
the design of simple robust traffic adaptation scheme is not an easy task in general (think again
to the congestion avoidance mechanism of TCP).

Our contribution to this algorithmic setting is two-fold : First, a refreshing mechanism of
hash tables properly defined on the current state of the filters and not bound to some fixed time
scale is proposed. Second, an additional data structure, the virtual filter, maintained to get a
precise estimation of the statistics of these large flows (and not only their number) is introduced.
These two aspects are separately described in the following.

1.2.3 Adaptive Refreshing Mechanism

The general principle is the following : If the state of filters is declared as overloaded then
all positive counters are decremented by one.

Note that the values of the counters are only decreased by one instead of reinitialized to
0. The idea is that, if the overload condition of filters is properly chosen, then most of the
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values of the non-zero counters will be low. Remember that from the structure of traffic, when
compared against the number of mice, there are only a few elephants. The key point is that
counters corresponding to elephants will not be decremented to 0. This property is important if
one wants to accurately estimate the number of packets of elephants.

Two different criteria to declare when the state of the filter is overloaded are proposed.

– RATIO criterion. Define r as the proportion of non null counters in the multistage filter,
the filter is overloaded when r is above some threshold R (90% for example).

– AVERAGE criterion. Define avgas the average of counters values. The filter is overloaded
when avg is above some threshold AVG (C/2 for example).

The adaptive property of the scheme proposed is clear : As long as the state of the filters is not
overloaded then nothing occurs and if there is a peak of activity, the filters are quite quickly
filled and the refreshment mechanism is automatically executed.

The rationale behind the RATIO criterion is that if most of counters are non-zero then, very
likely, mice have contributed to a significant fraction of the values of the counters so that false
elephants show up. Thus, this proportion must be bounded. The best threshold is difficult to find.
Thus an interesting alternative is the AVERAGE condition, which considers the average value
of counters rather than the number of non-zero counters. Roughly speaking, this corresponds to
the saturation threshold of the filter. Notice the mean size of mice which is in practice around 4,
can raise up to 7 for some traffic types. In this case, even if the proportion of non-null counters is
significant, counters must be decremented more often to avoid accumulation of mice generating
false elephants. This is why the AVERAGE condition considers the average value of counters.
Our experiments show nevertheless that condition RATIO is sufficient for most of IP traffic
types.

Because the number of mice is much larger than the number of elephants, collisions between
elephants and mice can be neglected. False elephants are mainly caused by collisions in the hash
table between short flows. Missing elephants is the drawback of the algorithm. An elephant
having f packets, f ≥C, can be missed if its counters do not reach the threshold C because of
the refreshment mechanism (all counters are decreased by one when the state of the filters is
overloaded).

The number of entries in the memory storing elephants gives an estimation of their total
number. It is also possible to store additional variables for each flow in this memory, for instance
the starting and finishing time of the elephant corresponding to the arrival times of the first
and last packets, the number of packets, the total volume in bytes, the number of segments of a
certain type (typically SYN segments for attack detection), etc.

1.2.4 Virtual Filter

Missed elephants can be divided into two categories : elephants with low throughput (less
than the refreshment frequency) and small elephants. An elephant having a number of packets
slightly larger than C, can then be missed if there is at least one refreshment during its life time.
The following improvement of the algorithm aims at reducing the number of missed elephants
by giving elephants more chance to be captured.

The available memory is divided in two halves. In the first half, a Bloom filter as defined
above is implemented, it will be called the virtual filter. It operates exactly in the same way for
incrementing and refreshing counters. The second half is another Bloom filter, called the real
filter ; its counters are incremented in the same way as for the virtual filter but no refreshment
mechanism is used except that when a counter becomes equal to 0 in the virtual filter, in that
case, it is also set to 0 in the real filter.
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The proportion of non null counters is thus the same for the two filters. The identification of
elephants is done with the values of counters of the real filter, when all the counters corresponding
to some flow are equal to C. Note that since the counters are not decremented by one, it is less
likely that some packets of elephants will be lost in this manner. The value of a counter in the
real filter is therefore always higher than (or equal to) the corresponding counter in the virtual
filter. The number of identified elephants is thus higher than what is obtained with the initial
version of the algorithm. In particular small elephants have more chance of being identified.

The drawback of the virtual filter is that, in some cases, it can introduce new false posi-
tives. As the counters in the real filter are higher, mice are more likely to be considered as
elephants. This especially happens when the mean size of mice is not small enough compared to
the threshold C.

1.3 Experimental Results

In this section, the efficiency of the algorithm and the impact of some of its parameters are
discussed.

To evaluate the performance of the algorithm, two different traces have been tested : the first
trace contains commercial traffic from the France Telecom IP backbone network carrying ADSL
traffic. This traffic trace has been captured on a Gigabit Ethernet link in October 2003 between
9 :00 pm and 10 :00 pm. This time period corresponds to the peak activity by ADSL customers,
its duration is 1 hour and contains more than 10 millions of TCP flows. The second trace
“20040601-193121-1”, URL : http ://pma.nlanr.net/ Traces/ Traces/ long/ ipls/ 3/, contains
academic traffic issued from Abilene III.

1.3.1 Results

In our experiments, the filter consists of 10 stages associated to 10 independent random hash
functions (k = 10). Elephants are here defined as flows with at least 20 packets (C = 20).

First we apply the algorithm proposed by Estan and Varghese [34] to the France Telecom
trace in order to identify elephants for which the refreshment time period is set to 5 seconds as
specified in that paper. Recall that this algorithm uses a periodic erasure scheme of all counters
to refresh the filter. Results are compared to the adaptive refreshment using the RATIO criterion.
To be fair in the comparison, at a refreshment instant, instead of decrementing them by one, all
counters are set to zero like in Estan and Varghese algorithm.

The number of new elephants per minute found by the algorithms and its exact value are
plotted in Figure 2. It shows that the periodic refreshment of Estan and Varghese (5 seconds) is
not adapted to the traffic trace since many elephants are missed in this case. The refreshment
frequency is too high and elephants cannot send their 20 packets in only 5 seconds. This is due
to the fact that in the ADSL traffic trace, elephants are generated by peer to peer file transfers,
which are basically with low bit rates (see Ben Azzouna et al. [8] for more details).

A change of the value of the period in Estan and Varghese’s algorithm would probably
improve the accuracy but it is not clear how it can be done “on line”. On a one hour long traffic
trace, this parameter has to be in fact changed regularly. This is not necessary for short traces,
a few tens of thousands of packets say, but this becomes an issue for long traffic traces.

Using the adaptive refreshment with a threshold R= 90% and a small memory of size M =
1.31MB, only about 12% of the elephants are missed. With a memory size of 5.24MB, the error
is of the order of 2%. See Figure 7 below.
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Fig. 2 – Impact of the adaptive refreshment on the estimation of elephants number, M = 1.31MB,
R= 90%, France Telecom trace

Another important feature of the adaptive algorithm which can be seen from Figure 2 is that
it follows very closely the variations of elephant traffic, this is also true for Estan and Varghese
algorithm but in a much less accurate way. This is, in our view, the benefit of the adaptive
property of our algorithm.

Figure 3 gives the relative error on the estimation of the number of elephants for the three
versions of the algorithm : with the refreshment using RATIO and AVERAGE criteria. Both
RATIO and AVERAGE criteria give accurate estimations of the total number of elephants. The
fact that the relative error remains under 7% for all the duration of the trace shows stability
and robustness of the algorithm. The same experiments performed on Abilene trace give similar
results ; see Figure 4. So the adaptive algorithm is an efficient method of refreshing the filter
without impacting too much the estimation of the number of elephants.
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Once an elephant has been identified, it is registered in an auxiliary memory together with
the number of packets seen and each time a packet of this flow is seen, this value is incremented
by 1. In this way, one can estimate the statistics of the sizes of elephants. Figures 5 and 6 show
that this statistics of this estimation of the number of packets per elephant is really very close
to the real value for the two different traces.
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1.3.2 Impact of the M and R parameters

In Figure 7, we analyze the impact of the size M of the memory used for the Bloom filter
on the estimation of the number of the elephants. As expected, using a larger memory improves
the accuracy. The error is very close to zero with a memory size of only 5MB. In fact the filter
is refreshed less frequently which gives more chance for elephants to be detected.

Figure 8 shows the dependence of the accuracy of the estimate for several values of the
threshold R. A threshold of 90% gives a good estimation of the number of elephants. We just
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miss about 7% of the elephants. With a higher threshold, we miss less elephants but some false
positives can be added. So there is clearly a trade-off on the choice of R. See Chabchoub et al.
[19] for more details.
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1.4 Anomaly Detection

1.4.1 Context

Several types of anomalies are considered in this section in connection with denial of service
(DoS) attacks. Here we are only interested in SYN flood and volume flood attacks which are the
most common DoS attacks. See Hussain et al. [52] for a classification of DoS attacks.

A SYN flood exploits a weakness in the connection phase of TCP, also called “the three
way handshake”. This attack consists of sending a large number of SYN packets to the same
destination (or group of destinations) during a small interval of time. Due to the TCP imple-
mentation, the destination allocates resources to all these connection requests and will maintain
many half-open connections waiting for acknowledgments from sources for about one minute.
A large number of SYN packets consume therefore a significant fraction of the resources of the
targets and, at the end, the corresponding machines become unreachable (see Wang et al. [32]
for more details). In this setting the goal is to design an one-line algorithm which can detect an
attack in less than one minute. Such a detection can be used by the network operator in order
to filter SYN segments towards the victim.

While a SYN flood consists of a sudden arrival of a large number of SYN segments, a
volume flood attack uses a few TCP flows and gradually transmits with a steady increase of the
transmission rate a huge amount of data which will consume the available bandwidth of the
target.

Several methods have been developed in the technical literature for DoS flooding detection ;
they are mainly based on TCP properties such as periodicity in Chang et al. [71], or SYN and
FIN packets counting in Wang et al. [32], Barford et al. [12], Krishnamurty et al. [70]. Most
of them suffer from scalability or robustness, especially if only sampled traffic is available as it
is usually the case in backbone networks.
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For SYN flood detection, the main difficulty is in distinguishing between the (normal) varia-
tions of traffic and a sudden and anomalous sequence of SYN packets. In the technical literature,
attacks are sometimes defined as a notable variation from the standard behavior of specific pa-
rameters of the model : parameters of some specific statistical models or long range dependence
variables like Hurst parameters for signal processing approaches for example. If the algorithms
based on these representations may be efficient to detect some anomalous behaviors, they can-
not, in general, assert the nature of the attack because they handle a aggregated information
on the flows rather than a more detailed description of the traffic. See Chatelain et al. [21] and
Lakhina et al. [54].

1.4.2 SYN flood attacks

The algorithm proposed for an on-line detection of SYN and volume flood is derived from
the algorithm presented in Section 1.2, but with a different refreshing mechanism of the Bloom
filter.

As explained above, SYN packets with a given destination address are aggregated as a single
“flow”. In this case, by using a Bloom filter as before, the refreshing mechanism of the multistage
filter has a different purpose : it should eliminate quickly all normal flows using an aggressive
refreshing mechanism so that if a “large” flow survives then it must be a SYN flood attack. As
it is easily seen, the term “large” has to be properly defined. Roughly speaking, this means that
such a flow is much larger than the other “normal” flows. Again, because of the variation of
traffic, an adaptive scheme has to be devised to properly define these concepts.

The main idea of the algorithm is to evaluate a varying average mn of the largest flow in several
sliding time windows of length ∆. The quantity mn describes “normal flows”; it is periodically
updated in order to adapt to varying traffic conditions. It is a weighted average that takes into
account all its past values to follow carefully traffic variations but not too closely. If a flow in
the nth time window is much larger than mn−1, it is considered as an attack, and the moving
average is not updated for this time window.

The following variables are used.

– As before, r is the proportion of non-zero counters in the Bloom filter.
– S is a multiplicative detection threshold. Roughly speaking, an attack is declared when an

observation is S times greater than the “normal” behavior. The value of S is fixed by the
administrator.

– Rs and R are thresholds for the variable r. The constant Rs is independent of traffic and
taken once and for all equal to 50% and R is a variable threshold depending on the traffic
type considered.

– α is the updating coefficient for averages, ; α = 0.85 in our experiments.
– ∆ is the duration of the initialization phase (1 mn in the chapter). It is in fact a bound for

the time before which an attack should be detected.
– mn is the weighted moving average for the nth time window.

The algorithm starts with an initialization phase of length ∆ in order to evaluate the threshold
R. At the end of this phase, R will be definitively fixed for the rest of the experiment. In addition,
as this phase corresponds to the first time window, the moving average m1 will be initialized as
the biggest counter obtained. See Table 1.1 for the description of the algorithm.

Note that an alarm is declared during the nth time window when the value of a counter is
greater than Smn. At the beginning, the first time window is fixed (its duration is ∆) but, since the
evolution depends on the occupation rate of the filters, the duration of the other time windows is
variable. If traffic characteristics are not much varying, time windows durations remain around
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Initialization phase :
– All counters are 0.
– The Bloom filter is progressively updated with SYN packets by using their destination address.

– After a duration ∆, evaluate the variable r
– if r ≤ Rs then R := r else R := Rs.
– m1 := maximum of the values of counters of the multistage filter.

Detection phase : the n th time window
– At the beginning all counters are initialized to 0.
– The Bloom filter is progressively updated with SYN packets by using their destination address.

– if a counter exceeds S mn−1, an attack is declared.
– if r ≥ R

– maxn : maximum of the values of counters of the multistage filter.
– if maxn < S mn−1

mn = α mn−1+(1−α)maxn

– start the (n+1)th time window.

Tab. 1.1 – Algorithm for SYN flood detection.

one minute. In this case, an attack is detected at the latest after one minute so that the network
administrator can react quickly.

1.4.3 Volume flood attacks

For progressive attacks, the impact on traffic cannot be clearly seen in a time window of one
minute. In fact the attack can be so slow that it could be locally considered as a normal traffic
variation. This kind of attacks has typically a long duration. In this situation, we consider a
larger time window in order to detect the anomalous impact of the attack on traffic. Thus, to
cope with these attacks, the algorithm is used but with a larger time window ∆′ of 5 minutes.
This new filter operates in the same way but on a longer time scale and is completely independent
of the first filter. In particular, it has its own parameters : R′, r ′, R′

s, m′
n, max′n, and S′.

1.4.4 Experimental Results

To evaluate and validate the attack detection algorithm described in the previous section,
we run experiments with two France Telecom traces, one from the IP collect network carrying
in majority ADSL traffic and the other from the IP transit network (OTIP). In this latter case,
only sampled traffic is available. The characteristics of the traffic traces are given in Table 1.2.

Traces Nb. IP pack. Nb. Flows Duration
OTIP 105.106 4.106 3 days
ADSL 825.105 32.105 3 hours

Tab. 1.2 – Characteristics of sampled traffic traces used for attack detection.

To detect SYN and volume flood using two time scales (∆ = 1 mn and ∆′ = 5 mn), we need
four filters. Each filter contains ten stages (k = 10) and has a total size M around 1MB.

In Figure 9, the ADSL trace is divided into several time windows of 5 mn and, for each
interval, the volume of the largest SYN flow is computed. The observed peaks seem to correspond
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to attacks. Tested on this trace, the algorithm detected two SYN flood against two different IP
addresses. The response time of the algorithm is satisfactory as the alarms are raised at the
beginning of the attacks. It should be noted that when the duration of the time window is 1 mn,
only the second attack is detected.
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Fig. 9 – SYN flood detection for ADSL trace with S=5 and S′=3

In Figure 10, the same trace is used to detect volume flood. The volume of the flow is now
the number of packets which are not SYN packets. SYN packets are not computed to prevent
from considering some SYN flood as volume flood. The algorithm detects one volume flood using
the time window of 5 mn. When the duration of the time window 1 mn, no attack is detected.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  20  40  60  80  100  120  140  160  180

V
o

l.
 l
a
rg

e
s
t 

fl
o

w
 i

n
 t

im
e
 w

in
d

o
w

Time(min)

Volume flood detected

Time window: 5mn

Fig. 10 – Volume flood detection for ADSL trace with S=5 and S′=2

In Figures 11 and 12 the OTIP trace is considered. This trace contains many attacks. As it
can be seen, the algorithm raises several alarms which coincide with the largest flows represented
by the highest peaks.
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1.4.5 Remark on thresholds

The algorithms use the variables S for SYN flood and S′ for volume flood. They are related
to the network administrator’s decision about the precise definition of an anomalous behavior.
In the experiments with the OTIP trace for SYN flood detection or volume flood detection,
there is clearly a set of events which will be qualified as “attacks” for a large range of values of
S and S′. Note however that, for some large but “milder” variations, the qualification as attack
will depend on the particular value of these parameters. There is no way to avoid this situation
in our view. This is the role of the administrator to define the level of abnormality in traffic.

1.5 Performance issues

In this section, we discuss briefly, from a modeling point of view, some of the performance
issues concerning the refreshing mechanism of the algorithms presented in the chapter. They
are addressed in more detail in Chabchoub et al. [19, 20]. Recall that our algorithms have the
following parameters :

– R : overload ratio of the filter,
– C : minimum size of large flows (elephants),
– m : number of counters per hash table,
– k : number of hash tables in the filter.

The number m is large and the value of C is fixed. The main issue is in fact to investigate the
sensitivity of the value of R on the performances : How can one choose R no too large to avoid as
much as possible false elephants but large enough to prevent from missing many true elephants.
The problem reduces to estimate the error generated by mice, i.e., the ratio of false positives in
a simplified model where there are just mice. The case where k = 1 is first investigated as the
simplest model. Then simplified models are developed for the case where k≥ 2.

In a first step, a one-stage filter is considered and traffic is supposed to be composed of only
of mice of size 1. The analysis uses Markovian techniques : If Wm

n (i) is defined as the proportion
of counters with values i, i ∈ 0, . . . ,C just before the nth refreshment for a filter with m counters
then the process

(Wm
n ,n≥ 0) = ((Wm

n (i), i = 0, . . . ,C) ,n≥ 0)

is a Markov chain on a finite state space with invariant distribution πm. As m gets large, it is
shown that the sequence (Wm

n ,n≥ 1) converges to a dynamical system with unique fixed point w.
It turns out that w has a nice interpretation in terms of the stationary measure µλ of a M/G/1/C
queue with service time 1 and arrival rate λ and

w = µλ(w)

where λ(w) = log(1+w(1)/(1− r)). As the invariant measure µλ can be computed as the solution
of a linear system of C+1 equations, λ(w) is thus the solution to a fixed point equation.

The behavior of the system can be described as follows. At equilibrium, the average number
of packets between two refreshing instants is of the order of λ(w)m. Due to finite capacity C, this
quantity is greater than the number of removed packets Rmat each refreshment. In particular
λ(w) is not necessarily less than 1. For R enough close to 1, it is shown that λ(w) can in fact
exceed 1 which changes the qualitative behavior of the system : if the arrival rate λ(w) is less
than 1, then w is concentrated on small values 0, 1, 2. . . of the state space {0,1, . . .C}. When
λ(w) > 1 the distribution w is mainly concentrated on the highest values C and C− 1. Since
false positives are closely related to the quantity w(C), this implies that the proportion of false
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positives is much higher in this case. Consequently, there is a critical value rc < 1 of R, which
corresponds to λ(w) = 1, so that the performances of the algorithm deteriorate when R > rc.
Similar conclusions hold also in the case of k-stage Bloom filter.

In practice, in the (simplified) case of 1-packet mice, the critical rate rc is close to 1. But,
for general mice size distribution, rc is much lower than 1. Thus, the RATIO criterion does not
perform well for any value of R. To conclude, the analysis confirms that the threshold R has to be
chosen, otherwise the RATIO criterion cannot control the saturation of the filter. This control
is contained in the design of the AVR criterion.

Let us give an insight into a model taking into account the case where just the counters
having the minimum value are incremented. The analysis can be generalized to more general
situations. The idea is also to express quantities via a continuous time process. The main tool
is the system of m queues with a Poisson arrival process with rate λm where customers join the
shortest of the k queues chosen at random among m. This system is well-known in the literature
(see Mitzenmacher [62], Vvedenskaya [73], Graham [47] and others). In order to use it, the model
must be slightly modified : the mouse increments just one counter having the minimum value
and C is taken as 20/k. The conclusion is that the behavior of the model should follow the same
lines but many points are more difficult to catch. For example, as far as we know, the system
of queues corresponding to mice with general size distribution has never been studied in the
literature. Nevertheless, the analysis gives rise to related models which could lead to improve or
simplify the algorithm.

1.6 Concluding remarks

We have presented in this chapter an original adaptive algorithm for identifying elephants
in Internet traffic. As earlier proposed by Estan and Varghese, this algorithm is based on Bloom
filters, but instead of periodically erasing the filter, we introduce different original criteria to
decrement the various counters of the filter. In order to improve the accuracy of the algorithm,
we have introduced the concept of virtual filter, whose counters are less frequently decreased.
The proposed algorithm has been tested against different traffic traces and performs better than
the one by Estan and Varghese.

Finally, the proposed elephant identification mechanism has been adapted in order to detect
flood anomalies (SYN and volume floods) in Internet traffic. This gives rise to a new algorithm,
whose key parameters adapt to network traffic. This algorithm has been successfully tested with
two types of traffic traces (corresponding to residential and transit traffic).
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The chapter deals with the problem of catching the elephants in the Internet traffic. The
aim is to investigate an algorithm proposed by Azzana based on a multistage Bloom filter,
with a refreshment mechanism (called shift in the present chapter), able to treat on-line a huge
amount of flows with high traffic variations. The algorithm is simplified in order to focus on this
refreshment mechanism. For that, the so-called “min rule” is not taken into account. An analysis
of a simplified model estimates the number of false positives. Limit theorems for the Markov
chain that describes the algorithm for large filters are rigorously obtained. The asymptotic
behavior of the stochastic model is here deterministic. The limit has a nice formulation in terms
of a M/G/1/C queue, which is analytically tractable and which allows to tune the algorithm
optimally.
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Introduction

Description of the algorithm

The algorithm designed by Azzana uses a Bloom filter with counters and involves four pa-
rameters in input : the number k of stages in the Bloom filter, the number m of counters in
each stage, the maximum value C of each counter, i.e. the size threshold C to be declared as an
elephant and the filling rate r.

A Bloom filter is a set of k stages, each of these stages being a set of m counters, initially
at 0 and taking values in {0, . . . ,C}. Together with the k stages F1, . . . ,Fk, one supposes that k
hashing functions h1, . . . ,hk are given, one for each stage. We make the (strong) assumption that
these hashing functions are independent, which implies that k is small (k = 10 is probably the
upper limit). Each hashing function hi maps the part of the IP header of a packet indicating the
flow to which it belongs, to one of the counters of stage Fi.

The algorithm works on-line on the stream, processing the packets one after the other. Flows
identified as elephants are stored in a list E . When a packet is processed, it is first checked if it
belongs to a flow already identified as an elephant (that is a flow already in E ). Indeed, in this
case, there is no interest in mapping it to the k counters, and the algorithm simply forgets this
packet. If not, it is mapped by the hashing functions on one counter per stage and it increases
these counters by one, except for those that have already reached C, in which case they remain
at C. When, after processing some packet, all the k counters are at C, the flow is declared to be
an elephant and stored in the dedicated memory E . When the proportion of nonzero counters
reaches r in the whole set of km counters, one decreases all nonzero counters by one. This last
operation is called the shift.

Motivation of the algorithm

Packets of a same flow hit the same k counters, but two distinct flows may also increase the
same counter in one or several stages. The idea of using several stages where flows are mapped
independently and uniformly, intends to reduce the probability of collisions between flows. The
shift is crucial in the sense that it prevents the filters to be completely saturated, that is, to
have many counters with high values. Without the shift operation, mice would be very quickly
mapped to counters equal to C and declared as elephants. The algorithm would have a finite
lifetime because when the filter is saturated, nothing can be detected.

False positive and false negative

A false positive is a mouse detected as an elephant by the algorithm. A false negative is an
elephant not declared as such (hence considered as a mouse) by the algorithm. Generally, a false
negative is worse than a false positive. Think of an attack : One does not want to miss it, and
a false alarm has less serious consequences than a successful attack.

In our context, a false positive is a mouse one packet of which is mapped onto counters all
≥C−1. A false negative is due to the shift, and if it happens, it means that there were at least
f −C+ 1 shifts during the transmission time of some elephant of size f . If shifts do not occur
too often, a false negative is then an elephant whose packets are broadcast at a slow rate.

Intuitively, and it will be confirmed by the forthcoming analysis, if the parameters (actually
r) are chosen so as to maintain counters at low values, then shifts occur often, and if one
tries to decrease the shift frequency, then the counters tend to have high values. Therefore, a
compromise has to be found between these two properties (frequency of the shifts, height of the
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counters), which translates into a compromise between false positives and false negatives. This
last compromise depends on the applications.

A Markovian representation

In this chapter, we will mainly focus our analysis on the one-stage filter case when the traffic
is made up only of mice of size 1. The aim is to estimate the proportion of false positives. From
this analysis, we will then derive results for the general case. Let us now introduce our main
notations.

We thus assume that k = 1 and that all flows have size 1. Throughout the chapter, Wm
n (i)

denotes the proportion of counters having value i just before the nth shift in a filter with m
counters. According to this notation, Wm

n (0) is close to 1− r and ∑C
i=0Wm

n (i) = 1. Notice that
the nth shift exactly decreases the number of nonzero counters by mWm

n (1). An important part
of our analysis will consist in estimating Wm

n (C−1)+Wm
n (C). Indeed, it gives an upper bound

on the probability that a flow is declared as an elephant (that is a false positive) between the
(n−1)th and the nth shifts, since, according to our assumptions, there is no elephant at all.

In this framework (k = 1 and flows of size one), the algorithm has a simple description in
terms of urns and balls. Each flow is a ball thrown at random into one of m urns (each urn being
one of the m counters). When a ball falls into an urn with C balls, it is immediately removed,
in order to have at most C balls in each urn. When the proportion of non empty urns reaches r,
one ball is removed in every non empty urn.

For m fixed, (Wm
n )n∈N =

(
(Wm

n (i))i=0,...,C

)
n∈N is an ergodic Markov chain on some finite state

space. Its invariant probability measure πm is the distribution of some variable Wm
∞ . For C = 2,

the first non-trivial case, even the expression of the transition matrix Pm of the Markov chain
is combinatorially quite complicated and an expression for πm seems out of reach. In practice,
the number m of counters per stage is large. This suggests to look at the limiting behavior of
the algorithm when m tends to ∞. We use as far as possible the Markovian structure of the
algorithm in order to derive rigorous limit theorems and analytical expressions for the limiting
regime. This is the longest and most technical part of the chapter, which also contains the main
result, from a mathematical point of view.

Main results

The model considered in the chapter describes the collisions between mice in order to evaluate
the number of false positives due to these collisions. In a one-stage filter where all flows are
mice of size 1, the Markov chain (Wm

n )n∈N describes the evolution of the counters observed just
before shift times. The main result is that, when m is large, the random vector Wm

∞ converges in
distribution to some deterministic value w.

This result is not quite completely proved. The way to proceed is classical for large Markovian
models (see for example [30] and [4]). The idea is to study the convergence of the process over
finite times. It is shown that the Markov chain given by the empirical distributions (Wm

n )n∈N
converges to a deterministic dynamical system wn+1 = F(wn), which has a unique fixed point w.
The situation is analogous in discrete time to the study by Antunes and al. [4]. A Lyapunov
function for F would allow to prove the convergence in distribution of Wm

∞ . Such a Lyapunov
function is exhibited in the particular case C = 2. The dynamical system provides a limiting
description of the original chain which stationary behavior is then described by w. The fixed
point w has the following interpretation.
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The fixed point w is identified as the invariant probability measure µλ of the number of

customers in an M/G/1/C queue where service times are 1 and arrival rate is some λ satisfying
the fixed point equation

µλ(0) = 1− r

or equivalently

λ = log

(
1+

µλ(1)

1− r

)
.

As a byproduct, the stationary time between two shifts divided by m converges in distribution
to the constant λ. Thus the inter-shift time (closely related to the number of false negatives)
and the probability of false positives are respectively approximated by λm and bounded by
µλ(C−1)+µλ(C) when m is large.

When mice have general size distribution, the previous model is extended to an approxima-
ted model where packets of a given mouse arrive simultaneously. The involved quantity is the
invariant measure of an M/G/1/C queue with arrivals by batches with distribution the mouse
size distribution. In the case of size 1 mice, the multi-stage filter case is investigated.

Even if µλ is not explicit, which complicates the exhibition of a Lyapunov function, the

quantities λ and µλ(C− 1) + µλ(C) can be numerically computed. It appears that the latter
quantity is an increasing function of r (as r varies from 0 to 1). Hence, given the mouse size
distribution, one can numerically determine the values of r for which the algorithm performs
well.

Section 2.1 is the most technical part of the chapter. It investigates the one-stage filter in
case of size 1 flows. In Section 2.2, this analysis is generalized to a general mouse size distribution
in a simplified model and to a multi-stage filter. Then Section 2.3 is devoted to discussing the
performance of the algorithm, to experimental results and improvements (validated through an
implementation).

2.1 The Markovian urn and ball model

In this section, C is fixed and we consider the sequence (Wm
n )n∈N, where Wm

n denotes the
vector of the proportions of urns with 0, . . . ,C balls just before the nth shift time. For m≥ 1,
(Wm

n )n∈N is an ergodic Markov chain on the finite state space

P
(r)
m =

{
w = (w(0), . . . ,w(C)) ∈

(N
m

)C+1

,
C

∑
i=0

w(i) = 1 and
C

∑
i=1

w(i) =
⌈rm⌉

m

}
,

(where ⌈rm⌉ denotes the smallest integer larger or equal to rm) with transition matrix Pm defined

as follows : If Wm
n = w ∈ P (r)

m , then Wm
n+1, distributed according to Pm(w, .), is the empirical

distribution of m urns when, starting with distribution w, one ball is removed from every non
empty urn and then balls are thrown at random until ⌈rm⌉ urns are non empty again, balls
overflowing the capacity C being rejected. The required number of thrown balls is

τm
n =

⌈rm⌉−1

∑
l=⌈rm⌉−Wm

n (1)m

Yl , (2.1)

where Yl , l ∈ N are independent random variables with geometrical distributions on N∗ with
respective parameters l/m, i.e. P(Yl = k) = (l/m)k−1(1− l/m), k≥ 1.
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Let F be defined on P =
{

w∈ RC+1
+ ,∑C

i=0w(i) = 1
}

by

F(w) = TC
(
s(w)∗Pλ(w)

)
(2.2)

where

s : w 7→ (w(0)+w(1),w(2), . . . ,w(C),0) on P

TC : P (N) =

{
(wn)n∈N,

+∞

∑
i=0

wi = 1

}
→ P , w 7→

(
w(0), . . . ,w(C−1), ∑

i≥C

w(i)

)

λ : P → R+, w 7→ log

(
1+

w(1)

1− r

)

and Pλ is the Poisson distribution with parameter λ. Notice that F maps P to itself and, also

by definition of λ, P (r) def
=
{

w∈ RC+1
+ ,∑C

i=0 w(i) = 1 and ∑C
i=1 w(i) = r

}
to itself.

2.1.1 Convergence to a dynamical system

We prove the convergence of (Wm
n )n∈N to the dynamical system given by F as m tends to

+∞. The following lemma is the key argument. The uniform convergence stated below appears
as the convenient way to express the convergence of Pm(w, .) to δF(w) in order to prove both the
convergence of (Wm

n )n∈N, and, later on, the convergence of the stationary distributions.
Define ‖ x ‖= supCi=0 |xi | for x∈ RC+1.

Lemme 1. For ε > 0,

sup
w∈P (r)

m

Pm(w,{w′ ∈ P (r)
m : ||w′−F(w)|| > ε}) −→

m→+∞
0.

Démonstration. The first step is to prove that, for ε > 0,

sup
w∈P (r)

m

Pw

(∣∣∣∣
τm

1

m
−λ(w)

∣∣∣∣> ε
)

→
m→∞

0 (2.3)

where λ(w) = log

(
1+

w(1)

1− r

)
and Pw(.) denotes P(.|Wm

0 = w). By Bienaymé-Chebyshev’s inequa-

lity, it is enough to prove that

sup
w∈P (r)

m

∣∣∣∣Ew

(
τm

1

m

)
−λ(w)

∣∣∣∣ →
m→∞

0 (2.4)

and

sup
w∈P (r)

m

Varw

(
τm

1

m

)
→

m→∞
0. (2.5)

By equation (2.1), as E(Yl ) = 1/(1− l/m), using a change of index,Ew

(
τm

1

m

)
=

⌈rm⌉−1

∑
l=⌈rm⌉−w(1)m

1
m− l

=
m−⌈rm⌉+w(1)m

∑
j=m−⌈rm⌉+1

1
j
. (2.6)
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A comparison with integrals leads to the following inequalities :

log
1− ⌈rm⌉

m +w(1)+ 1
m

1− ⌈rm⌉
m + 1

m

≤ Ew

(
τm

1

m

)
≤ log

1− ⌈rm⌉
m +w(1)

1− ⌈rm⌉
m

.

It is then easy to show that the two extreme terms tend to λ(w) = log(1+w(1)/(1− r)), uniformly
in w(1) ∈ [0,1]. This gives (2.4). For (2.5), as Var(Yl ) = (l/m)/(1− l/m)2, by the same change of
index,

Varw

(
τm

1

m

)
=

1
m

m−⌈rm⌉+w(1)m

∑
j=m−⌈rm⌉+1

m− j
j2

=
m−⌈rm⌉+w(1)m

∑
j=m−⌈rm⌉+1

1
j2
− 1

m
Ew

(
τm

1

m

)
. (2.7)

The first term of the right-hand side is bounded independently of w by ∑+∞
j=m−⌈rm⌉+11/ j2, which

tends to 0 as m tends to +∞. The second term tends to 0 uniformly in w using (2.4) together
with the uniform bound λ(w) ≤ log(1+1/(1− r)).

To obtain the lemma, it is then sufficient to prove that, for each ε > 0,

sup
w∈P (r)

m

Pw

(
||Wm

1 −F(w)|| > ε,
∣∣∣∣
τm

1

m
−λ(w)

∣∣∣∣≤
ε
2

)
→

m→∞
0. (2.8)

Since Wm
1 and F(w) are probability measures on {0, . . . ,C}, to get (2.8), it is sufficient to prove

that for j ∈ {0, . . . ,C−1},

sup
w∈P (r)

m

Pw

(
|Wm

1 ( j)−F(w)( j)| > ε,
∣∣∣∣
τm

1

m
−λ(w)

∣∣∣∣≤
ε
2

)
→

m→∞
0. (2.9)

Let w ∈ P (r)
m . Define the following random variables : For 1 ≤ i ≤ m, Nm

i (respectively Ñm
i (w))

is the number of additional balls in urn i when τm
1 (respectively mλ(w)) new balls are thrown

in the m urns. One can construct these variables from the same sequence of balls (i.e. of i.i.d.
uniform on {1, . . . ,m} random variables), meaning that balls are thrown in the same locations
for both operations until stopping. This provides a natural coupling for the Ni’s and Ñi’s. Let
j ∈ {0, . . . ,C−1} be fixed. Given Wm

0 = w, as j ≤C−1, the capacity constraint does not interfere
and Wm

1 ( j) can be represented as

Wm
1 ( j) =

1
m

j

∑
k=0

∑
i∈Im

w,k

1{Nm
i = j−k} (2.10)

where Im
w,k is the set of urns with k balls in some configuration of m urns with distribution s(w),

so that card Im
w,k = ms(w)(k). The sum over i is exactly the number of urns that contains k balls

after the removing of one ball per urn, and having j balls after new balls have been thrown. By
coupling, on the event {Wm

0 = w, |τm
1 /m−λ(w)| ≤ ε/2}, the following is true :

card{i,Nm
i 6= Ñm

i (w)} ≤ ε
2

m (2.11)

thus, denoting W̃m
1 ( j) = 1

m ∑ j
k=0 ∑i∈Im

w,k
1{Ñm

i (w)= j−k}, on the same event,

|Wm
1 ( j)−W̃m

1 ( j)| ≤ ε
2
.
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To prove equation (2.9), it is then sufficient to show that

sup
w∈P (r)

m

Pw

(
|W̃m

1 ( j)−F(w)( j)| > ε
)
−→
m→∞

0.

This will result from

sup
w∈P (r)

m
|Ew(W̃m

1 ( j))−F(w)( j)| −→
m→∞

0 and

sup
w∈P (r)

m
Varw(W̃m

1 ( j)) −→
m→∞

0.
(2.12)

which is quite standard to prove. The key argument, with classical proof, is the following : If Lm
i

is the number of balls in urn i when throwing mλ balls at random in m urns, if 0 < a < b, then,
for all (i1, i2) ∈ N2,

(i) sup
λ∈[a,b]

|P(Lm
1 = i1)−Pλ(i1)| −→

m→∞
0,

(ii) sup
λ∈[a,b]

|P(Lm
1 = i1,L

m
2 = i2)−Pλ(i1)Pλ(i2)| −→

m→∞
0.

It is applied since λ(w) ∈ [0, log(1+1/(1− r)]. It ends the proof.

Proposition 1. If Wm
0 converges in distribution to w0 ∈ P (r)

m then (Wm
n )n∈N converges in distri-

bution to the dynamical system (wn)n∈N given by the recursion wn+1 = F(wn), n∈N.

Démonstration. Assume that Wm
0 converges in distribution to w0 ∈ P (r)

m . Convergence of (Wm
0 , . . . ,Wm

n )
can be proved by induction on n∈N. By assumption it is true for n = 0. Let us just prove it for
n = 1, the same arguments holding for general n, from the assumed property for n−1. Let g be

continuous on the (compact) set P
(r)2
m . Since the distribution µm of Wm

0 has support in P
(r)
m ,E(g(Wm

0 ,Wm
1 )) =

∫

P
(r)2
m

g(w,w′)Pm(w,dw′)dµm(w)

=
∫

P
(r)
m

∫

P
(r)
m

(
g(w,w′)Pm(w,dw′)−g(w,F(w))

)
dµm(w)+

∫

P
(r)
m

g(w,F(w))dµm(w).

Since g(.,F(.)) is continuous on P
(r)
m (F being continuous as can be easily checked), the last

integral converges to g(w0,w1) by assumption (or case n = 0). The first term is bounded in
modulus, for each η > 0, by

sup
w∈P (r)

m

∣∣∣∣
∫

P
(r)
m

g(w,w′)Pm(w,dw′)−g(w,F(w))

∣∣∣∣≤ 2‖g‖∞ sup
w∈P (r)

m

Pm

(
w,
{

w′ ∈ P (r)
m ,‖ w′−F(w) ‖> ε

})
+η

where ε is associated to η by the uniform continuity of g on P
(r)2
m . By Lemma 1, this is less than

2η for m sufficiently large. Thus, as m tends to +∞,E(g(Wm
0 ,Wm

1 )) → g(w0,w1).
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2.1.2 Convergence of invariant measures

Let, for m∈ N, πm be the stationary distribution of (Wm
n )n∈N. Define P as the transition on

P (r) given by P(w, .) = δF(w).

Proposition 2. Any limiting point π of (πm)m∈N is a probability measure on P (r) which is
invariant for P i.e. that satisfies F(π) = π.

Démonstration. A classical result states that, if P and Pm, m∈ N, are transition kernels on
some metric space E such that, for any bounded continuous f on E, P f is continuous and Pm f
converges to P f uniformly on E then, for any sequence (πm) of probability measures such that
πm is invariant under Pm, any limiting point of πm is invariant under P. Indeed, for any m and any
bounded continuous f , πmPm f = πm f . If a subsequence (πmp) converges weakly to π, then πmp f
converges to π f . Writing πmpPmp f = πmpP f +πmp(Pmp f −P f), since P f continuous (and bounded
since f is), the first term πmpP f converges to πP f and the second term tends to 0 by uniform
convergence of Pm f to P f . Equation πmpPmp f = πmp f thus gives, in the limit, πP f = π f for any
bounded continuous f .

Here the difficulty is that the Pm’s and P are transitions on P
(r)
m and P (r), which are in general

disjoint. To solve this difficulty, extend artificially Pm and P to P by setting :

Pm(w, .) = δF(w) for w∈ P \P (r)
m

P(w, .) = δF(w) for w∈ P \P (r).

The proposition is then deduced from the classical result if we prove that, for each f continuous
on P (notice that then P f = f ◦F is continuous),

sup
w∈P (r)

m

|Pm f (w)− f (F(w))| −→
m→∞

0,

which is straightforward from Lemma 1. The fact that the support of π is in P (r) is deduced
from the portmanteau theorem (see Billingsley [14] p.16) using the sequence of closed sets

P (r),n =

{
w∈ P , r ≤

C

∑
i=1

w(i) ≤ r +
1
n

}
.

The fixed points of the dynamical system are the probability measures w on P (r) such that

w = F(w) = TC(s(w)∗Pλ(w))

where λ(w) = log(1+w(1)/(1− r)). This is exactly the invariant measure equation for the number
of customers just after completion times in an M/G/1/C queue with arrival rate λ(w) and service
times 1, so that it is equivalent to

w = µλ(w) (2.13)

where µλ (respectively νλ) is the limiting distribution of the process of the number of customers
in an M/G/1/C (respectively M/G/1/∞) queue with arrival rate λ and service times 1.

Indeed, it is well-known that this queue has a limiting distribution for λ∈R+ (respectively 0≤
λ < 1) which is the invariant probability measure of the embedded Markov chain of the number
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of customers just after completion times. The balance equations here reduce to a recursion
system, so that, even when λ ≥ 1, νλ is well defined up to a multiplicative constant (which
can not be normalized into a probability measure in this case). Moreover, νλ is given by the
Pollaczek-Khintchine formula for its generating function :

∑
n∈Nνλ(n)un = νλ(0)

gλ(u)(u−1)

u−gλ(u)
, for |u| < 1 (2.14)

where gλ(u) = e−λ(1−u) and for λ < 1, νλ(0) = 1−λ (see for example Robert [68] p176-177). Notice
that νλ(n) (n∈ N) has no closed form. For example, the expressions of the first terms are

νλ(1) = νλ(0)(eλ −1),

νλ(2) = νλ(0)eλ(eλ −1−λ),

νλ(3) = νλ(0)eλ
(

λ(λ+2)

2
− (1+2λ)eλ +e2λ

)
(2.15)

where νλ(0) = 1−λ if λ < 1. For the M/G/1/C queue,

µλ(i) =
νλ(i)

∑C
l=0 νλ(l)

, i ∈ {0, . . . ,C}. (2.16)

The following proposition characterizes the fixed points of F.

Proposition 3. F defined by (2.2) has one unique fixed point, denoted by w̄, in P (r) given by the
limiting distribution µλ of the number of customers in an M/G/1/C queue with arrival rate λ and

service times 1, where λ is determined by the implicit equation µλ(0) = 1− r which is equivalent
to

λ = log

(
1+

µλ(1)

1− r

)
, (2.17)

where µλ is given by (2.16) and νλ by the Pollaczek-Kintchine formula (2.14).

Notice that, moreover,

r ≤ λ ≤− log(1− r).

The upper bound on λ, obtained from equation (2.17) using µλ(1)≤ r just says that the stationary
mean number of balls between two shifts is less than the mean number of balls thrown until
the first shift (starting with empty urns). Moreover λ ≥ r, which is clear if λ ≥ 1, and obtained
if λ < 1 writing (2.16) for i = 0 and using ∑C

l=0 νλ(l) ≤ 1 in this equation. This is exactly the

fact that the asymptotic stationary mean number of balls λm arriving between two shift times
is greater than the number of removed balls at each shift, which is ⌈rm⌉. It is due to the losses
under the capacity limit C.

Démonstration. Only the existence and uniqueness result remains to prove. According to (2.13),
w is some fixed point if and only if it is a fixed point of the function

P (r) −→ P (r)

w 7−→ µλ(w)
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with λ(w) = log(1+ w(1)/(1− r)). This function being continuous on the convex compact set
P (r), by Brouwer’s theorem, it has a fixed point. To prove uniqueness, let w and w′ be two fixed
points of F in P (r). By definition of P (r),

µλ(w)(0) = µλ(w′)(0) = 1− r. (2.18)

A coupling argument shows that, if λ ≤ λ′ then µλ is stochastically dominated by µλ′ , and in
particular,

µλ(0)+µλ(1) ≥ µλ′(0)+µλ′(1). (2.19)

It can then be deduced that λ(w) = λ(w′). Indeed, if for example λ(w) < λ(w′), by equations
(2.18) and (2.19),

µλ(w)(1) ≥ µλ(w′)(1).

thus, using (2.15) together with (2.18),

λ(w) = log

(
1+

µλ(w)(1)

1− r

)
≥ λ(w′) = log

(
1+

µλ(w′)(1)

1− r

)

which contradicts λ(w) < λ(w′). One finally gets λ(w) = λ(w′), and then by equation (2.13),
w = w′.

A Lyapunov function for the dynamical system given by F on P (r) is a function g≥ 0 on P (r)

such that, for each w∈ P (r), g(F(w))≤ g(w) with equality if and only if w is the fixed point of F.
In the particular case C = 2, a Lyapunov function can be exhibited, resulting from a contracting
property of F in this case.

Indeed, restricted to P (r), F is here given by :

w = (1− r,w(1),w(2) = r −w(1)) 7−→ F(w) =

(
1− r,(1− r)

[
log

(
1+

w(1)

1− r

)
+

r −w(1)

1− r +w(1)

]
,

1− (1− r)

[
log

(
1+

w(1)

1− r

)
+

1
1− r +w(1)

])
.

P (r) is some one dimensional subvariety of R3, so that any w∈ P (r) can be identified with its second
coordinate w(1) ∈ [0, r], or equivalently with λ(w) = log(1+w(1)/(1− r)) ∈ [0, log(1/(1− r))].

Using this last parametrization of P (r), it is easy to show that F rewrites as G, mapping the

interval I = [0, log(1/(1− r))] to itself and defined, for λ ∈ I , by G(λ) = log

(
λ+

e−λ

1− r

)
.

An elementary computation shows that G has derivative on I taking values in the interval
]−1,0], which gives the already known existence and uniqueness of a fixed point λ for G (or F,
both assertions being equivalent, and λ being equal to λ(w)). Moreover, the following inequality
holds for λ ∈ I :

|G(λ)−λ| ≤ |λ−λ|,
equality occurring only at λ = λ. As a result, g defined on P (r) by

g(w) = |λ(w)−λ| = |λ(w)−λ(w)| =
∣∣∣∣log

1− r +w(1)

1− r +w(1)

∣∣∣∣ ,

is a Lyapunov function for the dynamical system defined by F.
For C > 2, we conjecture the existence of such a g.
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Theorem 1. Assume that a Lyapunov function exists for the dynamical system given by F on
P (r) then, as m tends to +∞, the invariant measure of (Wm

n )n∈N converges to δw̄ where w̄ is the
unique fixed point of F. Thus the following diagram commutes,

(Wm
n )n∈N (d)−−−−→

n→+∞
Wm

∞

m→+∞
y(d)

y(d)

(wn)n∈N −−−−→ w̄

Démonstration. We prove that δw̄ is the unique invariant measure π of P with support in P (r).
Let g be the Lyapunov function for F on P (r). π is P-invariant, thus πP = π and πPg= πg which
can be rewritten

∫
(g◦F −g)dπ = 0. This implies that g = g◦F holds π almost surely because

g−g◦F ≥ 0. Equality being only true at w̄, π has support in {w̄}.

2.2 A more general model

2.2.1 Mice with general size distribution

Let (Wm
n )n∈N be the sequence of vectors giving the proportions of urns at 0, . . . ,C just before

the nth shift time in a model where balls are thrown by batches. The balls in a batch are thrown
together in a unique urn chosen at random among the m urns. The ith batch is composed with
Si balls and (Si)i∈N is a sequence of i.i.d. random variables distributed as a random variable SonN∗ with support containing 1. Let φ be the generating function of S. The quantity Si is called

the size of batch i. The dynamics is the same : If, before the nth shift time, the state is w∈ P (r)
m ,

it first becomes s(w) and then a number τm
n defined by (2.1) of successive batches are thrown in

urns until ⌈rm⌉ urns are non empty. The model generalizes the previous one obtained for S= 1.

Let F be defined on P by

F(w) = Tc(s(w)∗Cλ(w),S) (2.20)

where TC, λ and S are already defined and Cλ(w),S is a compound Poisson distribution i.e. the
distribution of the random variable

Y =
X

∑
i=1

Si (2.21)

where X is independent of (Si)i∈N with Poisson distribution of parameter λ(w).

We mimic the arguments in Section 2.1 to obtain the convergence of the stationary distribu-
tion of the ergodic Markov chain (Wm

n )n∈N as m tends to +∞ to a Dirac measure at the unique
fixed point of F. Propositions 1 and 2 hold. The fixed points of F are described in the following
proposition.

Proposition 4. F defined for w∈ P by

F(w) = Tc(s(w)∗Cλ(w),S)

has a unique fixed point on P (r) which is exactly the invariant measure µλ̄ of the number of
customers in a M/G/1/C queue with batches of customers arriving according to a Poisson process
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with intensity λ̄, batch sizes being i.i.d. distributed as S with generating function φ and service
times 1, where λ̄ is determined by the implicit equation

µλ(0) = 1− r

which is equivalent to

λ̄ = log

(
1+

µλ̄(1)

1− r

)

where for i ∈ {0, . . . ,C},
µλ(i) =

νλ(i)

∑C
l=0 νλ(l)

and νλ is given by
+∞

∑
n=0

νλ(n)un = νλ(0)
g◦φ(u)(u−1)

u−g◦φ(u)
, |u| < 1

where gλ(u) = e−λ(1−u) and νλ(0) = 1−λE(S) when λ < 1.

Recall that the first terms of νλ are given by

νλ(1) = νλ(0)(eλ −1)

and νλ(2) = νλ(0)eλ(eλ −1−λP(S= 1))

where νλ(0) = 1− λE(S) when λ < 1, which generalizes the previous expressions. For C = 2,
the Lyapunov function defined when S= 1 still works. Furthermore, for C > 2, we assume the
existence of a Lyapunov function for F. Theorem 1 still holds.

2.2.2 A multi-stage filter

The filter is previously supposed to have only one stage. Let now assume that the filter has
k stages of m counters each. The natural model then consists of k sets of m urns where, when a
ball is thrown, k copies of this ball are sent simultaneously and independently into the k stages,
each falling at random in one of the m urns of its set. If some ball hits an urn with C balls, then
it is rejected. Moreover, when the proportion of non-empty urns in the whole filter reaches r,
then one ball is removed from each non-empty urn : This is called a shift.

The previous analysis extends with one main difference : When the system is initialized at
some state (w j(i),1 ≤ j ≤ k,0 ≤ i ≤ C), where w j(i) is the proportion of urns with i balls in
stage j, the number τm

1 of balls thrown in each stage before the next shift is now asymptotically
equivalent to λ(w)m, where w = (w(i),0≤ i ≤C) here gives the global proportions of urns in each

possible state in the whole filter, that is w(i) =
1
k

k

∑
j=1

w j(i) for 0 ≤ i ≤ C. Thus λ is the same

function as for the one-filter case, here evaluated at the global proportions :

λ(w) = log
(

1+
∑k

j=1w j(1)

k(1− r)

)
.

The one-stage proof of (3) is however not reproducible here, due to the lack of a representation
of τm

1 analogous to (1) of Section 1.
Another proof can be written. The alternative argument is provided by noticing that when

αm balls per stage are thrown, with α /∈ [λ(w)− ε,λ(w)+ ε] (using the same arguments (i) and
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(ii) as in Section 1), the empirical distributions of the urns at each stage are precisely known
(for large m) and do not correspond to the global proportion r of non-empty urns.

Once the (uniform) convergence of τm
1 /m is established, the proof then proceeds along the

same lines as for k = 1 (the same reasoning holding for each stage).
Notice however that the Markov property does not hold for the process of global proportions

at shift times, so that convergence in distribution is proved for the process of proportions detailed
by stage, then inducing convergence.

2.3 Discussions

2.3.1 Synthesis : false positives and false negatives

From a practical point of view, the main results are Propositions 3 and 4. Given some size
distribution for the flows (the generating function φ of Section 2.2), these propositions show how
the values of the counters can be computed from the different parameters of the algorithm, since
these values are encoded by the fixed point w of F : according to Theorem 1, w is the state
reached in the stationary regime when there is one stage and also when there are several stages
(see Subsection 2.2.2 : one has ∑k

j=1w j(C) = kw(C)). Moreover, the convergence is experimentally
really fast (see the remark below), which ensures that in practice the algorithm lives in the
stationary phase. The component w(i) of w gives the approximate proportion of counters having
value i in the whole Bloom filter. λ is the number of packets that arrive between two shifts. w and
λ are respectively related to the number of false positives and to the number of false negatives :

The probability that a packet is a false positive is less than (w(C−1)+w(C))k since, in stage
j, the probability to hit a counter at height C is at most wj(C−1)+wj(C) and

k

∏
j=1

(w j(C−1)+wj(C)) ≤ (w(C−1)+w(C))k.

The quantity mλ is the time (number of packets) between two shifts, which is connected to
the number of false negatives according to the discussion “False positive and false negative” of
the Introduction.

2.3.2 Implementation and tests

The algorithm has been implemented with an improvement called the min-rule already pro-
posed in [34]. Instead of increasing the k counters, an arriving packet is incrementing only the
counters among k having the minimum value. Analytically more difficult to study, the algorithm
should perform better : Heuristically, more flows are needed to reach high values of the counters
inducing fewer false positives ; moreover, the time between two shifts is longer and hence the
number of false negatives is decreased. It has been tested against on two ADSL traffic traces
from France Telecom, involving millions of flows. The performance of the algorithm is evalua-
ted comparing the real number of elephants with the value estimated by the algorithm. Even
under the min-rule, the algorithm performs well only if r stays under a critical value rc, closely
dependent on the mice distribution.

Simulations have been processed with a one-stage filter with flows of size 1 to evaluate the
transient phase duration. It appears that the number of shifts to reach the stationary phase is
not much greater than C. Such a result on the speed of convergence seems however theoretically
out of reach.
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This chapter also deals with the problem of identifying elephants in the Internet Traffic. It
is devoted to a further analysis of the algorithm based on Bloom Filter. This algorithm uses a
so-called min-rule which can be described as in the supermarket model. This model consists of
joining the shortest queue among k queues selected at random in a large number of m queues. In
case of equality, one of the shortest queues is chosen at random. An analysis of a simplified model
gives an insight into the error generated by the algorithm for the estimation of the number of
the elephants. The same arguments are extended. Even if some results are for the moment out
of reach, one could conjecture the convergence of the empirical distribution of the filter counters
to a deterministic limit. Its characterization is analytically more complicated and numerically
more difficult to obtain.
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3.1 Introduction

Chapter 2 presents a theoretical analysis of the algorithm proposed by Azzana in [6]. The
objective is to estimate the error generated by the algorithm for the estimation of the num-
ber of elephants. The analytical study does not take into account the min-rule consisting in
incrementing only the counters among k having the minimum value, for an arriving packet.

In this chapter, we focus on the analysis of the min-rule. For this purpose, in order to obtain
a model more standard to analyze, the algorithm proposed by Azzana in has been slightly
modified. We consider now just one filter and k hashing functions. (Keep in mind the case
k = 2). An arriving packet increments the smallest counter among the k associated counters. In
case of equality, only one counter is incremented at random. In this way, every packet increments
exactly one counter. Note that an elephant is here defined as a flow with at least K packets where
K is in pratice equal to 20. A flow is declared as an elephant when its smallest associated counter
reaches C = K/k. The same refreshment mechanism is maintained with a threshold r of about
50%. The basic idea is that when the filter is not overloaded, in general, for each arriving packet
of a given flow, one of the k counters will be incremented in an alternative way. It means that
the k counters will have almost the same values and when the smallest one reaches C, the
corresponding flow has a total size of about K = kC packets (C packets hitting each counter).

The advantage of this new algorithm is that each arriving packet increments exactly one
counter. In this case, the way to increment the counters is exactly, in a system of m queues, the
way a customer joins the shortest queue among k queues chosen at random, ties being solved at
random. This model, called supermarket model by Mitzenmacher [62] and Luczak and McDiarmid
[58], also known as a load-balancing model, or model with choice, has been extensively studied
in the literature because of its numerous useful applications. In computer science, the central
result is stated in a pioneer paper by Azar et al. [5], then by Miztenmacher [62], and, by other
arguments, by Luczak and McDiarmid [58] for a discrete time model when n balls are thrown
into n urns with the choice. It is proved that, with probability tending to 1 as n gets large,
the maximum load of an urn is logn/ log logn+ O(1) when k = 1 and log logn/ logk+ O(1) if
k ≥ 2. Luczak and McDiarmid, in continuous time related models with the choice, explore the
concentration of the maximum queue length (see [58], [57]). But the model had also already been
studied in Mitzenmacher [62], Vvedenskaya et al. [72], Graham [47] and others for mean-field
limit theorems. In [62] and [72], a functional law of large numbers is stated : The process of
the vector of the tail proportions of queues converges in distribution as m tends to infinity to
the unique solution of a differential system. For k ≥ 2, the differential equation has a unique
equilibrium point uρ(i) = ρ(ki−1)/(k−1) for a throughput ρ < 1. It means that, when k≥ 2, the tail
probabilities of the queue length decrease drastically. In Vvedenskaya and Suhov [73], variants of
the choice policy and general service time distributions are investigated. Graham in [47] proves
the convergence of the invariant measures to the Dirac measure at uρ. In other words, when
m is large, the stationary vector of the proportions of queues with k customers is essentially
deterministic and given by this limit.

The aim of this chapter is to analyze the min-rule via the supermarket model and to evaluate
the performance of the new proposed algorithm. In particular, we want to calculate the error
generated by the algorithm on the estimation of number of elephants. Notice that this error is
due to both false negatives (missed elephants) and false positives (mice considered as elephants).
There is a trade-off between the proportion of false positives and false negatives. Moreover this
trade-off depends on the target applications. For example, for attacks detection, it will be better
to have false positives, say suspicious flows, than to miss an elephant, i.e. an attack. The operator
can further easily make the difference between anomalies and attacks. On the contrary, in order
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to count elephants, it is reasonable to avoid having too much false positives because mice are
numerous and a small proportion of false positives implies a non negligible error on the number
of elephants. Let us first focus on false positives. To be declared as an elephant, a mouse must
be hashed to one among k counters greater than C after this operation. So the proportion of
such counters is a good parameter to investigate in order to evaluate false positives.

The most part of the chapter is the analysis of a simple model where the flows are mice of
size one. It is relevant because most of the flows are mice so collisions between flows are mainly
due to collisions between mice. It turns out that the probability that a mouse is detected as
an elephant is bounded by the probability that a given counter is greater than C just before
a refreshment time. Thus the problem reduces to analyze the behavior of the model at the
refreshment times. Moreover the transition phase is very short thus the study of the stationary
behavior is pertinent.

The key idea of the study is to use the Markovian framework in order to rigorously establish
limit theorems and analytical expressions in the stationary regime. The main result is that, as
m tends to infinity, the evolution of the model is characterized by a dynamical system which has
a unique fixed point w̄. The interpretation of w̄ as a key quantity in a supermarket model with
deterministic service times is discussed. Analytical expressions are given in [19] for k = 1 but are
more complicated to obtain here for k≥ 2.

An objective would be to prove the convergence of the invariant measure of the Markov chain
as m tends to +∞ to the Dirac measure δw̄ at the fixed point w̄. In practice, such a result is
completely crucial. If it is not true, if the sequence of invariant measures do not converge, the
system oscillates with long periods of transition between different configurations (metastability
phenomenon). So even if the algorithm performs well during a while, it can reach another state
where it can give bad results. This question is partially addressed here. The convergence of the
invariant measures is conjectured, due to simulations of the algorithm where such a phenomenon
has not been observed. For such a result, a possible technique is the existence of a Lyapounov
function which both proves the convergence of the dynamical system to its unique fixed point w̄
and the convergence of the sequence of invariant measures to δw̄. Such a function is exhibited in
[19] for k = 1 and C = 2.

A simulation of the limit distribution w̄ is done for a uniform general mice size distribution
which is non analytically tractable for k≥ 2. Is is compared to the experiment on a real trace.
This one hour trace is commercial traffic provided by France Telecom. Results are very close. This
trace is used as a validation test and no algorithm parameter need to be changed to fit to some
characteristics of this particular trace. Experiments have three other goals. First to compare
the original version with the min rule to the modified version of the algorithm introduced here.
It appears that the latter version exhibits performances as good as the original one. Second,
the time between two refreshments is plotted. This quantity is crucial for the trade-off between
false positives and false negatives. It depends on the value of the threshold r. If r is high,
the counters are high due to collisions, involving many false positives. But refreshment times
occur less often so less packets are lost, inducing less false negatives. The analysis shows such
a behavior. Experiments validate the analysis. Third, the time to reach the stationary phase is
also discussed.

The organization of the chapter is as follows : Section II presents the analytical results
for the simple model defined to study the question of false positives. Section III is devoted to
experiments. Section IV mainly gives a discussion of the way to choose the parameter r in order
to have an algorithm which performs well.
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3.2 The Markovian urn and ball model

3.2.1 Description of the model

In this section, the question of false positives is addressed : The target quantity is the
probability for a mouse to be detected by the algorithm as an elephant.

The problem is studied in a simple framework, where flows are reduced to mice of size one.
Thus the model can be described as a urn and ball model because one size flows hashed in a
filter with m counters can be viewed as balls thrown into m urns with capacity C under the
supermarket rule : For each ball, a subset of k urns is chosen at random and the ball is put in
the least loaded urn, ties being resolved uniformly. Balls overflowing the capacity C are rejected.
Moreover if, after putting the ball, the number of non empty urns exceeds rm, then one ball is
removed from every non empty urn.

The probability of a flow to be detected as an elephant is reduced to the probability that,
after the ball arrival, all the k chosen urns have C balls. It is bounded by the probability that,
just before a refreshment time, after putting the last ball in its urn, all the k urns chosen for that
contain C balls. The bound is more convenient to study. Let us focus on the embedded model
just before the refreshment times.

3.2.2 A Markovian framework

For fixed C, let us consider the sequence (Wm
n )n∈N, where Wm

n denotes the vector of the
proportions of urns with 0, . . . ,C balls just before the nth refreshment time. For m≥ 1, (Wm

n )n∈N
is an ergodic Markov chain on the finite state space

P
(r)
m = {w∈

(N
m

)C+1

,
C

∑
i=0

w(i) = 1,
C

∑
i=1

w(i) =
⌈rm⌉

m
},

(where ⌈rm⌉ denotes the smallest integer larger than rm). Thus it has a unique invariant measure
πm.

The problem is that this quantity is combinatorically intractable. Even the transition pro-
bability Pm of the Markov chain is awfully difficult to write. Nevertheless, one could expect an
asymptotic of this quantity when mgets large. In other words, the limit of the invariant measures
πm when m is large is investigated.

3.2.3 A dynamical system

The way which is used here to obtain limit theorems is very classical (see [30] for example).
In fact, similar results for k = 1 can be found in Chabchoub et al [19]. The following results
extend the case k = 1 to k≥ 1. Of course the motivation here is the case k≥ 2. The proofs must
often be rewritten with new arguments and the sections which are still valid will be in general
omitted.

Let us introduce some notations. Let

P
de f
= {w∈ RC+1

+ ,
C

∑
i=0

w(i) = 1}

and P (r) de f
= {w∈ RC+1

+ ,
C

∑
i=0

w(i) = 1 and
C

∑
i=1

w(i) = r}
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be the state spaces. Let s be the shift defined as

s : w 7→ (w(0)+w(1),w(2), . . . ,w(C),0) on P

and

λ : P (r) → R+, w 7→
∫ r

r−w(1)

du
1−uk . (3.1)

For the vector of proportions v ∈ P , it is more convenient to deal with the vector of the tail
proportions u defined by u j = ∑i≥ j vi . G is then defined on P (r) by

G(w) = v(λ(w)) (3.2)

where (v(t)) is associated to (u(t)) the unique solution of

duj

dt
= u j−1(t)

k−u j(t)
k, j ∈ {1, . . .C}, u0 = 1 (3.3)

with initial condition u(0) corresponding to v(0) = s(w).
The following result is that, as m→ +∞, the Markov chain converges in distribution to a

deterministic dynamical system which will be explicited.

Proposition 5. If Wm
0 converges in distribution to w∈ P (r)

m then (Wm
n )n∈N converges in distri-

bution to the dynamical system (wn)n∈N given by the recursion

wn+1 = G(wn), n∈ N
where G is defined by equation (3.2).

Notice that G maps, by definition of λ, P (r) to P (r).

Démonstration. The result is a consequence of the convergence of the transition Pm of the Markov
chain (Wm

n )n∈N as m tends to +∞ to P given by

P(w, .) = δG(w).

It means that, starting from w just before a refreshment time, at the next refreshment time, the
vector of the proportions of urns tend to G(w) when m tends to +∞. The uniform convergence
stated by the following lemma provides the convenient way to prove Proposition 1.

Lemme 2. For ε > 0,

sup
w∈P (r)

m

Pm(w,{w′ ∈ P (r)
m : ||w′−G(w)|| > ε}) →

m→+∞
0.

Démonstration. The idea of the proof is that, starting from w (with ⌈rm⌉ non empty urns), after
refreshment, the vector of the proportions becomes s(w) defined by

s(w) = (w(0)+w(1),w(2), . . . ,w(C),0)

where the proportion of non empty urns is r −w(1). Then a number τm
1 of balls are thrown in

order to reach a state w′ with again ⌈rm⌉ non empty urns. It has to be proved that w′ is close
to G(w). There are three steps :
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1) It can be proved that this number τm
1 is deterministic at first order when m is large,

equivalent to λ(w)m, where λ(w) is defined by equation (3.1). More precisely,

sup
w∈P (r)

m

Pw

(∣∣∣∣
τm

1

m
−λ(w)

∣∣∣∣> ε
)

→
m→∞

0. (3.4)

To see it, use that, starting from w, τm
1 has an analytical expression as a sum of different

numbers Yl of balls necessary to hit the (l +1)th non empty urn. Indeed,

τm
1 =

⌈rm⌉−1

∑
l=⌈rm⌉−w1m

Yl , (3.5)

where the Yl s for l ∈ N are independent random variables with geometrical distributions on N∗

with respective parameters

al =
l−1

∏
j=0

l − j
m− j

,

i.e. P(Yl = n) = (l/m)n−1(1− l/m), n≥ 1.
As E(Yl ) = 1/(1−al ), computing the mean and comparing this sum with integrals leads to

sup
w∈P (r)

m

Ew

(
τm

1

m

)
→

m→∞
λ(w). (3.6)

At the same time, as Var(Yl ) = al /(1−al )
2,

sup
w∈P (r)

m

Varw(τm
1 )

m
→

m→∞

∫ r

r−w(1)

dt
(1− tk)2 . (3.7)

By Bienaymé-Chebychev’s inequality, using equations (3.6) and (3.7), equation (3.4) is proved.
2) From the previous fact, there is a natural coupling throwing τm

1 m balls or λ(w)m balls
where the vectors of proportions Wm

1 and say W̃m
1 are close to each other. Then there is also a

coupling throwing λ(w)m and a Poisson random variable with parameter λ(w)m, for which, by
Chernoff’s inequality, the vector of proportions W̃m

1 and say Ŵm
1 are close.

3) The vector of proportions Ŵm
1 obtained by coupling is the vector of proportions at time

λ(w) in a queueing supermarket model without departures. The model consists of m queues with
capacity C where customers arrive according to a Poisson process with rate m. At each arrival, a
subset of k queues is chosen and the customer joins the shortest one, ties being solved at random.
Let Wm(t) be the vector of the proportions of m queues with 0,1, . . . ,C customers at time t. It is
more convenient to deal with the tail proportions defined as

Um
j (t) = ∑

i≥ j

Wm
i (t).

Given Wm(0) = s(w), we have that
Ŵm

1 = Wm(λ(w)).

By the convergence of the Markov process (Um(t)) to the fluid limit (see Vvedenskaya et al. [72]
for example), it holds that Ŵm

1 converges in distribution to v(λ(w)) where v, defined by (3.3), is
associated to u the fluid limit of (Um(t)), the unique solution of the differential system

duj

dt
= u j−1(t)

k−u j(t)
k (1≤ j ≤C), u0 = 1, (3.8)
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with initial condition u(0) corresponding to v(0) = s(w). Moreover using the continuity of a
solution of a differential equation with respect to the initial condition, for each ε, t > 0, 0≤ j ≤C,

sup
w∈P (r)

m

Pw(|Um
j (λ(w))−u j(λ(w))| > ε) →

m→∞
0

which straightforwardly leads to

sup
w∈P (r)

m

Pw(‖ Ŵm
1 −G(w) ‖> ε) →

m→∞
0

where

G(w) = v(λ(w)).

It ends the proof of the lemma.

The argument to obtain Proposition 1 from Lemma 2 is standard and detailed in [19, Pro-
position 1]. It is omitted here.

3.2.4 Fixed point of the dynamical system

The function

P (r) −→ P (r)

w 7−→ G(w)

being continuous on the convex compact set P (r), by Brouwer’s theorem, it has a fixed point.
It remains to prove the uniqueness of the fixed point. Recall that, for k = 1, the proof is

based on the interpretation of the fixed point equation

G(w) = w

as the equation

w = µλ(w) (3.9)

where µλ is the invariant measure of some ergodic Markov chain. This Markov chain is the queue
length at the service completion times of a M/G/1/C queue with deterministic service times
equal to 1 with arrival rate λ. The proof of the uniqueness of the solution of equation (3.9) is
then based on the coupling argument that, if λ ≤ λ′ then µλ is stocastically dominated by µλ′

(see [19] for details).

Let us try to extend the argument for the case k≥ 2. For that, let us consider the following
system. Balls arrive according to a Poisson process with rate λm. They are thrown into m urns
with capacity C as follows. Each ball joins the least loaded urn among a subset of k urns, chosen
at random. The ties are resolved uniformly. At each unit time, one ball is removed from each
non-empty urn. It can be proved as in Proposition 1 that the vector of the proportions of urns
with j balls just before time n converges, when m is large, to a dynamical system

wn+1 = H(wn)
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where, for v defined defined by (3.3) with initial condition v(0) = s(w),

H(w) = v(λ).

But the argument fails for k ≥ 2. Assume that H(w) = w is the invariant measure equation of
some ergodic Markov chain, i.e., of type wP= w for some transition matrix P. As H(w) = v(λ),

v(λ) = wP.

From equation (3.8), u1(t) can be computed explicitly. It gives that

v0(t) = 1−F−1(t +F(r −w(1))

where F(x) =
∫ x

0
dt

1−tk is a bijection from [0,1[ to its image. It means that, for k≥ 2, v0(λ) can not

be written as ∑C
j=0P0, jw( j).

Thus another way to prove it can be found and, at this point, the uniqueness of the fixed
point is conjectured.

3.2.5 Identification of the fixed point

If the capacity is infinite, then the parameter λ(w̄) is equal to r. In this case, it is simple to
have the explicit expression of w̄1, which is a good approximation for the case C = 20/k, for k
small enough. It is the purpose of this section.

Assume that C = +∞. By definition,

λ(w̄) =
∫ r

r−w̄(1)

dt
1− tk

and F(x) =
∫ x

0
dt

1−tk defines a bijection from [0,1[ to its image. Using that λ(w̄) = r for C = +∞, it
can be rewritten

r = F(r)−F(r − w̄(1)),

or

w̄(1) = r −F−1(F(r)− r). (3.10)

Notice that for k ∈ N, F has an explicit expression. For k = 1, F(x) = − log(1− x) which leads
(see [19]) to

w̄(1) = (1− r)(er −1).

Moreover, for k = 2, F(x) = argthx and thus

w̄(1) = r − r − thr
1− rthr

. (3.11)

For k≥ 4, even if F has a simple close form (for instance, for k = 4,

F(x) = (argthx+arctanx)/2)

F−1 and w̄1 have to be numerically computed. In Figure 13, w̄(1) is plotted for k = 1, 2 and 4.
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Fig. 13 – Limit proportion w̄(1) of counters with value 1 for k = 1,2,4.

3.2.6 Convergence of invariant measures

A first result is obtained. It is proved in [19, Proposition 2] and recalled here omitting the
proof.

Proposition 6. Let, for m≥ 1, πm be the stationary distribution of (Wm
n )n∈N. Define P as the

transition on P (r) given by P(w, .) = δG(w). Any limiting point π of (πm)m∈N is a probability measure

on P (r) which is invariant for P i.e. that satisfies G(π) = π.

As noticed in the introduction, the limiting point of πm is not necessarily unique, because
there is not a unique measure π such that G(π) = π. There is one because G has a unique fixed
point thus G(δw̄) = δw̄. But imagine that G has cycles, i.e. that there exist n≥ 2 and w1, . . . ,wn

in P (r) such that

G(w j) = w j+1 (1≤ j < n), G(wn) = w1

then π = 1/n∑n
j=1δwj is invariant under G. It gives two different limiting points for πm. A way

to prove the convergence of (πm) to δw̄ is to find a Lyapounov function for G (see [19, Theorem
1] for details). Such a Lyapounov function is exhibited in [19] for k = 1 and C = 2. It is not
investigated here.

3.2.7 General mice size distribution

The subsection deals with the extension of the previous results to a model with general size
distribution. An approximated model is taken. Indeed, as mice size are short (with mean close
to some units, in real traffic traces, close to 4), an approximated model is to consider that the
packets of the mice are thrown without interleaving with packets of other mice in the target
counters. It means that the packets of the different mice arrive consecutively in the filter.

The model chosen is thus an urn and ball model where balls are thrown by batches. The balls
in a batch are thrown successively, each ball into the least loaded urn among k chosen at random
in the m urns. Notice that the set of k urns is the same for every ball of a given batch, but the
balls tend to fill these k urns alternatively. The ith batch is composed with Si balls, where the
Sis are independent random variables with distribution denoted by p. The model generalizes the
previous one obtained for mice of size one (p(1)=1).

This model, which is simple to analyze in the case k = 1 (see [19, Subsection 2.1]) as an
extension of the model with mice of size one, becomes much more difficult in the case k ≥ 2.

55



Chapitre 3. Analysis of a Bloom filter algorithm via the supermarket model

To our knowledge, the pending queueing system with batch arrivals and customers joining the
shortest queue has never been studied.

3.3 Experiments

In this section, the proposed algorithm is tested against an ADSL commercial traffic trace
from France Telecom IP backbone network. This traffic trace has been captured on a Gigabit
Ethernet link in October 2003 between 9 :00 pm and 10 :00 pm. This period corresponds to a
peak activity by ADSL customers (the link load was equal to 43.5%), its duration is 1 hour and
contains more than 10 millions of TCP flows. Some trace characteristics are given in Table I.

Traces Nb. IP packets Nb. TCP Flows Duration
FT trace 135 844 423 10 474 665 1 hour

Tab. 3.1 – Characteristics of the traffic trace considered in experiments

In our experiments, the filter consists of m = 220 counters associated to two independent
hashing functions (k = 2). Elephants are here defined as flows with at least 20 packets (K = 20).
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Fig. 14 – Impact of the Supermarket model on the estimation of elephants number , r = 50%,
France Telecom trace

The relative error on the estimated number of elephants, defined as the difference between the
number of detected elephants and the exact number of elephants divided by the exact number of
elephants, is plotted in Figure 14. Two different versions of the algorithm are considered : The
original algorithm developed in [6] and presented in the introduction and the modified algorithm
introduced here. Recall that these two algorithms use the min-rule (incrementing only smallest
counters), but in a different way : In case of equality, only one counter is incremented at random
in the supermarket scheme, whereas the two counters are incremented in the original version of
the algorithm. The proposed alternative algorithm implements the min rule in a more standard
way. It allows to exploit well-known analytical results on the supermarket model, which is very
studied in the literature. In its original version, the fact that each lowest counter is incremented
makes the model more difficult to analyze. Experiments show that both methods give a good
estimation of number of elephants, for the whole duration of the trace. Moreover, the supermarket
version has less missed elephants, which can be better for some applications.
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3.3. Experiments

One can notice that for the modified algorithm, the generated error is higher at the beginning
(when time is less than 10 minutes). This can be explained by the fact that starting from an
empty filter (with all counters at 0), it takes a long time to reach the filling up threshold (50%)
to perform the first refreshment. As a consequence, counters are high compared to their values
in the stationary phase. Indeed it has been checked experimentally that, just before the first
refreshment, the proportion of counters at C is up to 10 times higher than in the stationary
phase.
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Fig. 15 – Impact of k on the estimation of elephants number, r = 50%, France Telecom trace

Figure 15 gives the relative error on the estimated number of elephants for different values of
k. The first observation is that, for larger values of k, the algorithm remains very robust even if
the following occurs : A flow is declared elephant if its k associated counters reach C = 20/k. In
a k = 10 version, C is only 2. Nevertheless, in stationary regime, the algorithm performs better
for k = 2. Indeed, it seems on Figure 15 that more elephants are missed for larger k, generating
a higher negative error on the estimation of number of elephants. The explanation could be the
following : Elephant packets are alternatively incrementing k counters, so when a refreshment
occurs, up to k packets of the elephant are lost at the same time, according to the number of
packets already transmitted. It implies that, if k is large, then elephants with size close to 20
could be more easily lost. In the following, k will remain equal to 2.
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Fig. 16 – Duration of the transition and the stationary phase, r = 50%, France Telecom trace

Figure 16 presents the inter-refreshment time (duration between two successive refreshments
in terms of number of arriving packets) for the whole traffic trace. It can be noticed that the

57



Chapitre 3. Analysis of a Bloom filter algorithm via the supermarket model

stationary phase is reached at the Kth refreshment time. So the transition phase seems to be ra-
ther short, according to experiments. The stationary inter-refreshment time using the algorithm
based on the supermarket model is higher than the one obtained with the original version of the
algorithm. This can be explained by the fact that, with the supermarket scheme, every arriving
packet increments exactly one counter, whereas in the original version, if the two selected coun-
ters are equal, they are both incremented by one. In particular, when they are both null, they
will be both impacted. As a consequence, the proportion of non null counters grows faster and
the filling up threshold r is reached more quickly.

Figure 16 gives an explanation to the behavior of the algorithms plotted in Figure 14. In
the original algorithm, the inter-refreshment time is lower thus more elephants are missed. The
error is thus negative. In the supermarket version, the error is positive due to false positives.
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Fig. 17 – Comparison between rm and the stationary inter-refreshment time τm
∞, France Telecom

trace

In Figure 17, the impact of r on the stationary inter-refreshment time τm
∞ is investigated.

More precisely τm
∞/rm is plotted for various values of r. According to experiments, τm

∞ is very
close to rm. In fact the refreshment can be seen as removing rm from the sum S of all counters
(decreasing by one all non null counters which are exactly rm as the refreshment is performed
as soon as the filling up threshold r is reached). In the stationary phase, when m is large, the
proportion of counters at i, for i ∈ {0, . . . ,C}, is wi at the first order. And just before the next
refreshment, rm packets must be inserted into the filter, to let S have its former value. Packets
belonging to elephants which have been detected are not taken into account. Those packets are
very numerous and they are not inserted into the filter to avoid polluting it. The conclusion is
that τm

∞/m is close to r even for C = 10.

3.4 Discussion

The performance of the algorithm clearly depends on the filling up r. To have a good esti-
mation of the number of elephants, r must be around 50%. When r has higher values, elephants
number will be largely overestimated due to false positives. The key quantity is w̄(i), the statio-
nary proportion of counters at i when m gets large. An explicit expression for w̄ is not available
even if a numerical value could be computed. Nevertheless, less ambitiously, one can maybe
simply find the critical value of r for which w̄(C) gets non negligible. At least, the impact of r
on w̄ is shown here by simulation.

Figure 18 (w is written for w̄) is not based on a real traffic trace but on simulation. The
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Fig. 18 – Impact of r on the limit stationary distribution w̄, simulation using only mice with
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objective here is to evaluate the limit stationary distribution w̄ if we consider a traffic composed
only of mice. The mice mean size is taken equal to four to be close to the real traffic (This value
is deduced from the real traffic trace). Under these conditions, we obtain a decreasing limit
stationary distribution of w̄, when r equals 50%. For a filling up threshold of 90%, counters are
very likely to be higher. We can notice that the main part of counters values is around six and
there are many counters at C. This explains the fact that, with a filling up threshold around
50%, the algorithm performs better.
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Fig. 19 – Impact of r on the limit stationary distribution w̄, France Telecom trace

The same experiments are now performed on the real traffic trace. Notice that results plotted
on figure 19 are very close to those obtained by simulation on figure 18. One can deduce that the
elephants present in the real traffic trace do not impact too much the limit stationary distribution
w̄. As a consequence, to analyze the performance of the algorithm, in particular its generated
false positives, flows can be reduced to mice. This is in agreement with the model considered in
part II.

3.5 Conclusion

In this chapter, a new algorithm catching on-line elephants in the Internet is analyzed. This
algorithm is based on Bloom filters with a refreshment mechanism that depends on the current
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Chapitre 3. Analysis of a Bloom filter algorithm via the supermarket model

traffic intensity. It also uses a conservative way to update counters, called the min-rule. This
latter is exactly to increment the lowest counter among a set of k chosen at random, ties being
solved at random, as in the supermarket model which provides a much lower tail distribution
for the counter values. For a model involving just mice, limit theorems investigate the existence
of a deterministic limit for the empirical distribution of counters values, when the filter size gets
large. This limit can be exploited to adjust the parameters for the algorithm to perform well.
The accuracy of the algorithm and some theoretical results are tested against a traffic trace from
France Telecom and by simulations.
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Introduction

Packet sampling is an efficient method of reducing the amount of data to retrieve and to
analyze in order to study the characteristics of IP traffic (cf. the drafts of IPFIX [50] and PSAMP
[51] working groups at the IETF). The simplest approach to packet sampling is certainly the
so-called 1-out-of-k sampling technique, which consists of capturing and analyzing one packet
every other k packets with k = 100,500or1000 in practice. This method will be referred to in the
following as deterministic sampling, which has been implemented, for instance, in CISCO routers
(NetFlow facility [24]) and is widely used in today’s operational networks, even if it suffers from
several shortcomings identified in [33]. Deterministic sampling is not easy to model as it can
introduce some bias in sampled data. That is why theoretical studies rely on an other sampling
method called probabilistic or random sampling. It consists in selecting with a probability p.

Packet sampling reduces certainly the amount of data but causes also a great loss of infor-
mation about flows. In particular, the majority of small flows are not sampled. Thus recovering
original flow statistics from sampled data is a difficult task (see [29] for instance). Different solu-
tions have been introduced to overcome these limitations (e.g., the “sample and hold” technique
by Estan and Varghese [34], adaptive sampling [23, 33], etc.).

The main objective of this part is to propose some algorithms inferring flow characteristics
from sampled traffic. Note that a flow is here defined as the set of those packets sharing common
characteristics (same source and destination IP addresses and port numbers together with the
same protocol type).

This part is organized as follows : In chapter 4, we prove, under some assumptions, the equi-
valence of deterministic and probabilistic sampling methods in term of composition of sampled
traffic in flows. We also show that the tail distribution of flow size can be inferred from the dis-
tribution of the number of its sampled packets. In chapters 5 and 6, we propose a new method
inferring the total number of large flows and their size distribution, from sampled traffic. These
results are validated on several traces from different types of IP networks.
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Under the assumption that packets are sufficiently interleaved and the sampling rate is small,
we show in this chapter that those characteristics of flows like the number of packets, volume,
etc. obtained through deterministic 1-out-of-k packet sampling is equivalent to random packet
sampling with rate p = 1/k. In particular, it is shown that under mild assumptions, the tail
distribution of the total number of packets in a given flow can be estimated from the distribution
of the number of sampled packets. Explicit theoretical bounds are then derived by using technical
tools relying on bounds of Poisson approximation (Le Cam’s Inequality) and refinements of the
central limit theorem (Berry-Essen bounds). Experimental results from an ADSL trace show a
good agreement with the theoretical results established in this chapter.
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4.1 Introduction

Because deterministic sampling may introduce some synchronization and then some bias in
sampled data, which bias is not easy to determine because it depends upon the realization of
flows (i.e., the relative position of packets between each other), several studies and IETF drafts
[75] recommend probabilistic sampling. In its basic version, random sampling consists of picking
up a packet, independently from other packets, with a given probability p. The major advantage
is that random sampling provides isolation between flows : the selection of a packet does not
depend upon the relative position of flows between each other.

In this chapter, it is shown that if packets are sufficiently interleaved (which is definitely
the case on a transmission link of a backbone network), then 1-out-of-k deterministic sampling
is equivalent to random sampling with p = 1/k. More precisely, an explicit estimation of the
distance (for the total variation norm) between the distributions of the numbers of packets in a
flow sampled with the two sampling techniques is obtained.

On the basis of this result, bounds on the difference between the distributions of the original
flow size and of the sampled flow size rescaled by the sampling factor are established. If the
estimation of the size of a flow with the number of sampled packets scaled by the sampling
factor is natural and frequently used in the literature, it is not always accurate and can be
wrong sometimes. A bound to estimate the accuracy of this estimation is therefore important in
practice. Provided that the flow size is sufficiently heavy tailed, it can be shown that the original
size of a flow can be indeed estimated from the number of sampled packets.

The different theoretical results obtained in this chapter are illustrated on a traffic trace from
the France Telecom backbone network carrying ADSL traffic. For this purpose, we introduce a
flow decomposition technique based on an ad-hoc mouse/elephant dichotomy. The theoretical
results are applied to elephants. Mice appear as background noise in sampled data and their flow
size distribution is of less interest, since their volume represents only a small fraction of global
traffic. Experimental data show good agreement with theoretical results.

The chapter is organized as follows : In Section 4.2, we describe the traffic analysis metho-
dology. The comparison between deterministic sampling and random sampling is discussed in
Section 4.3 and results on random sampling are then established. These results are compared in
Section 4.4 against experimental results. Concluding remarks are presented in Section 4.5.

4.2 Traffic analysis methodology

Let us consider a high speed transmission link carrying Internet traffic and let us divide time
into slots of length ∆. The constant ∆ may range from a few seconds to several tens of minutes
(say, from one to two hours).

In this chapter, we are interested in the characteristics of TCP traffic since it still repre-
sents today 95 % of the total amount of traffic in IP networks, even though the proportion
of UDP traffic is growing with the development of streaming applications (VoIP, video, peer-
to-peer streaming, etc.). In the literature on Internet traffic characterization, it is well known
that all flows are not all equivalent : there are flows with many packets, possibly transmit-
ted in bursts, and small flows comprising only a few packets. Many small flows are composed
of single SYN segments corresponding to unsuccessful TCP connection establishments attempts.

The elephant/mouse dichotomy used in this chapter corresponds more or less to the definition
introduced by Paxson and Floyd [67], even if clear definitions for mice and elephants do not exist
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(see the discussion in [65]). To be more specific, we shall use the following definitions :

Definition 2 (Mouse/Elephant). A mouse is a flow with less than b packets in a time window
of length ∆. An elephant is a flow with at least b packets in a time window of length ∆.

We do not claim that the above definitions should be the definitions for mice and elephants ;
they are introduced for convenience to split the flow population into two distinct sets. In particu-
lar, they depend upon the length ∆ of the measurement window and the threshold b. In previous
studies (see [8] for instance), a threshold b = 20 packets yields a neat delineation between mice
and elephants when dealing with ADSL traffic even for large observation windows. This is the
value which is chosen in the whole chapter.

To illustrate the above definition, we consider a traffic trace from the France Telecom IP
backbone network carrying ADSL traffic. This traffic trace has been captured on a Gigabit
Ethernet link in October 2003 between 9 :00 pm and 11 :00 pm (this time period corresponding
to the peak activity by ADSL customers) ; the link load was equal to 43.5%. The complementary
cumulative distribution function (ccdf) of the number Nmice of packets in mice is displayed in
Figures 4.20(a) and 4.20(b) for ∆ = 5 seconds and ∆ = 3200seconds, respectively. We see that for
∆ = 5 seconds, the distribution of the random variable Nmice can reasonably be approximated by
a geometric distribution (i.e., P(Nmice> n)≈ rn

1). By using a standard Maximum Likelihood Esti-
mation (MLE) procedure, we find r1 = 0.75. For ∆ = 3200seconds, only the tail of the distribution
can be approximated by a geometric distribution ; experimental results give P(Nmice > n) ≈ c2rn

2
for large n, with c2 = .1 and r2 = .6.

The distribution of the number Nelephof packets in elephants is displayed in Figure 4.20(c) and
4.20(d) for ∆ = 5 and ∆ = 3200seconds, respectively. Now, we see that elephants clearly exhibit
a behavior, which is significantly different from that of mice. The random variable Neleph has a
slowly decreasing distribution, which can reasonably be approximated by a Pareto distribution,
at least for moderate values of Neleph for ∆ = 5 seconds.

We specifically have P(Neleph > n) ≈ (b/n)a for n ≥ b = 20. For ∆ = 5 seconds, we find by
means of a standard MLE procedure a= 1.95. When ∆ = 3200seconds, the distribution of Neleph

is more complicated and can be approximated by two Pareto distributions, namely P(Neleph>

n) ≈ (20/n)a2 for 20≤ n ≤ 2000 with a2 = .55, and P(Neleph> n) ≈ (600/n)a′2 for n≥ 2000 with
a′2 = 1.8.

Remark. It turns out that taking only a limited time window for the statistics of the duration
of a flow gives a much more robust statistical description of the traffic. Additional works has to
be done to recover the full information on the duration of the flows.

In this chapter, we are interested in comparing the random variables describing the number
of packets in a sampled flow, when deterministic or random sampling is performed.

4.3 Properties of random and deterministic sampling

4.3.1 Deterministic sampling

In the case of deterministic sampling, one packet is selected every other 1/p (integer) packets,
where p is the sampling rate. If packets of flows are back to back, then there is little chance
of seeing flows more than once if their number of packets is not significantly larger than the
sampling coefficient 1/p. Fortunately, on a high speed backbone link, the number of simultaneous
flows is very large and packets of the different competing flows are highly interleaved. Hence,
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Fig. 20 – Ccdf of the number of packets in mice and elephants for ∆=5 seconds and ∆ = 3200
seconds (b = 20 packets).

consecutive packets of a given flow are separated by many packets of other flows. This introduces
some randomness in the selection of packets of a given flow.

More precisely, we consider a model where all flows are permanent in a time window of length
∆. This means that, during all this time window, each flow f is active and has a constant rate
vf /∆, where vf is the volume of the flow. Under this assumption, deterministic sampling consists
of drawing ⌊pM(∆)⌋ packets out of the total number M(∆) of packets in the time window. If
packets are sufficiently interleaved, a sampled packet belongs to a given flow f with probability
vf /M(∆). Hence, the number of sampled packets from flow f is v̂f = Bf

1 +Bf
2 + · · ·+Bf

pM(∆), where

the quantities Bf
j are independent Bernoulli random variables equal to one if the jth sampled

packet is from flow f . Note that if f and g are distinct flows, then the variables Bf
j and Bg

j are
not independent.
This model can be also seen as an urn and ball scheme with replacement : An urn contains a
random number of balls with different colors. We draw a small fraction p of the total number of
balls. A ball which has been drawn is replaced into the urn.

The assumption of permanent flows is reasonable, when the observation window length ∆ is
small. When ∆ is large, however, flows may be bursty and alternate between on and off periods.
This phenomenon has been observed in particular when analyzing elephants in ADSL traffic
[8]. Heuristically, at the first order, everything occurs as if the flows are permanent. It has been
investigated both theoretically and by simulation. This is the object of Subsection 4.3.3. This
assumption allows us, for the moment, to avoid such a discussion.
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4.3.2 Probabilistic sampling

It is assumed in this section that random sampling is performed : each packet of a given flow
f with vf packets is taken with a probability p and the number of packets in the sampled flow

is exactly given by ṽf = B̃f
1 + B̃f

2 + · · ·+ B̃f
vf , where the random variables B̃f

i are iid with Bernoulli
distribution with mean p. The key property of this sampling mode is that it provides isolation
between flows. Mathematically, it amounts to the fact that the Bernoulli variables B̃f

i and B̃g
i

are independent for distinct flows f and g.
The comparison between the two sampling methods is done through the estimation of the

total variation distance between the distributions of v̂f and ṽf ,

∥∥P(v̂f ∈ ·)−P(ṽf ∈ ·)
∥∥

tv
def.
= sup

A⊂N ∣∣P(v̂f ∈ A)−P(ṽf ∈ A)
∣∣ .

Proposition 7 (Probabilistic vs. Deterministic Sampling). Under the above assumptions, for a
flow f with vf packets with E(v2

f ) < +∞, the relation

‖P(v̂f ∈ ·)−P(ṽf ∈ ·)‖tv ≤ p
E(v2

f )

M(∆)
+ p2E(vf ) (4.1)

holds. Moreover, as M(∆) goes to infinity, the number of sampled packets v̂f converges in distri-
bution to Q defined by Q(k) =

pk

k!
E(vk

f e
−pvf

)
.

Démonstration. The proof relies on Le Cam’s inequality conditionally on the value of vf , see
Chapter 1 of Barbour [11]. If Pois(λ) denotes the Poisson distribution with parameter λ, then

‖P(v̂f ∈ · | vf )−Pois(pvf )‖tv ≤ pv2
f /M(∆). (4.2)

By integrating this relation, we obtain ‖P(v̂f ∈ ·)−Q‖tv ≤ pE(v2
f )/M(∆). Similarly for ṽf , with

similar arguments, we have ‖P(ṽf ∈ ·)−Q‖tv ≤ p2E(vf ). Relation (4.1) is proved. The convergence
in distribution is a direct consequence of Inequality (4.2). More details about Le Cam’s inequality
are given in chapter 5.

Equation (4.1) implies that when the sampling parameter p is small, the distribution of
the number of sampled packets of a given flow is close to the analogue quantity obtained by
probabilistic sampling.

Considering that if we deal with an elephant, the number of packets of the flow is quite large,

the law of large numbers would suggest the following approximation B̃f
1 + B̃f

2 + · · ·+ B̃f
vf

dist.∼ pvf ,
so that the total number of packets of a flow can be recovered from the number of sampled
packets. In spite of the fact that this approximation is quite appealing and natural, it turns out
that it has to be handled with care. Indeed, if vf is geometrically distributed, then it is easily
checked that the above approximation is wrong. The fact that vf is, very likely, heavy tailed
helps to establish such an approximation. This is the subject of the rest of the section. The
following result is a first step in this direction.

Proposition 8. If hk(x) = x2/4p2
(√

1+4kp/x2−1
)2

x∈ R, k > 0, and the random variables Bi

are Bernoulli with mean p, then
∣∣∣∣∣P( vf

∑
i=1

Bi ≥ k

)
−P[vf ≥ hk

(√
p(1− p)G

)
∨k
]∣∣∣∣∣≤ cE( 1

√
vf
1{vf ≥k}

)
,
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where G is a standard Gaussian random variable, for real numbers a∨b = max(a,b), and
c = 3(p2 +(1− p)2)/

√
p(1− p).

Démonstration. Let σ2 = Var(B) = p(1− p), Sn = B1+ · · ·+Bn, S̄n = Sn/n and Ŝn =
√

n(S̄n−np)/σ.
By Berry-Essen’s theorem [39], for each n∈ N and k > 0,

∣∣∣∣P(Ŝn ≥
k− pn
σ
√

n

)
−P(G ≥ k− pn

σ
√

n

)∣∣∣∣≤
c√
n

where c = 3E((p−B)3)/σ3 = 3(p2 +(1− p)2)/
√

p(1− p). Thus, multiplying by 1{n≥k}, using the

independence of Sn and vf and Fubini’s theorem, noticing that P(ŜN ≥ (k− pvf )/
√

vf ) =P(Svf ≥ k)
and that, if Svf ≥ k then vf ≥ k, we obtain

∣∣∣∣P(ŜN ≥ k− pvf

σ√vf

)
−P(G ≥ k− pvf

σ√vf
,vf ≥ k

)∣∣∣∣≤ cE( 1
√

vf
1{vf ≥k}

)
.

Now, we prove thatP(G ≥ k− pvf

σ√vf
,vf ≥ k

)
= P(pvf +

√
vf σG ≥ k,vf ≥ k) = P(vf ≥ fk(σG ) ∨ k).

Indeed, denoting z=
√

y, the equation pz2 +zx−k = 0 has two roots in R, equal to

z1 = (−x−
√

x2 +4pk)/2p < 0 and z2 = (−x+
√

x2 +4pk)/2p > 0. Thus, for every x∈ R,
pz2 +zx−k≥ 0,z≥ 0 is equivalent to z≥ z2, i.e., y≥ hk(x). The result then readily follows.

From the above result, under mild assumptions on the distribution of vf , the tail distribution
of B1 + B2 + · · ·+ Bvf is related to the tail distribution of vf . In particular, if vf has a Pareto
distribution, we have the following result.

Corollaire 1. If the random variable vf has a Pareto distribution, i.e. for some b> 0 and a> 1,P(vf ≥ k) = (b/k)a, and if the random variables Bi are Bernoulli with mean p, then

lim
k→+∞

P(B1 +B2+ · · ·+Bvf ≥ k
)P(vf ≥ k/p)

= 1.

Démonstration. We haveP(vf ≥ hk(
√

p(1− p)G )∨ l) = E((b/(hk(
√

p(1− p)G )∨k))a) ∼ (bp/k)a ,

since hk(x) = k/p(1+O( 1√
k
)) for large k.

The above asymptotic results have been established for a random variable vf , which has a
Pareto distribution. But it is straightforwardly checked that similar results hold, when only the
tail of vf is Pareto as for the traffic trace described in Section 4.2. To conclude the comparison
between the original flow size distribution and the rescaled sampled size distribution, let us
mention that Berry-Essen bound based on the normal approximation is accurate only around
the mean value. To obtain a tighter bound on the tail of the distribution, it is possible to establish
the following result (see [17] for details).
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4.4. Experimental results

Theorem 2. For α∈ (1/2,1), there exist positive constants C0 and C1 such that for any p∈ (0,1)
and ℓ ≥ 1/p,

∣∣∣∣∣
P(∑vf

i=1Bi ≥ ℓ
)P(vf ≥ ℓ/p)
−1

∣∣∣∣∣≤ sup
−C1≤u≤C1

3

∣∣∣∣∣∣∣

P(vf ≥ ℓ
p +u

(
ℓ
p

)α)P(vf ≥ ℓ/p)
−1

∣∣∣∣∣∣∣
+

C0P(vf ≥ ℓ/p)
exp

(
− p

4(1− p)
ℓ2α−1

)

From the above result, we see that the quantity P(∑vf

i=1Bi ≥ ℓ
)

related to the probability
that a sampled flow contains at least ℓ packets is exponentially close for sufficiently large ℓ toP(vf ≥ ℓ/p). In Section 4.4, the above theoretical results are used to interpret the experimental
results when performing deterministic and random sampling on the France Telecom ADSL traffic
traces.

4.3.3 Refinements

To prove Proposition 7, it has been assumed that flows are permanent. This assumption is
reasonable, when the observation window length ∆ is small. When ∆ is large, however, flows
may be bursty and alternate between on and off periods. To take into account this phenomenon,
convergence to Poisson distributions as in Proposition 7 can be proved, when flows have different
transmission rates on simple model designed for that purpose.

More precisely, let us assume that there are L classes of flows. For a class ℓ ∈ {1, . . . ,L},
rℓ(u) is the transmission rate of a flow of class ℓ at time u. The quantity Cℓ = 1

∆
∫ ∆

0 rℓ(u)du is
the average transmission rate of a flow on [0,∆]. Flows are assumed to arrive uniformly in [0,∆].
Consequently, for each flow f in class ℓ, the number of packets transmitted up to time t ∈ [0,∆]
is vf (t) =

∫ t
0 rℓ((u− τ f ) mod∆)du, where the τ f ’s are independent and uniformly distributed in

[0,∆]. It follows that the different processes vf (t) for flows f in class ℓ have the same distribution.

For ℓ ∈ {1, . . . ,L}, let Kℓ be the number of flows of class ℓ in [0,∆] and K = ∑ℓ Kℓ . The total
number of transmitted packets up to time u is denoted by M(u) = ∑K

i=1 Ni(u). Let pM(∆) be the
number of sampling times between 0 and ∆, p denoting the sampling rate. When K becomes
large, assume that for every ℓ, Kℓ/K tends to a constant αℓ. By the law of large numbers,
M(u)/K converges almost surely to C = ∑L

ℓ=1αℓCℓ for all u∈ [0,∆]. The numbers of packets v̂f in
the sampled flows f of class ℓ have the same distribution. We have the following result, whose
proof is given in Appendix 4.6.

Proposition 9. If pM(∆)/K → x, the distribution of the number n(ℓ) of packets in a sampled
flow of class ℓ converge to a Poisson distribution with parameter xCk/C.

The above proposition shows that the distribution of the number of sampled packets of a
flow in class ℓ depends only on the ratio of the average rate of class ℓ to the total average rate
in the observation window. This indicates that we could have considered the flows permanent
at the average rate in the observation window.

4.4 Experimental results

In this section, we consider the traffic trace from the France Telecom backbone network
described in Section 4.2 and we fix the length of the observation window equal to ∆ = 3200
seconds and the sampling rate p= 1/100. The complementary cumulative distribution functions
(ccdf) of the number of packets in original mice and elephants are displayed in Figure 4.20(b)
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and 4.20(d), respectively. In the original trace, there were 252,854 elephants and in the sampled
trace, we found 132,352 and 132,185 of the original elephants with deterministic and random
sampling, respectively.

From the above experimental results, we see that the probabilities of seeing elephants after
sampling in the different cases are very close one to each other, about 0.523.

If vf has a Pareto distribution of the form P(vf > k) = (b/k)a1{k≥b}, the probability of seeing
an elephant by random sampling isP( vf

∑
i=1

Bi > 0

)
= 1− (1− p)b+ p

∞

∑
k=b

(1− p)kP(vf > k) ∼ bp+(bp)aΓ(1−a,bp),

when p is small. With a= a2 = 0.55, b= 20, and p= 1/100, we find that the probability of seeing
an elephant is approximately equal to 55 %, which is very close to the experimental value. Hence,
by estimating the exponent a of the Pareto distribution allows us to estimate the probability
of seeing an elephant. This quantity is critical for the estimation of the parameters of flows.
For instance, for estimating the original duration of flows, a method is presented in [9], but the
estimation of ν, the probability of seeing an elephant, is critical because it relies on the tails
of some probability distributions. The method based on the estimation of the exponent of the
Pareto distribution is more reliable.

The major difficulty for exploiting the sampled trace comes from the fact that we do not know
if a sampled flow is really an elephant or not. If we had adopted the convention that a sampled
flow corresponds to an elephant as soon as it is composed of at least two packets, we would have
found 143,517 and 144,000 elephants with deterministic and random sampling, respectively. We
see that this convention leads to slightly overestimating the number of elephants.

Figure 21 represents the ccdf of the number of packets in elephants after probabilistic and
deterministic sampling, along with the rescaled original distribution P(N > k/p)/ν, where ν is
the probability of seeing an elephant. We can observe that the three curves coincide, which is in
agreement with the results obtained in Section 4.3. By using Proposition 8 and Theorem 2 and
assuming that random and deterministic sampling are sufficiently close one to each other, we
can recover the distribution of the original elephants from the distribution of sampled elephants
with known bounds.

Pareto approximation
deterministic sampling

P(N > k/p)/ν
probabistic sampling

k

P(N > k)

100000100001000100101

1

0.1

0.01

0.001

1e-04

1e-05

1e-06

1e-07

Fig. 21 – Number of packets in elephants after sampling and comparison with the rescaled
original size P(N > k/p)/ν along with the Pareto approximation.
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4.5. Conclusion

For the volume V (expressed in bytes) of elephants, we can first compute the mean number of
bytes in packets. For instance, for the traffic trace considered in this chapter, the mean number
of bytes in packets of elephants is equal to V̄ = 1000. Then, we can verify that multiplying
the number of packets in elephants by the mean number V̄ of bytes in packets give a fair
estimate of the volume of elephants, as illustrated in Figure 4.22(a). From the results established
for the number of packets in elephants and under the assumption that random sampling is
sufficiently close to deterministic sampling, we can estimate the volume of original elephants
with known bounds ; Figure 4.22(b) shows that the rescaled distribution P(V > x/p)/ν is close
to the distribution of the volume of sampled elephants.

V̄N
volume of elephants

x

P(V > x)
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(a) Experimental curves

νP(V > x/p)
probabilistics sampling
determinsitic sampling

1e+0610000010000100010010

1

0.1

0.01

0.001

1e-04

(b) Experimental curves

Fig. 22 – Volume (in bytes) of elephants after deterministic and probabilistic sampling and
comparison with the rescaled original volume P(V > x/p)/ν.

4.5 Conclusion

We have shown in this chapter that as far as the volume and the number of packets in
elephants are concerned, random and deterministic sampling are very close to each other, when
the sampling rate becomes small. Several results for the number of packets contained in randomly
sampled flows have been established. In particular, bounds between the distribution of the
number of packets in a randomly sampled elephant and the rescaled original distribution have
been established. Experimental results obtained by using a traffic trace from the France Telecom
IP backbone network show good agreement with theoretical results.

4.6 Appendix : Proof of Proposition 9

Let (t j)1≤ j≤pM(∆) be the sequence of the pM(∆) sampling times in [0,∆]. We have for any flow
in class ℓ, say, flow iP(v̂i = 0) = E(pM(∆)

∏
j=1

(
1− vi(t j)

M(t j)

))
= E(e∑pM(∆)

j=1 log(1−vi(t j )/M(t j ))

)
,

where v̂i is the number of packets in the sampled flow i. First, note that

pM(∆)

∑
j=1

log

(
1− vi(t j)

M(t j)

)
= −

pM(∆)

∑
j=1

vi(t j)

M(t j)
+O

(
1
K

)
.
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Second, if f is a twice continuously differentiable function in [0,∆], we have

pM(∆)

∑
j=1

f (t j) =
pM(∆)

∆

∫ ∆

0
f (u)du+

f (∆)− f (0)

2
+O

(
1

pM(∆)

)
,

since the points (t j) are distributed more or less uniformly in [0,∆]. Hence, we have

pM(∆)

∑
j=1

log

(
1− vi(t j)

M(t j)

)
= − pM(∆)

∆

∫ ∆

0

vi(u)

M(u)
du+

1
2

vi(∆)

M(∆)
+O(

1
K

).

The first term of the right-hand side is equal to − x
∆
∫ ∆

0
rℓ(u−τi)
M(u)/K du, which converges a.s. to − x

C∆
∫ ∆

0 rℓ(u−
τi)du= −xCℓ/C, when K tends to +∞. It follows that, when K tends to +∞,P(v̂i = 0) → exp

(−xCℓ

C

)
. (4.3)

For k∈N, P(v̂i = k) = E( ∑
i1<...<ik

k

∏
m=1

vi(tim)

M(tim) ∏
j 6∈{i1<...<ik}

(
1− vi(t j)

M(t j)

))

= E(pM(∆)

∏
j=1

(
1− vi(t j)

M(t j)

)
Σk(gi(t1), . . . ,gi(tpM(∆)))

)
,

where gi(u) = vi(u)/(M(u)−vi(u)) and Σk = ∑i1<...<ik ∏k
j=1Xi j is the symmetric homogeneous po-

lynomial of degree k. Denoting Si = ∑pM(∆)
j=1 Xi

j for i > 1, Newton’s formula

(−1)kkΣk +
k−1

∑
p=0

(−1)pΣpSk−p = 0 (1≤ k≤ pM(∆))

establishes that Σk can be expressed as a function of S1, . . . ,Sk. It is clear that Sq(gi(t1), . . . ,gi(tpM(∆)))
is the Riemann sum with pM(∆) terms associated to gq

i on [0,∆]. Using Newton’s formula, it can
be proved that when K tends to +∞,

Σk(gi(t1), . . . ,gi(tpM(∆))) ∼

(
∑pM(∆)

j=1 gi(t j)
)k

k!
.

Taking into account approximation (4.3), we obtain that, for flow i of class ℓ,P(v̂i = k) → e−x
Cl
C

1
k!
E(( x

C∆

∫ ∆

0
r l (u− τi)du

)k
)

=
e−x

Cℓ
C

k!

(
xCℓ

C

)k

and Proposition 9 follows.
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A new method of estimating some statistical characteristics of TCP flows in the Internet
is developed in this chapter. For this purpose, a new set of random variables (referred to as
observables) is defined. When dealing with sampled traffic, these observables can easily be com-
puted from sampled data. By adopting a convenient mouse/elephant dichotomy also dependent
on traffic, it is shown how these variables give a reliable statistical representation of the number
of packets transmitted by large flows during successive time intervals with an appropriate du-
ration. A mathematical framework is developed to estimate the accuracy of the method. As an
application, it is shown how one can estimate the number of large TCP flows when only sampled
traffic is available. The algorithm proposed is tested against experimental data collected from
different types of IP networks.
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5.1 Introduction

We investigate in this chapter how to characterize the statistical properties of the sizes of
large flows (notably their number of packets) in Internet traffic. It is commonly observed in the
technical literature and in real experiments that the total size (in packets or bytes) of such flows
has a heavy tailed distribution. In practice, however, this characterization holds only for very
large values of the flow size. Consequently, in order to accurately estimate the tail of the size
probability distribution, a large number of large flows is necessary. To increase the sample size
when empirically estimating probability distribution tails, one is led to increase the length of
the observation period. But the counterpart is that the distribution of the flow size can no more
be described in terms of simple probability distributions, of the Pareto type for example. This
is due to the fact that traffic is not stationary over long time periods, for instance because of
daily variations of interactive services (video, web, etc.).

Actually, numerous approaches have been proposed in the technical literature in order to
model large flows as well as their superposition properties. One can roughly classify them in two
categories : signal processing models and statistical models. Using ideas from signal processing,
Abry and Veitch [2], see also Feldman et al. [37, 38] and Crovella and Bestravos [25], describe
the spectral properties of the time series associated with IP traffic by using wavelets. In this way,
a characterization of long range dependence (the Hurst parameter for example) can be provided.
Straight lines in the log-log plot of the power spectrum support some of the “fractal” properties
of the IP traffic, even if they may simply be due to packet bursts in data flows. See Rolland et
al. [69].

Signal processing tools provide information on aggregated traffic but not on characteristics
on individual TCP flows, like the number of packets or their transmission time. For statistical
models, a representation with Poisson shot noise processes (and therefore some independence
properties) has been used to describe the dynamics of IP traffic, see Hohn and Veitch [49],
Duffield et al. [28], Gong et al. [46], Barakat et al. [10] and Krunz and Makowski [53] for
example. In Ben Azzouna et al. [9], Loiseau et al. [56, 55] and Gong et al. [46], the distribution
of the size of large flows is represented by a Pareto distribution, i.e. a probability distribution
whose tail decays on a polynomial scale. ,

The starting point of some of these analyses is the need for understanding the relation
between the distribution of the number v̂ of sampled packets when performing packet sampling
and the distribution of the flow size v. The problem can be described as follows : P(v̂ = j) =
Q(P(v = ·), j), j ≥ 1, with

Q(φ, i) = p j
+∞

∑
ℓ= j

(
ℓ

j

)
(1− p)ℓ− jφ(ℓ).

The problem then consists of finding a distribution φ0 maximizing some functional L (φ) so that
the relation P(v̂ = j) = Q(φ, j) holds. See Loiseau et al. [55] for an extensive discussion of the
current literature where our algorithm is called “stochastic counting”. As it will be seen in the
following, we will not rely on the maximum likelihood ratio of distributions in our approach but
on estimations of some averages to estimate some key parameters.

Statistical Characterization Method We develop in this chapter an alternative method of
obtaining a statistical description of the size of large flows in IP traffic by means of a Pareto
distribution : Statistics are collected during successive time windows of limited length (instead
of one single time window for the whole trace). It must be emphasized that this characterization
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in terms of a Pareto distribution does not rely on the asymptotic behavior of the tail distribution
but only on statistics on some range of values for the sizes of flows.

The advantage of the proposed method is that with a careful procedure, a simple statistical
characterization is possible and seems to be quite reliable as shown by our experiments for
various sets of traffic traces. The intuitive reason for considering short time periods is that on
such times scales, flows exhibit only one major statistical mode (typically a Pareto behavior).
In larger time windows, different modes due to the wide variety of flows and non-stationarity
in IP traffic necessarily appear. (See Feldman et al. [38].) This approach allows us to establish
a reliable statistical characterization of flows which is used to infer information from sampled
traffic as it will be seen. The counterpart of that the distribution of the total size of a large flow
(obtained when considering the complete traffic trace) cannot be obtained directly in this way
since the trace is cut into small pieces.

An algorithm is proposed to obtain the statistical representation of large flows when all the
packets of the trace are available. The constants used in our algorithms are explicitly expressed
as either universal constants (independent of traffic) or constants depending on traffic : Length
of the observation window, definition of TCP flows referred to as large flows, etc. The procedure
invoked to estimate flow statistics should not depend on some hidden pre-processing of the trace.
Our algorithms determine on-line the constants depending on the traffic. This is, in our view,
one important aspect which is sometimes neglected in the technical literature.

Application to Sampled Traffic The basic motivation for developing a flow characterization
method is to infer flow characteristics from sampled data. This is notably the case for sampling
processes such as the 1-out-of-k sampling scheme implemented by CISCO’s NetFlow [24], which
greatly degrades information on flows. What we advocate in this chapter is that it is still possible
to infer relevant characteristics on flows from sampled data if some characteristics of the flow size
can be confidently described by means of a simple Pareto distribution. By using the statistical
representation described above, we propose a method of inferring the number of large flows from
sampled traffic.

The proposed method relies on a new set of random variables, referred to as observables
and computed in successive time intervals with fixed length. Specifically, these random variables
count the number of flows sampled once, twice or more in the successive observation windows.
The properties of these variables can be obtained through simple characteristics, in particular
mean values of variables instead of remote quantiles of the tail distribution, which are much
more difficult to accurately estimate. By developing a convenient mathematical setting (Poisson
approximation methods), it is moreover possible to show that quantities related to the obser-
vables under consideration are close to Poisson random variables with an explicit bound on the
error. This Poisson approximation is the key result to estimate the total number of large flows.

Organization of the chapter The organization of the chapter is as follows. A statistical
description of large TCP flows is presented in Section 5.2, this representation is tested against
five exhaustive sets of traffic traces : three from the France Telecom (FT) commercial IP net-
work carrying residential ADSL traffic and two others from Abilene network. An algorithm is
developed in this section to compute the characteristics of the Pareto distributions describing
flows. In Section 5.3, some assumptions on sampled traffic are introduced and the observables
for describing traffic are defined. The mathematical properties are analyzed in light of Poisson
approximation methods in Section 5.4. The results developed in this section are crucial to infer
the statistics of an IP traffic from sampled data. Experiments with the five sets of sampled traces
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used in this chapter are presented and discussed in Section 5.5. Some concluding remarks are
presented in Section 5.6.

5.2 Statistical Properties of Flows

This section is devoted to a statistical study of the size (the number of packets) of flows in
a limited time window of duration ∆. The goal of this section is show that a simple statistical
representation of the flow size can be obtained for various sets of traffic traces.

5.2.1 Assumptions and Experimental Conditions

The sets of traces used for testing theoretical results

For the experiments carried out in the following sections, several sets of traces will be consi-
dered : Commercial IP traffic, namely ADSL traces from the France Telecom (FT) IP collect
network, and traffic issued from campus networks (Abilene III traces). Their characteristics are
given in Table 5.1.

Tab. 5.1 – Characteristics of traffic traces considered in experiments.

Name Nb. IP packets Nb. TCP Flows Duration
ADSL Trace A 271 455 718 20 949 331 2 hours
ADSL Trace B Upstream 54 396 226 2 648 193 2 hours
ADSL Trace B Downstream 53 391 874 2 107 379 2 hours
Abilene III Trace A 62 875 146 1 654 410 8 minutes
Abilene III Trace B 47 706 252 1 826 380 8 minutes

Trace ADSL A has been used in chapter 4 (captured in October 2003) The Abilene traces
20040601-193121-1.gz (trace A) and 20040601-194000-0.gz (trace B) can be found at the url
http ://pma.nlanr.net/Traces/Traces/long/ipls/3/.

Time Windows

Traffic will be observed in successive time windows with length ∆. In practice, the quantity
∆ can vary from a few seconds to several minutes depending upon traffic characteristics on the
link considered.

The ideal value of ∆ actually depends on the targeted application. For the design of network
elements considering the flow level (e.g., flow aware routers, measurement devices, etc.), it is
necessary to estimate the requirements in terms of memory to store the different flow descriptors.
In this context, ∆ may be of the order of few seconds. The same order of magnitude is also adapted
to anomaly detection, for instance for detecting a sudden increase in the number of flows. For
the computation of traffic matrices, ∆ can be several minutes long (typically 15 minutes). In our
study, the “adequate” values for ∆ are of the order of several seconds. See the discussion below.

Mice and Elephants

With regard to the analysis of the composition of traffic, in light of earlier studies on IP
traffic (see Estan and Estan-1 [36], Papagiannaki et al. [66] or Ben Azzouna et al. [8]), two
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types of flows are identified : small flows with few packets (referred to as mice) and the other
flows will be referred to as elephants. In commercial IP traffic, this simple traffic decomposition
can be justified by the predominance of web browsing and peer-to-peer traffic giving rise to
either signaling and very small file transfers (mice) or else file downloads (elephants).

This dichotomy may be more delicate to verify in a different context than the one considered
in Ben Azzouna et al. [8]. For LAN traffic, for example, there may be very large amounts of data
transferred at very high speed. As it will be seen in the various IP traces used in our analysis, the
distinction between mice and elephants has to be handled with care and in our case is dependent
on the type of traffic considered. The distinction between the constants depending on the trace
and “universal” constants is, in our view, a crucial issue. It amounts to precisely stating which
constants are depend on traffic. This aspect is generally (unduly in our opinion) neglected in
traffic measurement studies. In particular, the variable ∆ and the dichotomy mice/elephants are
dependent on the trace, as explained in the next section.

5.2.2 Heavy Tails

The fact that the distribution of the size v of a large TCP flow is heavy tailed is well known.
Experiments and theoretical results on the superposition of ON-OFF heavy tailed traffic have
justified the self similar nature of IP traffic, see Crovella and Bestravos [25]. Although the heavy
tailed property of the size of large flows is commonly admitted, little attention has been paid to
identify properly a class of heavy tailed distributions so that the corresponding parameters can
be estimated for an arbitrary traffic trace with a significant duration.

One of the reasons for this situation is that the most common heavy tailed distributions
G(x) = P(v≥ x) (e.g., Pareto, i.e., G(x) = C/xα for x≥ b and some α > 0, or Weibull, i.e., G(x) =
exp(−νxβ) for some β > 0 and ν > 0) have a very small number of parameters and consequently
a limited of number of possible degrees of freedom for describing the distribution of the sizes of
flows. For this reason, such a distribution can rarely represent the statistics of the total number
of packets transmitted by a flow in a trace of arbitrary duration.

As a matter of fact, if a traffic trace is sufficiently long, some non stationary phenomena may
arise and the diversity of file sizes may not be captured by one or two parameters. For example,
with a Pareto distribution, the function x→ G(x) in a log-log scale should be a straight line. The
statistics of the file sizes in the traces used in our experiments are depicted in Figure 23 and 24
for an ADSL traffic trace from the France Telecom backbone IP collect network and for a traffic
trace from Abilene network, respectively.
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Fig. 23 – Statistics of the number of packets v of a flow for ADSL A (2 hours) : the quantity
− log(P(v > x)) as a function of log(x).
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Fig. 24 – Statistics of the number of packets v of a flow for ABILENE A trace (8 minutes) : the
quantity − log(P(v > x)) as a function of log(x).

Figure 23 and 24 clearly show that for the two traffic traces considered, the file size exhibits
a multimodal behavior : At least several straight lines should be necessary to properly describe
these distributions. These figures also exhibit the (intuitive) fact that has been noticed in earlier
experiments : The longer the trace is, the more marked is the multimodal phenomenon. (See
Ben Azzouna et al. [9] for a discussion.)

The key observation when characterizing a traffic trace is the fact that if the duration ∆ of
the successive time intervals used for computing traffic parameters is appropriately chosen, then
the distribution of the size of the main contributing flows in the time interval can be represented
by a Pareto distribution. More precisely, there exist ∆, Bmin, Bmax and a > 0 such that if v is the
number of packets transmitted by a flow in ∆ time units, then P(v ≥ x | v ≥ Bmin) ∼ Pα(x) for
Bmin ≤ x≤ Bmax with

Pα(x)
def.
=

(
Bmin

x

)a

, for x≥ Bmin, (5.1)

and furthermore the proportion of large flows with size greater than Bmax is less than 5%. The
parameter Bmin is usually referred to as the location parameter and a as the shape parameter.

In other words, if the time interval is sufficiently small then the distribution of the number of
packets transmitted by a large flow has one dominant Pareto mode and therefore can confidently
be characterized by a unique Pareto distribution. The algorithm used to validate this result is
described in Table 5.2. It is run from the beginning of the trace ; in practice a couple of minutes
is sufficient to obtain results for the constants ∆, Bmin, Bmax. The algorithm is of course valid
when the total trace is available for at least an interval of several minutes. In the case of sampled
traffic for which this algorithm cannot be used, another method will be proposed in Section 5.3.

The quantity Bmin defines the boundary between mice and elephants in the trace. A mouse
is a flow with a number of packets less than Bmin. An elephant is a flow such that its number of
packets during a time interval of length ∆ is greater than or equal to Bmin. By definition of Bmax,
flows whose size is greater than Bmax represent a small fraction of the elephants.

5.2.3 Experiments with Synthetic and Real Traffic Traces

Some experiments have been done using artificial traces with a real Pareto distribution. For
these traces, the algorithm described in Table 5.2 has been used without any modification : A
time window is defined when at least 1000flows of size greater than 20 packets are detected. As
it can be seen, the identification of the exponent a is quite good. Note that, because only Pareto
distributed flows are present the minimal size Bmin of elephants is smaller than in real traffic.
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Tab. 5.2 – Algorithm for Identifying ∆ and the Pareto Distribution.

— ∆ is fixed so that at least 1000flows have more than 20 packets.
— Bmax is defined as the smallest integer such that less than 5% of the flows have a size greater

than Bmax.
— A Least Square Method, see Deuflhard and Hohmann [27] for example, is performed to get

a linear interpolation in a log-log scale of the distribution of sizes between Bmin and Bmax. The
constant Bmin is chosen as the smallest integer such that the L2-distance in the sense of least
square method with the approximating straight line is less than 2.10−3. The slope of the line
gives the value of the parameter a.
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(a) Pareto a = 1.85. Estimation : â = 1.84,
Bmin = 9, Bmax= 100
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(b) Pareto a = 2.5. Estimation : â = 2.48,
Bmin = 11, Bmax= 65

Fig. 25 – Synthetic traces with 106 flows with a Pareto distribution
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Experimental results with real traces, for the ADSL A and Abilene A traffic traces, are
displayed in Figures 26 and 27, respectively. The same algorithm has been run for the ADSL
trace B Upstream and Downstream as well as for the Abilene III B trace. The benefit of the
algorithm is that the distribution of the number of packets in elephants can always be represented
by a unimodal Pareto distribution if the duration of ∆ is adequately chosen by using the algorithm
given in Table 5.2. Results are summarized in Table 5.3.

Tab. 5.3 – Statistics of the elephants for the different traffic traces.

ADSL A ADSL B Up ADSL B Down Abilene A Abilene B

∆ (sec) 5 15 15 2 2
Bmin 20 29 39 89 79
Bmax 94 154 128 324 312
a 1.85 1.97 1.50 1.30 1.28

5.2.4 On the choice of parameters

We discuss in this section the various parameters used by the algorithm.

Fixed parameters and parameters depending on traffic

There are four basic parameters for the model which are determined by the trace : ∆ (duration
of time window for statistics), the range of values [Bmin,Bmax] for the Pareto distribution and the
exponent a of this distribution. These parameters are discussed below.

Additionally there are “universal” (i.e. independent of the trace) : the minimal number of
flows to make statistics, set to 1000 here, the proportion, 5%, of flows of size ≥ Bmax, and the
level of accuracy, 2.10−3 here, of the least square method to determine Bmin and Bmax.

Parameter Bmin

It turns out that for commercial (ADSL) traffic, the value of Bmin is close to 20. This value is
fairly common in earlier studies for classifying ADSL traffic. It should be noted that this value
is not at all universal since, in our view, it does depend on traffic. The examples with Abilene
traces, see below, which contain significantly bigger elephants, shows that the corresponding
values should be higher than 20 (around 80 in our example).

The two types of traffic are intrinsically different : ADSL traffic is mainly composed of peer
to peer traffic (with a huge number of small flows and a few file transfers of limited size because
of the segmentation of large files into chunks), while Abilene traffic comprises large file transfers
issued from campus networks. In order to maximize the range for the Pareto description, the
variable Bmin is defined as the smallest value for which the linear representation (in the log scale)
holds.

Parameter ∆

This parameter ∆ is determined in a simple way by our algorithm. According to the various
experiments, the parameter ∆ can be taken in some range of values where the Pareto represen-
tation still holds. On the one hand, ∆ has to be taken large enough so that sufficiently many
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Fig. 26 – Statistics of the flow size (number of packets) in a time interval of length ∆ = 15
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Fig. 27 – Statistics of the flow size (number of packets) in a time interval of length ∆ for the
Abilene traces.

packets arrive in time intervals of duration ∆ to derive reliable estimations of the Pareto distri-
bution. An experiment with ADSL A trace with ∆ = 1s gives only 63 flows of size more than 20
which is not enough to obtain reliable statistics. A “correct” value in this case is 5s. Experiments
show that higher values (like 10s) do not change significantly the Pareto property observed in
this case.

On the other hand, ∆ should not be too large so that the statistical properties (a Pareto
distribution in our case) can be identified, i.e., so that the statistics are unimodal. See Figures 23
and 24 which illustrate situations where statistics are done on the complete trace, i.e. when ∆ is
taken equal to the total duration of the trace. In these examples, the piecewise linear aspect of
the curves suggests, for both cases, there is at least a bi-modal Pareto behavior.

5.2.5 Discussion

As it will be seen in the following, the above statistical model gives interesting results to
extract information from sampled traffic. It has nevertheless some shortcomings which are now
discussed.

A partial information when ∆ is small

It should be noted that the parameters computed in a time window of length ∆ do not give a
complete description of the distribution of the size of a large flow, since statistics are done over
a limited time horizon. The procedure provides therefore a fragmented information.

To obtain a complete description of the statistics of the size of flows, it would be necessary
to relate the statistics from successive time windows of length ∆. We do not know how to do
that yet. Nevertheless, as it will be seen in the following, this fragmented information can be
recovered from sampled traffic and it will be used to give a good estimation on the number of
active large flows at a given time. This incomplete but useful description of the statistics is, in
some sense, the price to pay to have a simple estimation of the statistics of flows.

An incomplete description of large flows in a time window of size ∆

The representation with a Pareto distribution is for elephants (with size greater than Bmin)
whose size is less than Bmax. In particular, it does not give any information on the statistics of
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flows with size greater than Bmax. But note that, by definition, less that 5% of the total number
of flows have a size greater than Bmax. This is however a source of errors when, as in Section 5.4,
the Pareto representation is used on the interval [Bmin,+∞] instead of [Bmin,Bmax].

5.3 Sampled Traffic : Assumptions and Definition of Observables

In the previous section, an algorithm to describe the distribution of large flows by means of
a unimodal distribution has been introduced. Now, it is shown how to exploit this algorithm in
the context of packet sampling in the Internet. Packet sampling is a crucial issue when perfor-
ming traffic measurements in high speed backbone networks. As a matter of fact, a fundamental
problem related to the computation of flow statistics from traffic crossing very high speed trans-
mission links is that, due to the enormous number of packets handled by routers, only a reduced
amount of information can be available to the network operator.

We describe in this section the different assumptions made on traffic in order to develop an
analytical evaluation of our method of inferring flow statistics. Throughout this chapter, high
speed transmission links (at least 1 Gbit/s) will be considered.

5.3.1 Mixing condition

When observing traffic, packets are assumed to be sufficiently interleaved so that those
packets of a same flow are not back-to-back but mixed with packets of other flows. This introduces
some randomness in the selection of packets when performing sampling. In particular, when
K flows are active in a given time window and if the ith flow comprises vi packets during
that period, then the probability of selecting a packet of the ith flow is assumed to be equal
vi/(v1 +v2 + · · ·+vK). This property will be referred to as mixing condition in the following and
is formally defined as follows. A variant of this property is, implicitly at least, assumed in the
existing literature. See, e.g. Duffield et al. [29] and Chabchoub et al. [18]. It has also been
discussed in Chapter 4, Section 4.3.1 as the permanent flow property.

Definition 3 (Mixing Condition). If K TCP flows are active during a time interval of duration
∆, traffic is said to be mixing if for all i, 1≤ i ≤ K, the total number v̂i of packets sampled from
the ith flow during that time interval has the same distribution as the analog variable in the
following scenario : at each sampling instant a packet of the ith flow is chosen with probability
vi/V where vi is the number of packets of the ith flow and V = v1 + · · ·+vK.

This amounts to claim that with regard to sampling, the probability of selecting a packet of
a given flow is proportional to the total number of packets of this flow.

One alternative would consist of assuming that the probability of selecting a packet of the
ith flow is 1/K, the inverse of the total number of flows. This assumption, however, does not
take into account the respective contributions of the different flows to the total volume and thus
may be inaccurate. If all K flows had the same distribution with a small variance, then this
assumption would not much differ from the mixing condition. Note however that the variance of
Pareto distributions can be infinite if the shape parameter a is less than 2. Hence, this leads us
to suppose that the mixing condition holds and that the probability of selecting a packet from
flow i is indeed vi/V.
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5.3.2 Negligibility assumption

We consider traffic on very high speed links and it then seems reasonable to assume that no
flows contribute a significant proportion of global traffic. In other words, we suppose that the
contribution of a given flow to global traffic is negligible. In the following, we go one step further
by assuming that in any time window, the number of packets of a given flow is negligible when
compared to the total number of packets in the observation window. By using the notation of
the previous section, this amounts to assuming that for any flow i, the number of packet vi is
much less than V. Furthermore, we even impose that the squared value of vi is much less than
V. We specifically formulate the above assumptions as follows.

Definition 4 (Negligibility condition). In any window of length ∆, the square of the number
of packets of every flow is negligible when compared to the total number of packets V in the
observation window. There specifically exists some 0< ε ≪ 1 such that for all i = 1, . . . ,K, v2

i /V ≤
ε.

The above assumption implies that no flows are dominating when observing traffic on a
high speed transmission link. Table 5.4 shows that this is the case for the traces used in our
experiments. There is thus no bias in the sampling process, which may be caused by the fact that
some flows are oversampled because they contribute a significant part of traffic. This assumption
is reasonable for commercial ADSL traffic because access links are often the bottlenecks in the
network. For instance, ADSL users may have access rates of a few Mbit/s, which are negligible
when compared against backbone links of 1 to 10 Gbit/s. Moreover, the bit rate achievable by an
individual flow rarely exceeds a few hundreds of Kbit/s. In the case of transit networks carrying
campus traffic, the above assumption may be more questionable since bulk data transfers may
take place in Ethernet local area networks and individual flows may achieve bit rates of several
Mbit/s.

Tab. 5.4 – The quantity E(v2
1)/E(V) for traffic traces considered in experiments.

Trace ∆ = 5sec ∆ = 10sec ∆ = 15sec
ADSL A 0.000146 0.000159 0.000168
ADSL B up 0.001100 — 0.001335
ADSL B Down 0.002199 0.002543 0.002732

Trace ∆ = 1sec ∆ = 2sec ∆ = 3sec ∆ = 5sec
Abilene A 0.055001 0.068833 0.064813 0.072768

Trace ∆ = 1sec ∆ = 2sec
Abilene B 0.011786 0.013804

5.3.3 The Observables

We now introduce the different variables used to infer flow characteristics. These variables are
based only upon sampled data ; they can be evaluated when analyzing NetFlow records sent by
routers of an IP network. For this reason, these variables are referred to as observables. Because
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of packet sampling, recall that the original characteristics of flows (for instance their duration
or their original number of packets) cannot be directly observed.

The observables considered in this chapter to infer flow characteristics are the random va-
riables Wj , j ≥ 1, where Wj is the number of flows sampled j times during a time interval of
duration ∆. The averages of the random variables Wj are in fact the key quantities used to infer
the characteristics of flows from sampled data.

The random variables Wj , j ≥ 1 are formally defined as follows : Consider a time interval of
length ∆ and let K be the total number of large flows present in this time interval. Each flow
i ∈ {1, . . . ,K} is composed of vi packets in this time interval. Let denote by v̂i the number of
times that flow i is sampled. The random variable Wj is simply defined by

Wj = 1v̂1= j +1v̂2= j + · · ·+1v̂K= j . (5.2)

In practice, if ∆ is not too large, the data structures used to compute the variables Wj are
reasonably simple. Moreover, as it will be seen in the following, provided that ∆ is appropriately
chosen, the statistics of the number of packets transmitted by elephants during successive time
windows with duration ∆ are quite robust. Consequently, the variables Wj inherit also this
property. When the number of large flows is large, the estimation of the asymptotics of their
averages from the sampled traffic is easy in practice. Theoretical results on these variables are
derived in the next section.

5.4 Mathematical Properties of the Observables

5.4.1 Definitions and Le Cam’s inequality

For j ≥ 0, the variable Wj defined by Equation (5.2) is a sum of Bernoulli random variables,
namely

Wj = 1{v̂1= j}+1{v̂2= j} + · · ·+1{v̂K= j},

where v̂i is the number of times that the ith flow has been sampled. If these indicator functions
were independent, by assuming that K is large, one could use to estimate the distribution of Wj

either via a Poisson approximation (in a rare event setting) or via a central limit theorem (in
a law of large numbers context). Since the total number of samples is known, the sum of the
random variables v̂i for i = 1, . . . ,K is known and then, the Bernoulli variables defining Wj are
not independent.

To overcome this problem, we make use of general results on the sum of Bernoulli random va-
riables. Let us consider a sequence (Ii) of Bernoulli random variables, i.e. Ii ∈ {0,1}. The distance
in total variation between the distribution of X = I1+ · · ·+ Ii + · · · and a Poisson distribution with
parameter δ > 0 is defined by

‖P(X ∈ ·) − P(Qδ ∈ ·)‖tv
def.
= sup

A⊂N |P(X ∈ A)−P(Qδ ∈ A)| =
1
2 ∑

n≥0

∣∣∣∣P(X = n)− δn

n!
e−δ
∣∣∣∣ .

The Poisson distribution Qδ with mean δ is such thatP(Qδ = n) =
δn

n!
exp(−δ).

Note that the total variation distance is a strong distance since it is uniform with respect to all
events, i.e., for all subset s A of N,

|P(X ∈ A)−P(Qδ ∈ A)| ≤ ‖P(X ∈ ·)−P(Qδ ∈ ·)‖tv.
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The following result (see Barbour et al. [11]) gives a tight bound on the total variation
distance between the distribution of X and the Poisson distribution with the same expected
value when the Bernoulli variables are independent. In spite of the fact that this result is not
directly applicable in our case, we shall show in the following how to use it to obtain information
on the distributions of the observables Wj .

Theorem 3 (Le Cam’s Inequality). If the random variables (Ii) are independent and if X = ∑i Ii,
then

‖P(X ∈ ·) − P(QE(X) ∈ ·)‖tv ≤ ∑
i

P(Ii = 1)2 ≤ E(X)2 = E(X) − Var(X) (5.3)

If X is a Poisson distribution then Var(X) = E(X), the above relation shows that to prove the
convergence to a Poisson distribution one has only to prove that the expectation of the random
variable is arbitrarily close to its variance.

5.4.2 Estimation of the mean value of the observables

We consider the 1-out-of-k deterministic sampling technique, where one packet is selected
every other k packets. In addition, we suppose that traffic on the observed link is sufficiently
mixed so that the mixing condition given by Definition 3 holds and that there are no dominating
flows in traffic so that the negligibility condition (Definition 4) also pertains.

It is assumed that during a time interval of length ∆, there are K flows composed of at
least Bmin packets, where Bmin is defined in Section 5.2. It has been seen that the number of
packets in these flows follows a Pareto distribution defined by Relation (5.1) for some exponent
a and parameters Bmin and Bmax. Let v be a random variable whose distribution is given by
Relation (5.1) for all x≥ Bmin. From our experiments, v is the size of a “typical” flow whose size
is in the interval [Bmin,Bmax]. See the discussion at the end of Section 5.2 for the flows of size
greater than Bmax. Of course the sizes of mice are not represented by this random variable. The
variable V denotes the total number of packets in the observation window, note that it includes
not only the elephants but also the mice.

Note that V is the sum of the number of packets in elephants and mice. If vi is the number

of packet in the ith elephant, then vi has the same Pareto distribution as v (i.e., vi
dist.
= v) and

V ≥ v1 +v2 + · · ·+vK. The difference V −v1−v2−·· ·−vK is the number of packets of mice.

Proposition 10 (Mean Value of the Observables). If K elephants are active in a time window
of length ∆, the mean number E(Wj) of flows sampled j times, j ≥ 1, satisfies the relation

∣∣∣∣
E(Wj)

K
−Q j

∣∣∣∣≤ pE(v2

V

)
, (5.4)

where Q is the probability distribution defined byP(Q= j)
de f
= Q j = E((pv) j

j!
e−pv

)
,

and p = 1/k is the sampling rate.

From Equation (5.4) one gets that the larger the total volume V of packets is, the better is
the approximation of E(Wj)/K by Q j .
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Démonstration. The number of times v̂i that the ith flow is sampled in the time interval is given
by

v̂i = Bi
1 +Bi

2+ · · ·+Bi
pV,

where, due to the mixing condition, Bi
ℓ is equal to one if the ℓth sampled packet is from the ith

flow, which event occurs with probability vi/V. Note that the total number of sampled packets
is pV.

Conditionally on the values of the set F = {v1, . . . ,vK}, the variables (Bi
ℓ, ℓ ≥ 1) are inde-

pendent Bernoulli variables. For 1≤ i ≤ K, Le Cam’s Inequality (5.3) gives therefore the relation

‖P(v̂i ∈ · | F )−Qpvi‖tv ≤ p
v2

i

V
.

By integrating with respect to the variables v1, . . . ,vK , this gives the relation

‖P(v̂i ∈ ·)−Q‖tv ≤ pE(v2
i

V

)
.

In particular, for j ∈ N,
∣∣P(v̂i = j)−Q j

∣∣≤ pE(v2/V
)
. SinceE(Wj) =

K

∑
i=1

P(v̂i = j),

by summing on i = 1, . . . ,K, one gets

∣∣E(Wj)−KQ j

∣∣≤ pKE(v2

V

)

and the result follows.

If the number of packets per flow were constant, then Q would be a Poisson distribution with
parameter pv, the variable v being in this case a constant. The above inequality shows that at
the first order the expected value of Wj is pE(v). The expression of Q, however, indicates that
higher order moments of v play a significant role. For example, if the variable v has a significant
variance, then the classical rough reduction, which consists of assuming that the size of a sampled
elephant is pv, is no longer valid for estimating the original size of the elephant.

Under the negligibility condition, we deduce that

∣∣∣∣
E(Wj)

K
−Q j

∣∣∣∣≤ pε,

where ε appears in Definition 4 and is assumed to much less than 1. This implies that Inequa-
lity (5.4) is tight and the quantity E(Wj)/K can accurately be approximated by the quantity Q j ,
when no flows are dominating in traffic.

We are now ready to state the main result needed for estimating the number K of elephants
from sampled data.

Proposition 11 (Asymptotic Mean Values). Under the same assumptions as those of Proposi-
tion 10,

lim
K→+∞

E(Wj+1)E(Wj)
∼ 1− a+1

j +1
(5.5)
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and

lim
K→+∞

E(Wj)

K
∼ a(pBmin)

a Γ( j −a)

j!
, (5.6)

if Bmax>> 1 and pBmin << 1, where Γ is the classical Gamma function defined by

Γ(x) =
∫ +∞

0
ux−1e−udu, x > 0.

Démonstration. For j ≥ 1,Q j = E((pv) j

j!
e−pv

)
∼ aBa

min
pa+1

j!

∫ +∞

Bmin

(pu) j−a−1e−pudu

and then Q j ∼ aBa
min

pa

j!

∫ +∞

pBmin

u j−a−1e−u du∼ a(pBmin)
aΓ( j −a)

j!
,

since pBmin ∼ 0. Therefore, by using the relation Γ(x+1) = xΓ(x) we obtain the equivalenceQ j+1Q j
∼ j −a

j +1
.

The proposition follows by using the fact that the upper bound of Equation (5.4) of Proposi-
tion 10 goes to 0 by the law of large numbers.

As it will be seen later in the next section, Relation (5.5) is used to estimate the exponent a of
the Pareto distribution of the number of packets of elephants, the quantities E(Wj) and E(Wj+1)
being easily derived from sampled traffic. The quantity K will be estimated from Relation (5.6).
The estimation of the parameter Bmin from sampled traffic as well as the correct choice of the
integer j will be discussed in the next section.

5.5 Applications

5.5.1 Traffic parameter inference algorithm

In this section, it is assumed that only sampled traffic is available. The methods described
in Section 5.2 to infer the statistical properties of the flows cannot be applied and another
algorithm has to be defined. For the experiments carried out in the present section, the sampling
factor p = 1/k has been taken equal to 1/100. To infer flow characteristics, we have to give the
proper definition of the mouse and elephant dichotomy (the parameter Bmin) and to estimate the
coefficient of the corresponding Pareto distribution (the parameter a in Relation (5.1)).

Relation (5.5) gives the following equivalence, for j ≥ 1 sufficiently large so that the impact
of mice on E(Wj) is negligible,

a∼ a( j)
def.
= ( j +1)

(
1− E(Wj+1)E(Wj)

)
−1, (5.7)

and Relation (5.6) yields an estimate of the number of elephants, i.e. the number of flows with
a number of packets greater than or equal to Bmin ; we specifically have

K ∼ K( j)
def.
=

j!E(Wj )

a( j)(pBmin)a( j)Γ( j −a( j))
. (5.8)
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These estimations greatly depend on some of the key parameters used to obtain a convenient
and confident Pareto representation of the size of the flows, in particular the size of the time
window ∆ and the lower bound Bmin for the elephants. The variable ∆ is chosen so that

1. the number of flows sampled twice is sufficiently large in order to obtain a significant
number of samples so that the estimation of the mean values of the random variables Wj

for j ≥ 2 is accurate ; this requires that ∆ should not be too small,

2. ∆ is not too large in order to preserve the unimodal Pareto representation (see Section 4.4
for a discussion).

To count the average number of flows sampled j times, the parameter j should be chosen as
large as possible in order to neglect the impact of mice (for which the Pareto representation does
not hold) but not too large so that the statistics are robust to compute the mean value E(Wj).

In the experimental work reported below, special attention has been paid to the choice of
the universal constants, i.e., those constants used in the analysis of sampled data, that do not
depend on the traffic trace considered. In our opinion, this is a crucial in an accurate inference
of traffic parameters from sampled data. These constants are defined in the algorithm given in
Table 5.5.

Tab. 5.5 – Algorithm used to identify ∆ and the Pareto parameter from sampled traffic.

— Choose ∆ so that 80≤ E[W2] ≤ 100;
— Choose j so that |a( j)−a( j +1)| computed with Equation (5.7) is minimized with for all j

such that E[Wj ] ≥ 5.
— Bmin is the smallest integer so that the probability that a flow of size greater than Bmin is

sampled more than j times is greater than p/10;

5.5.2 Experimental results

Concerning the estimation of the constants Bmin, the numerical results obtained by using the
algorithm given in Table 5.5 are presented in Table 5.6, where the values of the different Bmin

estimated by the algorithm are compared against the values given in Section 5.2. As it can be
observed, the proposed algorithm yields a rather conservative definition of elephants (i.e., flows
of size greater than or equal to Bmin).

Tab. 5.6 – Elephants for the France Telecom ADSL and the Abilene traffic traces.
ADSL A ADSL B Up ADSL B Down Abilene A Abilene B

Bmin 20 29 39 89 79
estimated Bmin 21 45 45 77 77

The main results are gathered in Table 5.7 giving the quantities K and a estimated by using
Equations (5.7) and (5.8) for different values of the parameters j. These values are compared
against the experimental values aexp and Kexp, referred to as the “real” a and K obtained from
the complete traffic traces in Section 5.2. The accuracy of the estimation of K is generally quite
good except for the Abilene A trace where the error is significant although not out of bound. A
look at the corresponding figure in Section 5.2 gives a plausible explanation for this discrepancy :
For this trace, the Pareto representation is not very precise.
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Finally, it is worth noting from Table 5.7 that the estimation of the important parameter a
describing the statistics of flows is also quite accurate. The error in this table is defined as

K( j)−Kexp

Kexp
.

Tab. 5.7 – Estimations of the Number of Elephants from Sampled traffic

Trace ∆ j E(Wj) E(Wj+1) aexp a( j) Kexp K( j) Error
ADSL A 5s 3 12.89 3.33 1.85 1.95 943.71 1031.04 9.25%
ADSL B Do 15s 4 9.7 4.75 1.49 1.55 414.90 404.13 2.59%
ADSL B Up 15s 4 7.46 2.97 1.97 2.00 453.01 462.68 2.13%
ABILENE A 1s 5 6.04 3.21 1.38 1.81 217.44 270.79 24.53%
ABILENE B 1s 5 6.1 3.7 1.36 1.51 209.12 197.12 5.74%

Remark. As pointed out by Loiseau et al. [55], the determination of ∆ is crucial. Recall it is
determined explicitly by the first step of our algorithm, see Table 5.5.

5.6 Conclusion

We have developed in this chapter one method of characterizing flows in IP traffic by a
few parameters and another one of inferring these parameters from sampled data obtained via
deterministic 1-out-of-k sampling. For this purpose, we have made some restrictive assumptions,
which are in our opinion essential in order to establish an accurate characterization of flows. The
basic principle we have adopted consists of describing flows in successive observation windows of
limited length, which has to satisfy two contradicting requirements. On the one hand, observation
windows shall not to be too large in order to preserve a description of flow statistics as simple
as possible, for instance their size by means of a simple Pareto distribution.

On the other hand, a sufficiently large number of packets has to be present in each observation
window in order to be able of computing flow characteristics with sufficient accuracy, in particular
the tail of the distribution of the flow size. By assuming that large flows (elephants) have a
size which is Pareto distributed, we have developed an algorithm to determine the optimal
observation window length together with the parameters of the Pareto distribution. The location
parameter Bmin (see Equation (5.1)) leads to a natural division of the total flow population into
two sets : those flows with at least Bmin packets, referred to as elephants, and those flows with
less than Bmin packets,called mice. This method of characterizing flows has been tested against
traffic traces from the France Telecom and Abilene networks carrying completely different types
of traffic.

For interpreting sampled data, we have made assumptions on the sampling process. We have
specifically supposed that flows are sufficiently interleaved in order to introduce some randomness
in the packet selection process (mixing condition) and that there are no dominating flows so that
there is no bias with regard to the probability of sampling a flow (negligibility condition). These
two assumptions allows us to establish rigorous results for the number of times an elephant is
sampled, in particular for the mean values of the random variables Wj , j ≥ 1.

Of course, when analyzing sampled data, the original flow statistics are not known. In par-
ticular, the length of the observation window necessary to characterize the flow size by means
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of a unique Pareto distribution is unknown. To overcome this problem, we have proposed an
algorithm to fix the observation window length and the minimal length of elephants. Then, by
choosing the index j sufficiently large so as to neglect the impact of mice, the theoretical results
are used to complete the flow parameter inference. This method has been tested against Abilene
and France Telecom traffic traces and yields satisfactory results.
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We show in this chapter that by deterministic or probabilistic packet sampling, the tail of the
distribution of the sampled flow size can be obtained by rescaling that of the original flow size.
To recover information on the flow size distribution lost through packet sampling, we propose
some heuristics based on measurements from different backbone IP networks.
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6.1 Introduction

The basic problem of packet sampling is that it is difficult to infer the original flow statistics
from sampled data. But this task is however fundamental for charging, monitoring and traffic
characterization in operational networks.

Flow statistics inference from sampled data has been addressed in previous studies. Duffield
et al [29, 28] study the accuracy of different estimators based on multiplying the sampled flow
size by the sampling factor k, but their method does not apply to the complete range of the flow
size. Hohn and Veitch [48] use generating function techniques to invert the flow size distribution
but the proposed procedure is numerically unstable. Mori et al [64] use a Bayesian approach to
inferring the characteristics of long flows.

In this chapter, we develop a probabilistic approach to inverting sampled traffic together
with some heuristic arguments. First, we note that when observing sampled traffic, we can only
compute the distribution of the random variable ṽ describing the number of packets in sampled
flows and Ks the number of sampled flows.

Under some reasonable assumptions on the sampling process, we show in this chapter that the
tail of the original flow size distribution can be obtained by rescaling that of the sampled flow size.
It is however much more difficult to totally recover the original distribution because information
on small or moderate flow sizes is lost through sampling. To overcome this problem, we propose
some heuristic arguments based on measurements and exploiting an a priori information on
flows. We consider, as in previous chapters, TCP traffic only.

The rest of this note is organized as follows : In Section 6.2, we make some reasonable
assumptions on the sampling process. In Section 6.3, we prove that the tail of the original flow
size can be obtained by rescaling that of the sampled flow size. In Section 6.4, we present some
heuristic arguments to recover the total flow size distribution. Concluding remarks are presented
in Section 6.5.

6.2 Assumptions on the sampling process

When observing in a time window of length ∆ traffic on a high speed link, one may reasonably
assume that the packets of the different active flows are sufficiently interleaved. Hence, one may
suppose the selection of packets among active flows at a sampling time is random.

Moreover, in a time window of length ∆, flows start and finish and some of them may be silent
(for instance in the case of flows alternating between On and Off periods). In [18, Section 3.3], it
is shown that these fluctuations may be neglected at the first order (i.e., when computing mean
values) and it can be assumed that flows are permanent. Under the two above assumptions, we
then suppose that the probability of selecting a packet of a given flow, say, flow i, is equal to
vi/Vi , where vi is the size of flow i and Vi is the total number of packets arrived when flow i is
active.

6.3 Tail of the sampled flow size

Let Wj denote the number of flows sampled j times.

Proposition 12. If K flows are active during a time window of length ∆, the mean value E(Wj)
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satisfies

∣∣E(Wj)−KQ j
∣∣≤ p

K

∑
i=1

E(v2
i /Vi

)
, (6.1)

where p = 1/k, vi is the random number of packets in the ith flow, and Q is the probability
distribution defined for j ≥ 0 by Q j = E((pv) j

j!
e−pv

)
. (6.2)

Démonstration. Let us condition on the values of the set F = {v1, . . . ,vK ,V1, . . . ,VK}. Under the
assumptions of Section 6.2, the number of times that the ith flow is sampled is

ṽi = Bi
1 +Bi

2+ · · ·+Bi
pVi

,

where Bi
ℓ is equal to one if the ℓth sampled packet is from the ith flow, which event occurs with

probability vi/Vi . The random variables (Bi
ℓ, ℓ ≥ 1) are i.i.d. Bernoulli random variables and Le

Cam’s Inequality [11] then states

∥∥P(ṽi ∈ ·)−P(QE(ṽi) ∈ ·
)∥∥

tv
≤

pVi

∑
ℓ=1

P(Bi
ℓ = 1)2,

where ‖.‖tv is the total variation norm and QE(ṽi) is a Poisson random variable with mean E(ṽi).
By deconditioning with respect to the set F , we have by using the distribution Q

‖P(ṽi ∈ ·)−Q‖tv ≤ pE(v2
i /Vi

)
. (6.3)

In particular, for j ∈ N,
∣∣P(ṽi = j)−Q j

∣∣≤ pE(v2
i /Vi

)
. Since E(Wj) = ∑K

i=1P(ṽi = j), summing on
i yields Equation (6.1).

If K is sufficiently large, from Equation (6.1), we have for j ≥ 1P(ṽ = j) = E( 1
Ks

Wj

)
∼ 1

ν
Q j , (6.4)

where ν = Ks/K is the probability of sampling a flow.

Proposition 13. If all flows have a negligible contribution to the total volume of traffic (i.e.,E(v2
i /Vi)≪ 1 for all i = 1, . . . ,K), if K is sufficiently large, and if the flow size distribution satisfies

the following conditions : There exists some 0 < α < 1/2 and γ > 0 such that, for any T > 0,

lim
x→+∞

P(v≥ x)P(v≥ x+Tx1/2+γ)
= 1 and lim

x→+∞

1P(v≥ x)
e−γxα

= 0.

then, when j → ∞, P(ṽ≥ j) ∼ P(v≥ j
p

)
/ν. (6.5)

This assumption on the flow size distribution is true for any Pareto and for some Weibull
distributions.
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Démonstration. From Equation (6.4)

νP(ṽ≥ j) ∼ A j = P(N[0, pv] ≥ j) , (6.6)

where N is a Poisson process with parameter 1. We denote by

V = pv and η(x) =
N[0,x]−x√

x
.

We can prove that there exists some C0 < +∞ such that for a > 0, and for all x≥ 1,P(|η(x)| ≥ a) ≤C0exp(−δa).

For α > 0,

A j = P(V + η(V)
√

V − j ≥ 0, |η(V)| ≤ jα
)

+O(P(|η(V)| ≥ jα)).

Since P(|η(V)| ≥ jα)/P(V ≥ j) = o(1) by assumption, it is enough to prove the equivalence (6.6),
replacing A j by the following term

B j = P(√V ≥ −η(V)+
√

η(V)2 +4 j
2

, |η(V)| ≤ jα
)

= P(V ≥ j +F(η(V), j), |η(V)| ≤ jα)

where

F(u,x) =

(
−u+

√
u2 +4x

2

)2

−x.

There exist 0 < α < 1/2 and T > 0 such that, for u < xα, one has F(u,x) ≤ Txα+1/2. It is then
easy to conclude.

6.4 Heuristics for the total flow size distribution

Proposition 13 shows that the tail of the complementary cumulative distribution function
(ccdf) of the original flow size can be obtained by rescaling that of the sampled flow size. We can
however verify through examples that information on that distribution for small or moderate
flow size values is lost.

We exemplify this phenomenon by considering a 2 hour long real traffic trace from a 1 Gbit/s
transmission link of the France Telecom IP backbone network carrying ADSL traffic. The ori-
ginal flow size is depicted in Figure 6.28(a) and the deterministically sampled flow size in Fi-
gure 6.28(b), which exhibits good agreement with the rescaled distribution P(v ≥ j/p)/ν for
sufficiently large j as predicted by Proposition 13. But all information for moderate values of
the flow size is contained in a few values, in this case P(ṽ≥ j) for j = 2,3. The same phenomenon
(see [19]) has been observed for an Abilene traffic trace available at
http ://pma.nlanr.net/Traces/Traces/long/ipls/3/.

In fact, through numerous experiments with real traffic traces, it has been observed in [19]
that P(v≥ j/p) can be approximated by νP(ṽ≥ j) when j ≥ j0 for some j0 > 0. The problem is
then to estimate the quantities P(v = j) for j = 1, . . . , j0/p−1.

We have from Equation (6.4)P(ṽ = j) ∼ 1
ν

∞

∑
ℓ=1

(pℓ) j

j!
e−pℓP(v = ℓ) (6.7)
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Fig. 28 – Flow size distribution in the France Telecom ADSL trace.

and we know by Proposition 13 that for j ≥ j0, this equation is equivalent to P(ṽ = j) ∼ P(v =
j/p)/(νp). It follows that for determining the ( j0/p−1) quantities P(v= ℓ) for ℓ = 1, . . . , j0/p−1,
we have only j0 equations. The problem is hence clearly under-determined. Some heuristics are
needed to recover the complete flow size distribution.

It has been observed in [19] that depending on the size of the observation window ∆, the
sampled flow size distribution can locally be approximated by means of Pareto distributions.
This leads us to make the following assumption.

Assumption 1. There exist some m> 0 and some integers j0 < j1 < ... < jm = ∞ such that for
ℓ = 1, . . . ,m and j ∈ [ jℓ−1, jℓ], ṽ has a Pareto distribution of the formP(ṽ≥ j) = P(ṽ≥ jℓ−1)( jℓ−1/ j)aℓ

for some shape parameter aℓ > 0.

When ∆ is adequately chosen, the tail may be uni-modular (i.e., m= 1), but when ∆ is too
large, we can have m> 1. For the above France Telecom trace (∆ = 2 hours), m= 2 as shown in
Figure 6.28(b).

By using Proposition 13, we deduce that for jm−1
p ≤ j ≤ jm

pP(v≥ j) ∼ νP(ṽ≥ jm−1)( jm−1/(p j))am , (6.8)

The above equation implies that P(v≥ j) can locally be approximated by a Pareto distribution
with shape parameter am, as shown in Figure 6.28(a).

For inferring the quantities P(v= j) for j = 1, . . . , j0/p−1, we need more assumptions. Nume-
rous experiments [19] have shown that when j < b0 for some b0 > 0, P(v = j) follows a geometric
distribution.

Assumption 2. There exists some b0 > 0 such that for 1≤ j < b0, P(v= j) = (1− r)r j−1/(1− rb0)
for some r > 0.

The above assumption is supported by experiments, as shown in Figure 6.29(a) and 6.29(b)
for the France Telecom and Abilene traffic traces, respectively. The value b0 = 20 has been
successfully tested in numerous experiments.

By using Equation (6.8) and Assumption 2, we have the form of the distribution for j ≤ b0

and j ≥ j0/p. To fill the gap, we use the following heuristic : P(v≥ j) for b0 ≤ j ≤ j1/p has the
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geometric approximation
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Fig. 29 – Ccdf of the number of packets in flows with less than b0 = 20 packets.

same form as in Equation (6.8), namely P(v≥ j) = P(v≥ b0)(b0/ j)a1. Equation (6.7) can then
be rewritten asP(ṽ = j) ∼ P(v < b0)

ν

∞

∑
ℓ=1

(1 − r)rℓ (pℓ) j

j!
e−pℓ +

1
ν

∞

∑
ℓ=b0

(pℓ) j

j!
e−pℓP(v = ℓ). (6.9)

The shape parameters aℓ for 1≤ ℓ≤mare determined from the sampled flow size distribution
by using standard Maximum Likelihood Estimation (MLE) procedures. The parameter b0 is set
equal to 20 ; this value is purely phenomenological but roughly corresponds to the number of
packets needed to leave the slow start regime with a maximum window size of 32 Kbytes.
The parameter P(v≥ b0)/ν is obtained by using Proposition 13, namely by computing the ratio

η de f
= P(ṽ≥ j)/(b0p/ j)a1 for j ∈ { j0, . . . , j1}, which is by assumption independent of j. The number

of flows with at least b0 packets is K+
0 = ηKs. Equation (6.9) multiplied by Ks for j = 1,2 is then

used to compute the parameter r and the number K−
0 of flows with less than b0 packets. The

total number of flows is then K = K+
0 +K−

0 and the probability of sampling a flow is estimated
by the ratio Ks/K.

By using the above method for the France Telecom ADSL trace with p= 1/100, we find j0 = 3
and the estimated shape parameters â1 = .54 and â2 = 1.81, which are close to the experimental
values a1 = .52 and a2 = 1.81 for the original flow size. We then find P(v≥ b0)/ν = .3 and since
Ks = 1,120,546, we obtain the estimate K̂+

0 = 336,163, while the actual value is K+
0 = 343,004.

By neglecting the term due to flows with at least 20 packets in Equation (6.9), we then find
the estimate r̂ = 0.84 while the actual experimental value is r = .75. This yields a number of
flows with less than b0 packets K̂−

0 ∼ 20.1e6 while the actual value is K−
0 ≈ 19.8e6. Finally, the

estimated total number of flows is K̂ = 20.4e6 while the actual value is K = 20.1e6 and we find
the estimate ν̂ = .054 for the probability of sampling a flow while the experimental value is
ν = 0.057.

6.5 Conclusion

The method of inverting sampled traffic presented in this note is based on a prior knowledge
of the form of the flow size distribution (geometric distribution of small flows and Pareto for
the others). The method has successfully been tested on sampled ADSL traffic from the France
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Telecom collect IP network. The method is robust as long as the sampling factor p is not too
small so that the Pareto distributions can be recognized in the sampled flow size distribution.
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Conclusion

Dans cette thèse, nous avons étudié la composition du trafic Internet à l’échelle des flots. Un
flot est un ensemble de paquets IP ayant certains champs communs. L’analyse des flots fournit
des informations utiles sur les clients comme le nombre de clients actifs, leur débits, leurs com-
portements... Aujourd’hui, l’accès à de telles informations en temps réel est une tâche difficile
vu le très haut débit du trafic et la masse gigantesque de données à analyser. Pour surmonter
ce problème, deux axes ont été explorés : le hachage des flots utilisant les filtres de Bloom, et
l’échantillonnage du trafic.

Dans le premier chapitre, nous nous sommes intéressés à l’étude d’un algorithme d’identifi-
cation et de comptage des grands flots basé sur les filtres de Bloom. L’idée-clé de l’algorithme
est de rafrâıchir les filtres avec une fréquence qui dépend du débit instantané du trafic, de telle
façon à garantir l’efficacité du comptage. Le but de notre étude analytique est d’estimer l’erreur
générée par cet algorithme sur le comptage des grands flots (les éléphants). Nous nous sommes
particulièrement intéressés aux faux positifs, c’est-à-dire aux petits flots qui sont considérés à
tort comme des éléphants par l’algorithme. Partant d’un modèle simplifié où le trafic est unique-
ment composé de flots de taille 1 paquet, nous avons montré que le problème peut être décrit
à l’aide d’une file d’attente M/G/1/C, ce qui permet d’exprimer le nombre de faux positifs en
fonction des différents paramètres de l’algorithme. L’analyse a été ensuite généralisée à des souris
de taille quelconque.

Dans le deuxième chapitre, nous avons proposé et expérimenté d’autres versions de l’algo-
rithme en jouant sur le critère de rafrâıchissement des filtres. Le but est d’éviter la saturation des
filtres en cas de trafic intense. Pour décrire l’état des filtres, deux paramètres ont été comparés :
le taux de remplissage (proportion de compteurs non nuls) et la valeur moyenne des compteurs.
Les expérimentations montrent que le deuxième critère est particulièrement intéressant dans le
cas de trafic avec des souris de grandes tailles. L’algorithme a été ensuite adapté au problème de
détection des attaques par déni de service où l’attaque peut se traduire au niveau du trafic par
l’apparition d’un grand flot (en utilisant une définition adaptée du flot). Le rafrâıchissement des
filtres est plus agressif dans ce cas, car le but est d’éliminer au plus vite tous les flots légitimes et
ne garder dans les filtres que les flots suspicieux. Les expérimentations montrent que l’algorithme
ainsi conçu permet de détecter la majorité des attaques avec un temps de réponse assez court
(de l’ordre de la minute).

Le troisième chapitre traite une autre composante de l’algorithme, à savoir la méthode de
remplissage des filtres et d’incrémentation des compteurs. Pour atténuer les collisions entre les
flots, l’algorithme utilise l’incrémentation conservative dont le principe est le suivant : un paquet
est associé à k compteurs, et seulement les compteurs ayant la plus petite valeur sont incré-
mentés de 1. C’est ce qu’on appelle dans ce manuscrit “la règle du min”. Pour des raisons de
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simplification, l’analyse présentée dans le premier chapitre ne tient pas compte de cette règle de
min. L’objectif du troisième chapitre est d’étudier analytiquement l’impact de la règle du min
sur les performances de l’algorithme. Pour pouvoir modéliser le problème, nous avons introduit
pour l’algorithme la modification suivante : on n’incrémente pas tous les compteurs réalisant le
minimum, mais seulement l’un de ces compteurs choisi au hasard. On retrouve ainsi le modèle
du supermarché où un client choisi la file la plus courte parmi k files sélectionnées au hasard
parmi m. En cas d’égalité, une file est choisie au hasard parmi les files les plus courtes. Ce modèle
étant connu dans la littérature, il nous a permis d’aboutir à des résultats théoriques en rapport
avec les performances de l’algorithme.

La deuxième partie de la thèse est consacrée à l’étude de l’échantillonnage et des méthodes
d’inférence des paramètres du trafic réel à partir des informations réduites contenues dans le
trafic échantillonné. Dans le chapitre quatre, nous avons comparé les deux méthodes d’échan-
tillonnage suivantes : échantillonnage déterministe et probabiliste. Nous avons montré que si les
flots sont suffisamment mélangés, ces deux méthodes sont équivalentes du point de vue compo-
sition du trafic échantillonné. Nous avons aussi montré que la queue de distribution de la taille
des flots peut être facilement inférée par échantillonnage à condition qu’elle soit lourde.

Dans les deux derniers chapitres, nous avons montré que la distribution de la taille des flots
sur une durée convenablement choisie, peut être approchée par une loi de Pareto. Nous avons
établi une méthode permettant de trouver les paramètres de cette loi pour une trace de trafic
quelconque. Cette méthode ne nécessite aucune information à priori sur la trace considérée.
Nous avons ensuite montré qu’on peut aussi inférer les paramètres de la loi de Pareto ainsi que
le nombre total de flots en examinant juste le trafic échantillonné. Ces méthodes ont été testées
et validées sur des traces de trafic issues du réseau de France Télécom et du réseau Abilène.
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[8] N. Ben Azzouna, F. Clérot, C. Fricker, and F. Guillemin, A flow-based approach to modeling
ADSL traffic on an IP backbone link, Annals of Telecommunications 59 (2004), no. 11-12,
1260–1299.

[9] N. Ben Azzouna, F. Guillemin, S. Poisson, P. Robert, C. Fricker, and N. Antunes, Inverting
sampled ADSL traffic, Proc. ICC 2005 (Seoul, Korea), May 2005.

[10] C. Barakat, P. Thiran, G. Iannaccone, C. Diot, and P. Owezarski, A flow-based model for
internet backbone traffic, Proc. ACM SIGCOMM Internet Measurement Workshop (Mar-
seille), November 2002.

[11] A. D. Barbour, Lars Holst, and Svante Janson, Poisson approximation, The Clarendon
Press Oxford University Press, New York, 1992, Oxford Science Publications.

[12] P. Barford, J. Kline, D. Plonka, and A. Ron, A signal analysis of network traffic anomalies,
ACM/SIGCOMM IMW, 2002.
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Résumé

Cette thèse s’inscrit dans le domaine de l’analyse et la modélisation du trafic Internet à
l’échelle des flots. Les informations sur les flots (surtout les grands flots) sont très utiles dans
différents domaines comme l’ingénierie du trafic, la supervision du réseau et la sécurité. L’ex-
traction en ligne des statistiques sur les flots est une tâche difficile à cause du très haut débit
du trafic actuel. Nous nous sommes intéressés dans cette thèse à l’étude de deux classes d’algo-
rithmes traitant en ligne le trafic Internet.
Dans la première partie, nous avons conçu un nouvel algorithme basé sur les filtres de Bloom
pour l’identification en ligne des grands flots. Le point fort de cet algorithme est l’adaptation
automatique aux variations du trafic. Une application intéressante est la détection en ligne des
attaques par déni de service. Nous avons donc développé une version de l’algorithme qui intègre
les spécificités des attaques. L’expérimentation en ligne montre que cette nouvelle méthode est
capable d’identifier quasiment toutes les sources de trafic anormal avec un délai très court. Nous
avons aussi étudié la performance de l’algorithme d’identification en ligne des grands flots. En
considérant un modèle simplifié, nous avons pu approcher l’erreur générée par cet algorithme sur
l’estimation du nombre de grands flots. Cette étude a permis en particulier d’évaluer l’impact
des différents paramètres de l’algorithme sur sa performance.
Les algorithmes présentés dans la première partie s’appliquent sur la totalité du trafic, ce qui
n’est pas toujours possible car dans certains cas, on ne dispose que du trafic échantillonné. La
deuxième partie de la thèse est consacrée à l’étude de l’échantillonnage et des algorithmes d’infé-
rence des caractéristiques du trafic d’origine. D’abord, en utilisant un résultat d’approximations
poissonniennes, nous avons montré que les deux méthodes d’échantillonnage : déterministe et
probabiliste donnent des résultats équivalents du point de vue composition du trafic échan-
tillonné en flots. Ensuite, nous avons conçu un algorithme permettant d’estimer, par un calcul
asymptotique, à partir du trafic échantillonné, le nombre de flots dans le trafic réel et la distri-
bution de leur taille sur un intervalle de temps court. Ceci permet de faire l’hypothèse à priori
que cette distribution suit une loi de Pareto. Cette hypothèse a été validée sur des traces de
trafic de différentes natures.

Mots-clés: Filtres de Bloom, grands flots, attaques par déni de service, échantillonnage, loi de
Pareto.
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Abstract

This thesis is a contribution to the field of Internet traffic analysis at the flow level. For
traffic engineering purposes like supervision and security for example, it is important to be able
to characterize flows, especially the large ones. Due to the very high bit rate and the huge num-
ber of flows in IP traffic, it is very difficult to extract on-line statistics on flows. In this thesis
we focused on two kinds of on-line algorithms for Internet traffic analysis.
In the first part, we developed a new algorithm based on Bloom filters for large flows iden-
tification. The advantage of this algorithm is it can adapt to traffic variations. An interesting
application to this algorithm is the on-line detection of denial of service attacks. For this purpose,
we proposed an adapted algorithm taking into account attacks specificities. On-line experiments
show that this new method is able to identify almost all sources of anomalous traffic in a very
short delay. In addition, we analyzed the performances of the algorithm for on-line identification
of large flows. We analytically estimated the error generated by the algorithm on the number of
elephants.
The algorithms presented in the first part are performed on the exhaustive traffic which is not
usually possible because in some cases we have only access to the sampled traffic. The second
part of the thesis is dedicated to sampling analysis and the study of algorithms inferring the
original traffic characteristics. First, using a result on Poisson approximations, we proved that
the two sampling methods : deterministic and probabilistic give equivalent results in terms of
sampled traffic composition at the flow level. Then we developed a new method inferring, from
the sampled traffic, via asymptotic procedures, flows number and size distribution in a small time
window. This enables us to suppose à priori that this distribution is a Pareto. This hypothesis
was validated against different traffic traces.

Keywords: Bloom filters, large flows, denial of service attacks, sampling, Pareto.
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