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CONTENTS

1 Introduction

The development of hierarchical methods for solving Optimum Shape design problems
for CFD is motivated by efficiency improvement in the case where the set of parameter
involves discretized functions.

Non-gradient methods need reduce the number of unknown.

Gradient-based methods generally require preconditioners. Indeed, let us consider the
application of gradient iteration in a space of functions. The functional analysis tells us
that the continuous iterate u"*! = wu" — pg" is less regular than u" when the
gradient g¢" involves k-th derivatives of «"™ . In other words the iteration operator is
unbounded, with a regularity loss equal to k. The continuous iteration then diverges. In
the discrete case, this results in the amplification of high frequency error components, ex-
cept for very small, mesh dependent, step lengths p. This kind of phenomenon is the rule
when iterative solution algorithm are applied to discrete PDE systems. Then a solution
can be found in preconditioning or multi-levelling. Experience shows that this problem is
very frequent in Optimal Shape Design when the iterations are applied in order to find a
function describing the shape (“CAD-free” approach) and not only a few shape parame-
ters. In this paper, we propose an explanation of this, related to the lack of smoothness of
the Hadamard derivative of a function with respect to the domain shape. As a practical
consequence, the discrete gradients to be used for updating shapes are oscillatory unless
a very small step length is adopted. To cure this, Reuther and Jameson have proposed
in (20) a method of correction smoothing that solves a Laplace-Beltrami system set on
the boundary. This method is also used in (16). In (1), Arian and Ta’asan analyse the
Fourier symbol of the Hadamard-type functional Hessian. According to the degree of
this Hessian, these authors propose to use either a Laplace-Beltrami operator when the
regularity loss is 2 or a Neumann-Dirichlet pseudo-differential operator when regularity
loss is 1.

In this chapter, we examine how to introduce multi-level principles in shape design
algorithms in order to reduce their mesh-dependancy or their number of parameter de-
pendancy of convergence speed.

Two main directions will be presented:

- to extend multi-level principle to CAD parametrization. We define multi-level Beziers
parametrization.

- to extend multi-level preconditioning to CAD-free parametrization following the
Bramble-Pasciak-Xu (BPX) theory (see (4; 25; 6)).

Contents
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2 HADAMARD FORMULA AND FUNCTIONAL PRECONDITIONING

2 Hadamard formula and functional preconditioning

2.1 The Dirichlet case

Large scale problems coming from Partial Differential Equations generally result in a poor
conditioning that further degrades when the number of degrees of freedom is increased.
To explain and solve this problem, we can either analyse directly the behavior of dis-
crete eigenvalues when the number of unknowns is increased or analyse the continuous
-functional- problem and the continuous version of the algorithm. We concentrate on the
second way.

We are interested in minimizing a functional j(-y) with respect to a “shape parameter”
~. More precisely, an initial geometry 2y is equipped with a vector field 77y normal to its
boundary. A family of domains €2, of R? is parameterized by a displacement y € C*(9€)
of the boundary in direction 7.

The state equation is the Poisson problem:

—div grad z(y) = f ; z2(y) = 0 on 09, .

Let D be a subdomain of €2, (inside €2, for any v admissible). The functional j to
minimize is defined by:

, 1
i) = 311200 = 2uargerllp -

We are interested in computing the derivative of the functional with respect to the shape
parameter. We have to do it by a chain rule involving the state equation. A classical
difficulty comes from the variable domain in the state equation. Early solution to this
variation calculus dates back to Hadamard. We shall instead invoke some techniques ini-
tated by the interior variation of Garabedian, see (10), and extended later on in (17),(19),

(7). (8),(9).

We introduce first a family of diffecomorphisms (77,), smooth with respect to v such
that:

T, maps O on O,

T, maps Qy on £,

The problem can be stated in terms of a new state variable:

. L. _
](7) = 5”2(7) © Tfy t— ZtargetH%)
Z(v) =z(y) o T, .

The new state Z(y) is solution of a well-posed Dirichlet problem with coefficients and
source depending on ~y through 7', and T.° ! but formulated in the domain D which does
not vary with the control 7. Then Z(v) depends implicitly on v and under regularity
assumptions on f and 0€)y, we can prove by applying the implicit function theorem that
mapping:

v — Z(7)
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2.1 The DichBA&AMARD FORMULA AND FUNCTIONAL PRECONDITIONING

is continuously differentiable from C*(9€)) in C!=1+(Qy).
It then interesting to introduce a linear extension operator from €y to O:

P CH(Qy) — CHO)
f=Pf

Let:
2(7) = (PZ(7)) o T, Y,

then, by chain rule and with a possible reduction of regularity [, we deduce that
v —z(7) (1)

is continuously differentiable from C**(9€)) in C'717*(Q). Now, by construction, z(v)
is an extension of z(7):

2(Vle, = 2(7) - (2)

And we can exhibit the derivative of Z(y) with respect to v on €2, in which it is the
solution of the non-homogeneous Dirichlet problem:

—divgmdg—i(fy).&y = 0 in Q,
0z ~0zZ(y)
9, ()07 = an, (ny,10)07 (3)

whwere 77, is the normal to d€2,. One interesting way to state the above result is to
compute the total derivative of the following state variational residual, which is possible
due to the derivability of an extension of z(y):

V(7,25 01,02) = —/ (div grad z — f) ¢1 dv + /89 z ¢y do
Q, ,
U(y,2(7); 01, 02) = 0V, Voo .

Indeed the derivative with respect to Z produces the left-hand side of (), and after injection
of the state equation, the derivative with respect to v reduces to:

/ 85_(7)(”7,”0)67 ¢9 do [0

Sl 8”7
By chain rule, j is also differentiable and its gradient is expressed as follows:

. 0z 0 Lo
J(y).0y = /89 87(17) gy) < Ty, g > 6y dOS2,
y ¥ v

where p(7y) the following adjoint state:

—div grad p('Y) = Ztarget_z(’y) ) p(’Y) =0 on aQW
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2 HADAMARD FORMULA AND FUNCTIONAL PRECONDITIQRINThe Euler case

Taking the L? space as pivot space for a continuous gradient method would produce the
following iteration (p is a positive step length):

0 0
Y = vy — p g2 where g2 = 20) o0y) <Py Ty >
on., on.,

We observe that, starting from a previous iterate v belonging to C'7®(9)), we get a
corrected ~v* that is only of regularity C'=17%(9€)). One degree of regularity is lost at
each iteration, and iteration cannot continue after a few steps. We need precondition the
iteration:

v =7 — p B ge.

where the self-adjoint invertible operator B is chosen in order to recover the degree of
regularity lost by the L? gradient. It is a functional preconditioner similar to the one
introduced in the Least Square formulation of (5).

The main motivation for doing this is that the continuous algorithm has a convergence
rate that evidently does not depend on a mesh size. Then we can try to build some con-
sistent discretization that will hopefully converge with a rate not so different from the
continuous rate. This means that essentially mesh-independent rates might be obtained.
Another way to understand that point is to remember that in the linear periodic case,
Fourier’s analysis shows that operators involving p-th order spatial derivatives will have
eigenvalues of the order of (ﬁ)p . The smaller this degree, the better the condition num-
ber. The strategy which we propose is to build the operator B in such a way that the
resulting order of spatial differentiation after preconditioning be equal to zero.

2.2 The Euler case

It is probably a generic property of shape first derivatives (formulated in terms of shape
location) that the shape gradient of the state variable have a derivative loss of 1. The
above analysis shows it rigourously for the Dirichlet problem. We consider now a more
complex model: the flow around an obstacle of boundary 0§, is considered. We denote by
Wy, Wy, W3, Wy, Wy, p the conserved variables (density, three moments, energy) and the
pressure of the flow of a perfect gas. The state equation is now the system of steady Euler
equation that we write under a variational form as follows: for all ¢ = (¢1, P2, @3, P4, @5)
belonging to the appropriate space,

(U, W) o) = — / (F(W)de + GOW)ady + H(W)99=) de,
+ / p (0l éy + nl ds + nl és) dOK, =0, (4)
a9,

where F'(W), G(W) and H(W) hold for the usual Euler fluxes, corresponding respectively
to each of the space directions.
The cost functional is denoted in a generic manner as follows:

J) =IO, W) . (5)
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3 ADDITIVE MULTILEVEL PRECONDITIONERS

where W () is the solution of state system for the parameter 7. On the way of a rigorous
Hadamard differentiation with respect to shape, an invertibility of Jacobian is missing for
the Euler solution and the implicit function theorem is not justified. We follow the lines
of (3). The adjoint state II is solution of:

OF\ ol (oG \'om  (om\'om _ o)

ow ) ox ow ) Oy ow ) 0z ow -
in combination with boundary conditions, among which we mention only the boundary
condition on the shape boundary controlled by the parameter :

[on) + gn) +1lyn] = 0 on 05,

Similarly to the previous section, the gradient of cost functional is a product of adjoint
state by the -formal, this time- derivative of state residual in which state equation has
been re-injected. After simplifications, we get:

oIl oIl o1l
G TGN+ HOV) 5

+ (VpIl + p VII) (@7 -V) . (6)

gr2(y, W) = = (F(W) ) (@ V)

The gradient correction then writes:

y=7 — pgr2(y, W,1I) .

We observe that this correction is generally less regular than the boundary parameter
v. Indeed, inspired by elliptic smoothness, we can estimate that the state variables are
at most as regular as the boundary, but the above correction involves first derivatives of
the adjoint state. Additionally, the normal vector " is a first derivative of the boundary
parametrizatuion . Therefore the formal loss of regularity is again 1.

3 Additive multilevel preconditioners

Additive multilevel preconditioners have been initially derived in a discrete context for
solving elliptic Partial Differential systems which are typically of second order or of even
order. An extremely rich litterature exists on this topic. The hierarchical basis method
was first analysed by Yserentant in his pioneering paper (26). The work of Yserentant was
apparently motivated by the famous unpublished technical report of Bank and Dupont
(2). A more complete theory was proposed by Bramble, Pasciak and Xu (4), (24). See also
the wavelet extensions, for example in (6). An extended theory can be found in (12; 25).
The purpose of this section is to recall some results of (25) (7) in a format adapted to our
purpose. For simplicity, we state them in the case of Dirichlet boundary conditions.

Let Q be a regular subdomain of R". Let H'(Q) the usual Sobolev space and V = H}(£2)
its subspace of functions vanishing at boundary 9Q. It is included in H = L?(f2), a pivot
space the scalar product and norm of which are denoted by:

(u,0) = / wo do; full = (uyu)?
Q
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4 COMBINATION WITH THE BFGS ACCELERATION

Let (Vi)k=o.1,.. be a sequence of discretisation subspaces of V' :
VowC--CWC--CV

To fix the ideas, subspaces V}’s can be considered as built from nested quasi uniform
meshes with mesh size:
h, = 277,

For any k£ we introduce the fine-to-coarse projection operator @)y : V' — V} defined for
all w e V by
Q_1u=0; and for k > 0, (Qru,v) = (u,v) Yv €V} .

Let a € [0,3/2] and B, defined by:

B, = i‘“ (%)k (Qr — Qi—1) - (7)

Some comments:

In the case a = 1, Bj is nothing but the identity operator on functions for which the
series is convergent. Each term represent a particular scale and smoothing is performed
by damping high-frequencies/small scales. [

Theorem (7) :

Let s be such that —=3/2 < s < s+4+a < 3/2.
Then the operator B is bounded from H () into Hi™*(2), in particular, there exists two
positive numbers ¢ and C such that for all u € H(2), we have

¢ ullir@ < 1Baulliro@y < € llullaw

OJ

This statement shows that the operator B has smoothing properties that can be quan-
tified as a gain in regularity. This gain is exactly a. It can be prescribed by the user in
order to precondition an operator having a as regularity loss. We introduce in the next
sections the agglomeration-based construction of the V) spaces.

4 Combination with the BFGS acceleration

Modern optimisation algorithms are equipped with quasi-Newton processes which allow
a rather good efficiency for many applications. One of the most efficient quasi-Newton
acceleration relies on the BFGS method, see for example (18). The purpose of this section
is to demonstrate on a simplified example that even for a very favourable context, a good
quasi-Newton optimizer needs the complement of a preconditioner as far as the number
of discretization unknowns is large enough.

We consider the following minimisation problem in 1D:
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5 PRECONDITIONING BY NODE AGGLOMERATION

1/t 0
i ArgMin§/0 (129 ~ fu) do'; u(0) =u(1) =0 (8)

We can precondition this problem with the 1D version of our agglomeration precondi-
tioner. The Hessian of this functional is a second-order differential operator, i.e. derivative
loss is 2.

This problem can be solved by a conjugate gradient and in that case we just need, for
preconditioning into that algorithm, to multiply the gradient by By defined as in as in
(20) (with a = 2).

The use of BGFS is a little more complex. That method builds progressively an approx-
imate Hessian M for the functional to minimise, together with its inverse W. This is
done by regula falsi heuristics relying on the knowledge of successive values uy_1, ug of the
control variable and the corresponding values of the functional gradient g;_1, gx. In order
to introduce our preconditioner, we define:

@ = Biu and g = B_ig 9)

These variables allows the BFGS construction of YW and M. We can then derive and
inverse the matrix to apply to the gradient:

W = B.WB., M = BMB, (10)

We stress that, in contrast to the conjugate gradient, in order to precondition BFGS, we
need to handle B; and B_; for the assembly of the BEFGS matrix and of its inverse. This
is easily done with the proposed multilevel preconditioner: we just choose respectively
a=1, a=—-1.

In Fig.1, four experiments are depicted. The number m of unknowns in the discretisa-
tion of (8) is first set to 32. As rather classically, the non-preconditioned BFGS algorithm
solves exactly the optimum in about 5 + m/2 = 21 iterations. The preconditioned ver-
sion has a convergence which is more progressive, but not faster. For a larger number of
unknowns, m = 256, the unpreconditioned BGFS shows a very slow convergence during
at least the 100 first iterations. In large scale shape design, this convergence is not ac-
ceptable. In contrast, the preconditioned BFGS convergence is about the same as for the
coarse-mesh one (21 iterations).

5 Preconditioning by node agglomeration

The usual BPX preconditioner essentially needs embedded meshes, that are not compat-
ible with today’s engineering applications, since these applications rely often on unstruc-
tured fine meshes. The adaptation of BPX to arbitrary fine meshes was proposed in (15)
for equations. It can be in a rather straightforward manner adapted to optimum prob-
lems. We present now the main lines of it. The first section describes the case of a 2D or
3D mesh. The second section addresses the particular features of an unknown defined on
a non-plane surface discretised by triangles in 3D.
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5 PRECONDITIONING BY NODE AGGLOMERATININtidimensional Agglomeration

5.1 Multidimensional Agglomeration

We start from a fine triangulation or tetrahedrization. Nodes are located at vertices.
The discrete fine level is the subspace of linear combinations of P1 shape functions:
E, = span{p;, i =1---ny}.

A dual finite-volume cell C; is defined around each vertex i by splitting each neighboring
element with median plans and keeping subelements containing vertex ¢. The volume of
C; is denoted Meas (i). Ej, is equipped by the following weighted scalar product:

np
Voup and vy, € B (up, vp)n = Z(uh)Z (vn); Meas (i) (11)
The agglomeration process relies on a partition of the set I/ = {1,--- ,4,--- ,n,} of fine
indices 7.
=LU---UlLiu---Ul,, (ng<n) (12)

where any [; involves the indices of a few neighbouring nodes. An algorithm for building
such a partition can be found in (13). For any I, a coarser basis function is defined by:

b, = Z ; and the coarser space is given by:
i€ly
Eap, = Span{®;, J =1---ng}
The linear prolongation operator, P, from Esj, to Ej is defined by
Yoy € Eop  Pusy, = usp, € Ej, . (13)
Its adjoint P’ is the restriction operator from Ej, to E,,, and it is defined via P as its

adjoint with respect to scalar product ??). by :

Nh

Z (un)j, Meas(jim)

JmCJ

(ﬁ*uh)J =

Meas(J) (14)
where J is a coarse cell, j,, are fine cells included in J. Meas(J) represents the measure
of coarse cell J . These operators where also introduced in (14) for a different multi-level
approach, of multiplicative type. In that paper, it is noted that, in contrast with the
usual Galerkin nested finite element sequence, the sequence of spaces generated with the
transfers P and P* defined in (13) and (14) does not enjoy enough regularity according
Sec.3 theory. This is related to the fact that the orders of accuracy of transfers have a
sum equal to 1 4+ 1 = 2, not strictly larger than 2, see (11).

We define define smoother transfers. The necessary smoothness is recovered by combin-
ing the above transfer operator with a “smoothing operator” L, and with L*, its adjoint
with respect to the discrete L? scalar product. This smoothing operator is an average
between a node and its neighbors:

Z Meas(j) u;
JEN (3)U{i}

Z Meas(j)

JEN (1)U{i}

(Lu); = (1 — O)u; + 0 (15)
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5.2 Agglomeration for a suifac REIDONDITIONING BY NODE AGGLOMERATION

where A (7) represents the set of neighbors of cell 7 and 6 is a parameter defined later on.
The adjoint L* of L is defined by:

FEN (D)U{i} Z Meas(k)
keN (5)u{s}
The coarse level Vj is built from V., as follows:
Vi = Li Py (Vi) (17)

Starting from the initial fine space that we denote Vy, we define the analog of the BPX
projection operator (3) to the directly coarser level as follows:

Qv = Ly Py P} Ly (18)
and for any coarser level:

Q= WYL P P L (19)

B - fj((;) - (;))@ 20)

In practice, for any x, B,x is computed within a unique cycle from fine to coarse and
back.

From this we get:

5.2 Agglomeration for a surface in 3D

We return to the notations of Sec. 2.2.

Let ¥y be the initial 3D surface, made of triangles. The generic discrete surface X,
is defined by the translation of length v, of the vertices of ¥y along an approximate unit
normal vector 77 to X defined at vertices.

z] isavertex of ¥, & I =27 +~(i) 7 (21)

where 7 is the index of the vertex, #¢ is the physical position of the vertex of ¥, with
same index 7. In order to precondition a correction on -, we can construct a sequence
of spaces and operators following the same process as in (12),(13), (14), but restricted to
the surface and with the area of surfacic cells Area(j) instead of cell measures. In order
to adapt our operators to irregular surfaces, the smoothing operator L, is now weighted
by a scalar product of normals to the surface:

E wijxj

JEN ()U{i}

E wij

JEN (1)U{i}

(L&)=(1-0)T+0 (22)
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6 APPLICATION TO AN OPTIMAL SHAPE DESIGN PROBLEM

where w;; are the weights defined by :
w;; = max (Area(i)i; - Area(j)ii; , 0) ||| =1 Vi. (23)

With this weighting, the smoothing is avoided on shape’s dihedra (e.g. on wing trailing
edges) and then allows changes in the angle. The rest of preconditioner definition is the
same as in previous section. The smoothing parameter 6 is set equal to % according to
the analysis of (14).

6 Application to an optimal shape design problem

We now study the adaptation of the proposed multi-level preconditioner to an optimal
shape design loop.

6.1 The aerodynamical shape design problem

We now make more precise the statement of the aerodynamical application introduces in
Sec.2.2. In (21), the authors propose a very simplified model for measuring the “sonic
boom downwards emission” (SBDE). It consists in evaluating the volume integral of the
squared pressure gradient in an “observation box” QF (as shown in Figure 4) below the
object. The cost functional is therefore the following:

J) =IO, W) (24)

where W () is the solution of state system (4) for the parameter -y, and
I W) = as(Co(W) = Ch)* + aalCulW) = CiP 0y [ [VHOW)PAV.  (25)
Q

Here «q, ap and a3 are constants that prescribe the weights of three sub-criteria, related
to lift, drag and sonic boom emission. C% and C% hold for target lift and drag. Lift
coefficient C(W), drag coefficient Cp (W), and pressure field p(W) are computed from
the design variable v by solving the state equation (4) and obtaining the state variable
W. The notation p(W) indicates that the pressure p(W) has been smoothed in order to
integrate its gradient, even when shocks arise.

Practically, the observation box QF is a part of the computational domain placed below
the airplane. Its upper boundary is a plane close below the aircraft.

6.2 Discretized problem

The discrete CFD model uses an upwind Euler solver applying to unstructured tetra-
hedrizations. The shape is changed by moving the nodes on the boundary of the mesh
along normals to that boundary. Their displacement is taken into account by a transpi-
ration condition in order to avoid costly remeshings. A gradient of the discrete functional
is computed with the help of an adjoint system, built using the Automatic Differenti-
ation tool TAPENADE, (Hascoet and Pascual). Since this gradient is defined as a scalar
field defined on the nodes of the boundary, we can apply to it the surfacic multilevel
preconditioner introduced in Sec. 5.2.
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6.3 Numerical evidercPIBEL KN IHOMNThIDANI’ TIMAL SHAPE DESIGN PROBLEM

6.3 Numerical evidence of best smoothing index

We consider the shape optimisation starting from an ONERA M6 wing. A coarse discreti-
sation of this geometry, together with a pressure distribution on it is presented in Fig.5.
After the necessary number of gradient iterations, the shape optimisation loop produces a
new shape, that is quite different from the initial one, as illustrated in Fig.6. The resulting
sonic boom reduction can be appreciated from the comparisons of the pressure variations
under the wing for both geometries, which are depicted in Fig. 7. This can be obtained
by various optimisation algorithms. The question is to obtain it in the most efficient way,
and in particular to analyse the impact of our preconditioner.

First we want to show that the optimal parameter a = 1 predicted by the theory is nu-
merically verified. We first study this with a coarse geometry, involving 2203 nodes for
the 3D mesh, but yet 780 shape parameters. Two optimisation algorithms are applied, a
gradient (Fig.8) and a conjugate gradient (Fig.9). Divergence of the Euler algorithm for
distorted shapes did not allow a pertinent study of the BFGS option.

Convergence of the gradient iteration can be evaluated with the evolution of the gradient
norm. The case without preconditioning is the case where a = 0. Then convergence is
the slowest of the different options tested. Values like a = 0.5, a = 1.5, a = 1., a = 2.
provide good speedups, in particular for the 10 first iterations. This point is important for
the shape design loops which, in practice, are too computer consuming to allow for more
optimisation iterations. But the theoretical value a = 1. appears as numerically optimal,
for both cases of a pure gradient optimiser as well as a conjugate gradient one.

Let us verify that the efficiency of the preconditioner is good for finer discretisations. We
consider a second mesh with 15463 nodes. The number of shape parameters is 3222. See
Fig.10 and Fig.11.

The value a = 1. appears again as numerically optimal. In the case of the conjugate
gradient, a good shape is obtained in about 10 iterations.

The case of a = 2. deserves some comments. Indeed, it is equivalent to a Laplace-Beltrami
smoothing. All the above results show that that option is not bad, but is clearly not as
good as the optimal one.

We complete the above convergence curves by Tables. 1 and 2 which compare the effi-
ciency of the preconditioned algorithm to the standard one in the practical case where
convergence of optimisation is not continued more than 10 iterations. If equivalent levels
of convergence are asked from both algorithms, then an acceleration of a factor 5 is put
in evidence.

6.4 Example fo applications

In (23) the proposed preconditioner is applied to more complex geometries. An example
is given in Fig.12. Although the functional gradient depicted in Fig.12-middle is a smooth
function, an important improvement of the convergence has also been experimented in
applying the hierarchical preconditioner. The bottom of this figure shows the change
in pressure field in a horizontal plane under the aircraft. This change is obtain in 15
iterations of global optimization. In a multi-discipline problem as shape optimization
taking into account structure deformation at cruise, the CAD-free approach is extremely
useful since the shape structural defoemation and the shape design improvement are
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described withthe same data format. In that case, efficiency is much improved by the
introduction of the above hierarchical preconditioner in the multi-disciplinary optimization
loop. The interested reader is invited to examine the paper (22).

7 Conclusion

This paper presents a new preconditioning strategy for optimal shape design. An additive
multilevel preconditioner is built from (a) the classical Bramble-Pasciak-Xu principle, and
(b) the agglomeration principle. Functional analysis considerations show the central role
of the loss of regularity in the gradient iteration. This loss can be compensated by a
regularity gain carried by the preconditioner. This regularity gain is easily prescribed by
the user at any real value.

This helps in particular to combine the preconditioner with a BFGS acceleration. The
interest in combining both is demonstrated.

In the case of shape design, we exhibit a simplified example for which the loss of derivative
can be rigorously evaluated and is equal to 1.

The final shape design application is a pre-industrial one already addressed by different
methods. The numerical results confirm the a priori analysis of the regularity loss. They
demonstrate that the proposed method improves notably the convergence of the shape
design iteration.
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Figure 1: Resolution of a second order optimization problem with a preconditioned BFGS,
behavior of the different residuals as functions of iteration number, for problem sizes m
= 32 and m = 256.
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Figure 2: Skeich of the agglomeration of four fine (2D) cells, Cj1,Cj2,Cys,Cjs into a
coarser one C; = Cj1 UCjaUC;3UCjy
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Figure 3: Hierarchical parametrization by agglomeration: second level basis function
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Figure 4: The sonic boom. Sketch of near and far field shock wave patterns of a supersonic
aircraft. SBDE’s control box Q7.
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Figure 5: ONERA M6 shape optimisation: pressure contours on initial shape

Figure 6: ONERA M6 shape optimisation: sketch of geometry, of initial and final shape.
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Figure 7. ONERA M6 shape optimisation: pressure signal under the wing, before, after
optimisation
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Figure 8@ ONERA M6 shape optimization with a gradient method: Upper Gradient
convergence, Lower Cost function, ns = 2203
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Figure 9: ONERA M6 shape optimization with a conjugate gradient method: Upper
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Figure 10: ONERA M6 shape optimization with a gradient method: Upper Gradient

convergence, Lower Cost function, ns = 77315
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Figure 11: ONERA M6 shape optimization with a conjugate gradient

Gradient convergence, Lower Cost function, ns = 77315
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Figure 12: Shape optimization for reducing near field sonic boom: Upper line: Contour
levels. Left, Mach number. Right, pressure. Middle line:Cost functional gradient distri-
bution for the complete aircraft’s surface. Bottom line:Pressure distribution in a plane
below the aircraft. Left, original geometry. Right, optimized geometry.
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