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3.1 Shape representation, Bézier parameterization . . . . . . . . . . . . . . . . 15
3.2 Degree elevation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Nested supports and multilevel strategies . . . . . . . . . . . . . . . . . . . 17
3.4 Experimenting multilevel algorithms on a model problem . . . . . . . . . . 17
3.5 Self-adaptive multilevel algorithms . . . . . . . . . . . . . . . . . . . . . . 19

4 Model problem and two-parameterization eigenmode analysis 21
4.1 Shape-reconstruction problem and basic two-level algorithm . . . . . . . . 21
4.2 Eigenvalue estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Spectral radius, ρ(A) = λmax = λn . . . . . . . . . . . . . . . . . . . 23

∗Opale Project Team
†Tropics Project Team

VKI - 1 -



CONTENTS CONTENTS

4.2.2 Characterization of the smallest effective eigenvalue, λ1 . . . . . . . 25
4.3 Eigenmodes, frequency pairing . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Numerical spectrum, condition number . . . . . . . . . . . . . . . . . . . . 26

5 Conclusions 29

VKI - 2 -



1 PROLOGUE: WHY SHOULD WE USE MULTILEVEL ALGORITHMS IN
ANALYSIS?

1 Prologue: why should we use multilevel algorithms

in analysis?

Before considering the context of shape optimization, let us return to the more classical
discussion about which algorithms should be used to solve the stiff system of algebraic
equations that result from discretizing a partial-differential-equation (PDE) boundary-
value problem. One such problem arises when solving the steady Euler (or Navier-Stokes)
equations in compressible Aerodynamics.

1.1 Model problem, modal analysis, direct method versus iter-
ations

To introduce the basic concepts, and in particular the concept of complexity for one
such algorithm, let us consider the prototypical problem of Laplace’s equation subject
to homogeneous Dirichlet boundary conditions over the simple domain Ω = [0, 1]d, an
interval, a square or a cube of Rd (d = 1, 2 or 3):{

−∆u = f (Ω)

u = 0 (∂Ω)
(1)

Symbolically, this boundary-value problem writes:

Au = f (2)

Assume the interval [0,1] is discretized uniformly with N + 1 points subscripted from
0 to N in each coordinate direction. If standard central differencing is used, a discrete
analog of (1)-(2) is:

Ahuh = fh (3)

where

h =
1

N
(4)

is the characteristic dimension of the discrete elements, uh is the vector of nodal unknowns.
The two-dimensional case (d = 2) is really examplary, and is examined in particular; the
(N − 1)2 unknowns can be arranged in many rational ways, by rows, columns, diagonals,
etc. Assuming an arrangement by columns:

uh = {ui,j } = {u1,1, u1,2, ..., u1,N−1, u2,1, u2,2, ..., u2,N−1, ..., uN−1,1, uN−1,2, ..., uN−1,N−1 }
(5)

Otherwise, in general (d = 1, 2 or 3), the number of unknowns, or degrees of freedom is:

N = (N − 1)d ∼ Nd (N � 1) (6)

In (3), fh a vector containing the discrete nodal values of the function f , and Ah is an
approximation matrix. For Laplace’s equation, (1), after central differencing, the matrix
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ANALYSIS? 1.1 Model problem, modal analysis, direct method versus iterations

Ah is the direct sum of d tridiagonal matrices of dimension (N−1)×(N−1). For example,
in two dimensions (d = 2):

Ah = Ax ⊕ Ay = Ax ⊕ IN−1 + IN−1 ⊕ Ay (7)

where the (N − 1)× (N − 1) matrices

Ax = Ay =
1

h2
Trid(−1, 2,−1) (8)

are tridiagonal. The matrix Ah has a classical block-tridiagonal structure, since:

Ax ⊕ IN−1 =
1

h2


2IN−1 −IN−1

−IN−1 2IN−1 −IN−1

−IN−1 2IN−1
. . .

. . . . . . −IN−1

−IN−1 2IN−1

 (9)

whereas:

IN−1 ⊕ Ay =
1

h2


2Ay −Ay

−Ay 2Ay −Ay

−Ay 2Ay
. . .

. . . . . . −Ay

−Ay 2Ay

 (10)

Consequently, the eigenvectors of the matrix Ah are discrete Fourier modes with the
following separated-variable (or tensorial) structure [Désidéri (1998)]:

s
(m,`)
i,j = 2h sin iα(m) sin jβ(`) (11)

where:

α(m) =
mπ

N
= mπh , β(`) =

`π

N
= `πh (12)

are frequency parameters, and the associated eigenvalue is a sum of contributions from
each frequency mode:

λ(m,`) =
2− 2 cos α(m)

h2
+

2− 2 cos β(`)

h2
=

4

h2

(
sin2 α(m)

2
+ sin2 β(`)

2

)
(13)

In 3D (or more simply, in 1D), there would appear one more (resp. one less)
√

2h sin
factor in (11), and one more (resp. one less) 4

h2 sin2 term in (13).
Note that the dimension of the matrix Ah is N × N = (N − 1)d × (N − 1)d. The

bandwidth is the maximum difference in ranks in the ordering of the unknowns. With an
arrangement similar to the above, this number is equal to twice the number of neighbors
of a given node in a given hyperplane, and that is proportional to (N − 1)d−1 ∼ N/N
(total number of unknowns/number of unknowns per coordinate direction; N � 1).

Therefore, if a direct method (Gaussian elimination) was used to solve the discrete
system (3), assuming an economical algorithm memory-wise, both the computational
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cost and the memory requirement would be proportional to the number of elements in
the smallest banded portion of the matrix containing all the nonzero elements, which is
the portion that is filled in by the forward-elimination and backward-substitution. The
size of this banded portion is of the order of the bandwidth times the total number of
rows; therefore it is proportional to (N/N)×N ∼ N2/N . This estimate indicates than for
systems originating from PDEs, even linear, when a large mesh is necessary for accuracy,
the memory requirement of the direct method is completely prohibitive. With a general
unstructured grid the estimate becomes N2 (since no bound is known on the bandwidth),
and the estimate is even more dramatic. Lastly, implementing a full matrix inversion is
somehow contradictory with the effort to construct a local differencing scheme.

These observations direct most authors preference towardsiterative methods instead
for the solution of systems resulting from the discretization of PDEs in a general setting.
Additionally, in a real-life problem, if a direct method is used, the nonlinear character of
the PDE would restrict this usage to a partial solution within a global iterative formulation
based on some form of linearization.

Therefore, we should qualify iterative methods in terms of computaional cost efficiency
with respect to (w.r.t.) the mesh refinement which is quantified here by the parameter h.
This is this notion that we refer to as the complexity of the algorithm. We first make this
notion precise for the most basic iterative method, point-Jacobi iteration, and we then
generalize to more complex algorithms.

1.2 The Jacobi iteration

The Jacobi method is the simplest iterative method for a linear system. Most other
methods, such as the commonly-used Gauss-Seidel iteration, are often viewed as variants
with special preconditioners. Therefore, the Jacobi method plays a major prototypical
role.

For a positive-definite (neutrally-) diagonally-dominant matrix system such as (3) for
Laplace’s equation, point-Jacobi iteration, in our notations, and in the classical sense
of Varga [Varga (2000)] consists in first rewriting each equation by solving it w.r.t. its
diagonal element,

Dh uh = (Dh − Ah)uh + fh (14)

where Dh = Diagonal(Ah) is made of the diagonal elements of Ah only, and defining
second the following iteration:

un+1
h = D−1

h (Dh − Ah)u
n
h + D−1

h fh = un
h −D−1

h (Ah un
h − fh) (15)

For Laplace’s equation discretized by central differencing, Dh is a scalar matrix with
the number (2d)/h2 in the diagonal (except for a few equations related to nodes near
boundaries). Hence, the above equation has approximately the following form:

un+1
h = un

h − τh2 (Ah un
h − fh) (16)

where τ is some positive number (equal to 2d). Subsequently, although it is slightly
different from the usual convention, we will use (16) as definition for Jacobi iteration,

VKI - 5 -



1 PROLOGUE: WHY SHOULD WE USE MULTILEVEL ALGORITHMS IN
ANALYSIS? 1.2 The Jacobi iteration

and we will allow the positive parameter τ to be adjustable. The quantity (Ah un
h − fh) is

the discrete residual, and thus (16) generalizes straightforwardly to the discretization of
any boundary-value PDE problem, even if the corresponding approximation operator Ah

is not linear or diagonally-dominant, without presuming actual iterative convergence.
To analyze the iterative convergence of the Jacobi iteration, one substracts the trivial

equation
uh = uh − τh2 (Ah uh − fh) (17)

to (16) to get:
en+1

h = en
h − τh2Ah en

h (18)

in which:

en
h := un

h − uh (19)

is the iterative-error nodal vector. Hence, the convergence is described by the linear
equation:

en+1
h = (I − τh2Ah)e

n
h (20)

For the model problem, according to (11)-(12-(13) the matrix Ah can be diagonalized by
an orthogonal transformation, corresponding to a discrete Fourier transform:

Ah =
1

h2
Sh Λh S−1

h (21)

where S−1
h = ST

h = Sh. Thus defining the iterative-error modal vector, that is, the
iterative-error vector expressed in discrete Fourier modes:

εn
h := S−1

h en
h (22)

(20) diagonalizes:
εn+1

h = (I − τΛh) εn
h (23)

and gives:

εn
h = (I − τΛh)

n ε0
h (24)

that is, component-wise, or Fourier-mode-wise:

(εn
h)(m) =

(
1− τ λ̄

(m)
h

)n (
ε0

h

)(m)
(25)

where m refers to the mode (really (m, `) in 2D, and (m, `, µ) in 3D) and λ̄
(m)
h = h2λ

(m)
h

is scaled eigenvalue.
Thus, every modal component of the iterative-error vector decays geometrically, being

multiplied at each iteration by a factor

γ
(m)
h = 1− τ λ̄

(m)
h (26)
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depending on the eigenvalue and the relaxation parameter τ . This allows us to define the
specral radius of the iteration as fllows:

ρh(τ) = max
m

∣∣∣γ(m)
h

∣∣∣ (27)

Evidently, the spectral radius varies piecewise linearly with τ . Putting:

λ̄min = λ̄
(1)
h , λ̄max = λ̄

(N)
h (28)

one has ρh(τ) = 1 − τ λ̄min for small enough τ and ρh(τ) = τ λ̄max − 1 afterwards. Hence
the optimum value for the parameter τ is:

τ ∗ =

(
λ̄min + λ̄max

2

)−1

(29)

and this gives:

ρ∗h = ρh(τ
∗) =

λ̄max − λ̄min

λ̄max + λ̄min

=
κ− 1

κ + 1
(30)

where κ is the condition number:

κ =
λ̄max

λ̄min

(31)

Obviously, for the model problem,

κ = O

(
1

h2

)
= O

(
N2

)
� 1 (32)

where again, N is basically the number of degrees of ferredom per coordinate direction.
Consequently,

ρ∗h = 1− 2

κ
+ · · · = 1−O

(
h2

)
(33)

In conclusion, the iterative-error after n iterations of the Jacobi method is reduced by
a factor of the order of (ρ∗h)

n, where ρ∗h can be related to the spectrum of eigenvalues as
indicated above.

Now, the approximation error is controled by grid size h according to an estimate of
the type:

‖uh − u‖ ∼ CA × hα (34)

where α is the order of approximation: α = 2 for central differencing.
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Therefore, a logical termination criterion for the Jacobi method is to stop whenever
n is large enough to make the reduction factor of the iterative error, (ρ∗h)

n, of the order
of the approximation error, hα. Using natural logarithms, this gives:

n ln ρ∗h ∼ ln h (35)

(where constants have been ignored). Now

− ln ρ∗h = O

(
1

κ

)
= O

(
h2

)
(36)

and this results in:

n ∼ − ln h

h2
= N2 ln N (37)

Additionally, applying the Jacobi method, (16), results in performing at each iter-
ation a bounded number of arithmetic operations for each nodal equation. Thus, the
computational cost involved in one iteration is simply proportional to the total number
of unknowns N = Nd in the model problem.

In summary, accounting for:

- the estimate of the total number of iterations necessary to reduce the iterative error to
the order of the approximation error, N2 ln N , and for

- the fact that the computational cost of one iteration is proportional to the total number
of unknowns N = Nd,

we conclude that solving the model problem with this accuracy by application of the
Jacobi method, involves a computational cost whose order of magnitude is estimated as
follows in terms of the number N of degrees of freedom per coordinate direction:

COSTJacobi ∼ Nd+2 ln N = N×N2 ln N (38)

Equation (38) provides an estimate of the order of magnitude of the global compu-
tational cost relative to the Jacobi iteration when the iterative termination criterion is
made consistent with the order of magnitude of the approximation error. We use the
term complexity of the method for such an estimate.

We will now sketch out the principal multilevel strategies, and outline the classical
arguments that support their corresponding reduced complexity estimates. The reader is
directed to textbooks such as [Wesseling (1992)], [Briggs (1991)] or [Désidéri (1998)] for
a more detailed analysis.

1.3 Nested iteration

The so-called Nested Iteration was originally introduced for elliptic problems in [Kronsjö
and Dahlquist (1972)]. It relies on a simple principle: if the mesh refinement is the cause of
numerical stiffnees, greater efficiency should be achieved by progressive mesh enrichment.

The method is sketched in Table 1 in a case where 3 grid levels are used.
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Fine: Mh/4 . . .
↗

Medium: Mh/2

↗
Coarse: Mh

Solve Prolongate Smooth Prolongate Smooth . . .

Table 1: Sketch of nested iteration for 3 grid levels.

One first constructs a sequence of rigorously, or approximately nested gridsMhi
(i =

0, 1, ..., K), and for purpose of analysis, assume that the number of gridpoints in each
coordinate direction is approximately increased geometrically by a factor r each time,
starting from the coarsest gridMh0 (i = 0).

At each level, the PDE is approximated consistently by the system

Ahi
uhi

= fhi
(i = 0, 1, ..., K) (39)

For i = 0, the method is initiated by the complete solution of the above problem on
the coarsest level, h = h0 by a standard relaxation method, such as the Jacobi method.
The iteration is interrupted as soon as the iterative error has reached the order of mag-
nitude of the approximation on this grid, that is, hα

0 for some α (order of accuracy of the
discretization scheme, say 2 for the model problem. The computational cost of this initial
phase is very small if the number K of levels is large due to the relatively very coarse first
grid.

For all subsequent grids, i = 1, 2, ..., K:

1. Prolongate the solution uhi−1
obtained on grid Mhi−1

to Mhi
by an appropriate

interpolation operator Ihi
hi−1

to initialize the solution on the new grid:

u0
hi

= Ihi
hi−1

uhi−1
(40)

2. Iterate on the solution un
hi

(n = 1, 2, ...) from the above guess (n = 0) and until the
termination criterion corresponding to grid-level i is satisfied.

Because on each grid, the termination criterion is adjusted to the corresponding ap-
proximation error, the error in uhi−1

is of the order of hα
i−1. If the interpolation is accurate

enough, this approximation error, at least in order of magnitude, is simply inherited by
u0

hi
. Therefore in the second step, the relaxation only need to be done to reduce the

iterative error a factor equal to the fraction of approximation errors:

hα
i

hα
i−1

=
1

rα
= C (41)

where C is a known constant. Assuming again that the spectral radius ρhi
is grid-

dependent according to (33), the corresponding number of necessary iterations is esti-
mated by:

ni ∼
ln C

ln ρ∗hi

∼ N2
i (42)
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where the ln factor has been removed. Therefore the cost of the computation made on
grid-level i is therefore proportional to Ni ×N2

i , and the total cost:

COSTNested ∼ N×N2

(
1 +

1

R
+

1

R2
+ ... +

1

RK−1

)
≤ N×N2 1

1− 1
R

(43)

where the subscript i = K corresponding to the upmost level is now omitted, and R = rd+2

for the model problem, that is a constant >1.
Simplifying this result, we get the following uniform estimate:

COSTNested ∼ N×N2 (44)

This result corresponds to a partial success: indeed, the complexity of the basic itera-
tion given by (38) has been reduced, but only by the logarithmic factor ln N , equal to the
number of levels if geometrical refinement is used as above. Additionally, the method to be
effective requires “accurate-enough” interpolations. It turns out that linear interpolation
is notably insufficient for Laplace’s equation (see e.g. [Désidéri (1998), pp. 291-303).

Two final remarks before examining even more elaborate iterative strategies:

• In a nonlinear context, it is known by experience that the nested iteration has the
additional merit of enhanced robustness.

• The nested iteration can be related to what is known as the Cascadic Multigrid
[Bornemann and Deuflhard (1996)] with slightly different methodological adjust-
ments.

1.4 Multigrid cycle

The key breakthrough realized by the multigrid cycle relies on the observation that if we
split the modal or frequential components of the iterative-error vector into two subvectors
of respectively high and low frequencies, then independently of the meshsize, the condition
number related to the high-frequency modes alone is bounded.

For example for the model problem in 1D (d = 1, and N even):

λN

λN/2

=
4 sin2 (N−1)π

2N

4 sin2 (N/2)π
2N

≈ 2 (45)

The modal analysis [Brandt (1977)] implies that a finite number of classical relaxation
sweeps suffice to reduce to a negligible level say half of the error components, those associ-
ated with the high frequencies. Because of their lower frequency spectrum, the persistent
error components can be accurately represented on a coarser mesh, in a correction prob-
lem. Then again, a finite number of relaxation sweeps will suffice to reduce to negligible
level “half” of the remaining portion of the spectrum, and so on recursively, until the
coarsest level is reached. On the coarsest level, the number of degrees of freedom is so
small that the related correction problem can be solved at very low cost. Then the solution
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is estimated by a succession of prolongations, possibly followed by additional smoothing
steps (V-cycle).

We will admit that all the frequency-components of the iterative-error vector are sub-
ject to an effective mesh-independent reduction by this hierarchical process of elimination.
In other words, the iterative-error vector is reduced by an effective multigrid-cycle by a
factor B independent of the meshsize:

ρ∗ ≤ B (46)

1.5 Full Multigrid Method, “FMG”

This method is a variant of the Nested Iteration obtained by replacing the classical relax-
ation iteration by an appropriate Multigrid cycle. This construction is sketched out on
Table 2 for the case of 3 grids.

Fine: Mh/4

↗ ↓↑
Medium: Mh/2 Mh/2

↗ ↓↑ ↓↑
Coarse: Mh Mh Mh

Solve Prolongate MG-cycle Prolongate MG-cycle . . .
(1-grid) (2-grid) (3-grid)

Table 2: Sketch of the Full-Multi-Grid (FMG) method.

Now, let us revise the cost estimate of the nested iteration in this hypothesis. Here,
(42) becomes:

ni = a constant (47)

which states that the same fixed number of multigrid cycles should be performed at every
stage of the mesh refinement (evey column of Table 2). Thus the computational cost of a
given stage is only proportional to the number of degrees of freedom at that stage, that
is, Ni. Hence the total cost of the computation is proportional to∑

i

Ni = N

(
1 +

1

R
+

1

R2
+ ... +

1

RK−1

)
≤ N

1− 1
R

(48)

Hence, we arrive at the following remarkable result:

COSTFmg ∼ N (49)

Effective “Full-Multi-Grid”methods have a linear convergence rate: the computational
cost necessary to solve a problem iteratively, with a tolerance of the order of the approx-
imation error, is only proportional to the total number of degrees of freedom.

This general result makes multigrid methods very cost-efficient for boundary-value
problems for which the numerical options can be adjusted according to the theoretical
criteria, onlu outlined in this short review.
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2 Introduction: why should we use multilevel algo-

rithms for shape optimization?

Our general framework is the development, mathematical analysis and experimentation
of numerical methods for shape optimization for applications in which the cost functional
evaluation relies on the prior solution of a complex set of partial-differential equations
(PDEs), such as those governing compressible aerodynamics (e.g. the Euler equations),
or related coupled disciplines such as structural mechanics (e.g. elasticity), or electromag-
netics (e.g. the Maxwell equations). These PDEs are very commonly solved by Finite
Elements or Volumes, by techniques that, although becoming increasingly standard, are
still very costly when the accuracy requirement is high.

The important development of multigrid methods in recent years has demonstrated
that such techniques not only permit to accelerate the iterative convergence of solution
procedures, but also have the more general merit of a better control on grid dependency
and convergence. In fact, the linear convergence rate demonstrated in the previous section
can only be achieved by applying adequate iterative termination criteria, that is, when
the grid-convergence control is enforced properly.

With these concepts in mind, in a long-time perspective, we would like to generalize
these convergence control criteria within a functional optmization loop, such as shape
optimization in aerodynamics.

Thus, our efforts are mostly concentrated on improving the convergence rate of nu-
merical procedures both from the viewpoint of cost-efficiency and accuracy, with the
perspective of reducing the design cost, but also of mastering the election and control of
the design parameters, geometrical ones in particular, in a more rational way, perhaps
supported by error estimates.

Technically, our efforts tend to contribute to the following challenges:

• Construct multi-level (multi-scale) shape-optimization algorithms;

• Identify critical algorithmic ingredients (transfer operators, smoothers);

• Evaluate efficiency, theorize convergence via error estimates or an appropriate modal
analysis.

At INRIA, a first attempt to develop such multilevel extensions to optimum-shape
design was made by A. Dervieux and collaborators. They proposed a technique of Hi-
erarchical Smoothing [Dervieux et al. (2001)] in which the multilevel geometrical data
structure of agglomeration multigrid is exploited to define a hierarchical optimization al-
gorithm. The major concepts related to this approach are presented in Part II of these
notes.

First, in Part I, we discuss the construction of self-adaptive multilevel algorithms,
in the context of parametric shape optimization. Embedded search spaces are defined
based on a geometrical hierarchy of nested shape parameterizations of Bézier type. We
provide some details on how such multilevel geometrical representations can be used to
define multilevel algorithms for shape optimization, and how parameterization adaption
can be devised. We present some typical results related to a model problem in calculus of
variations introduced in depth in [Désidéri and Zolésio (2005)], and we refer to [Désidéri
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and Janka (2004)], [Désidéri et al. (2004)] and [Abou El Majd et al. (2005)] for examples of
applications to aerodynamics. In particular, in these publications, the so-called Free-Form
Deformation approach is used to extend our basic multilevel construction of parametric
spaces to encompass 3D deformations in a bounding box, making our approach far more
general. Second, for purpose of analysis, we present a simple conceptual model problem
for shape optimization, and illustrate the corresponding eingenmodes. This model allows
us to discuss a central issue in multilevel algorithms: smoothing.
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3 AN EXAMPLE OF MULTILEVEL & SELF-ADAPTIVE SHAPE-OPTIMIZATION
ALGORITHM

3 An example of multilevel & self-adaptive shape-

optimization algorithm

In this section, we exploit the geometrical nature of the optimization problem to devise
efficient multilevel algorithms that mimick the logical structure of the geometrical multi-
grid method, known to have ideally, for boundary-value problems, meshsize-independent
convergence rate (see e.g. [Wesseling (1992)]). To some extent, this development is not
limited to a special optimizer; however, we have in mind utilizing a steepest-descent-type
optimizer, on all levels except perhaps the coarsest, because evolutionary algorithms raise
particular questions related to population initialization at each transfer from one level to
another.

A prototype problem is the wing-shape aerodynamic optimization for a simplified
aircraft geometry. Typically the Euler equations are solved by Finite Volumes over a
three-dimensional mesh, which is a discretization of both the volumic domain, and also,
in part, the surface subject to optimization. A first remark is that these boundary points
alone are in large number in size cases. Hence, when using the coordinates of these points
as design parameters, some explicit or implicit reduction of dimension is necessary to
make the algorithm tractable. Additionally, the discrete geometrical scale necessary to a
satisfactory representation of the smooth wing geometry, such as the size of a patch in
a spline representation, may be far larger than the local geometrical scale h (local mesh
size) necessary to the flow simulation, particularly in a shocked flow. Secondly, if the
optimizer has the structure of a gradient-based method, some form of preconditioner or
regularization is necessary, because the gradient lies in a functional space of much weaker
regularity than the shape itself. We address both these requirements by the usage of
a smooth parameterization involving a moderate number of parameters, and producing
automatically smooth shapes. In the most complex cases, we employ tensorial Bézier
parameterizations of the shape deformation from an initial geometry given by a three-
dimensional unstructured grid (Free-form deformation).

Thirdly, we would like to incorporate a multilevel strategy, in the treatment of geo-
metrical parameters, mimicking the multigrid procedure, to achieve optimal convergence
rate. A solution to this requirement has been proposed by A. Dervieux et al [Dervieux
et al. (2001)] in what they referred to as “Hierarchical Smoothing” to exploit the multi-
level geometrical data structure of agglomeration MG that is applied to the distributed
solution of the Euler equations. Our approach is somewhat similar in concept, but the
realization is made via a hierarchy of nested smooth shape-deformation parameterizations
of tensorial Bézier type in a bounding box. We provide hereafter only the most relevant
features of our technique; more details can be found in [Désidéri (2003)], [Désidéri and
Janka (2004)], [Désidéri and Zolésio (2005)], [Désidéri et al. (2004)].

3.1 Shape representation, Bézier parameterization

As an example, consider the Bézier parameterization of an airfoil shape to be optimized:

P (t) =
n∑

k=0

Bk
n(t) Pk (50)
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where t ∈ [0, 1] is the curve parameter, n the polynomial degree, Bk
n(t) = Ck

n tk(1−t)n−k, a
Bernstein polynomial, and Pk = (xk, yk), a control point (k = 0, 1, ..., n). Such polynomial
representation facilitates the explicit calculation of the successive derivatives and thus the
control of contact elements.

To illustrate this, the classical RAE2822 airfoil and its superimposed curvefit are
shown on Fig. 1. This airfoil [Périaux et al. (1998)] has been widely used as a test case
for aerodynamic design in the transonic flow regime.

Figure 1: Curvefit of the upper and lower boundaries of the low-drag RAE2822 airfoil by
two Bézier curves of degree 16 (from [Désidéri (2003)]).

When the geometry to be optimized is parameterized in such a way, a self-adaptive
optimization strategy can be structured in the following steps:

1. Specify an initial “support”:

X0 = {x0
k} (k = 0, 1, ..., n) (51)

2. Optimize the “design variables”:

Y 0 = {y0
k} (k = 0, 1, ..., n) (52)

to minimize some physically-relevant functional of the distributed state calculated
in a domain Ω dependent on (X0, Y 0), such as the flow in the exterior of an airfoil;

3. Reconstruct a new support X1 better adapted in some way to the shape identified
by optimization; substitute X1 to X0, and return to Step 2. (See Subsection 3.5.)

3.2 Degree elevation

[Farin (1990)]
Multiply P (t) by (1− t) + t = 1 and group homogeneous monomials together:

P (t) =
n∑

k=0

Bk
n(t) Pk =

n+1∑
k=0

Bk
n+1(t) P ′

k (53)

where P ′
0 = P0 and P ′

n+1 = Pn, and:

P ′
k =

Ck−1
n Pk−1 + Ck

n Pk

Ck
n+1

=
k

n + 1
Pk−1 + (1− k

n + 1
) Pk (1 ≤ k ≤ n) (54)
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This basic process is illustrated on Fig. 2. Note that it preserves convexity up to the
limit n→∞ for which the control polygon converges to the Bézier curve itself. Hence a
convex control polygon defines a convex Bézier curve.

Figure 2: Degree elevation: from a Bézier curve of degree 5, and its associated control
polygon connecting the points {Pk }, a new control polygon connecting the points {P ′

k }
is drawn, yielding an alternate parameterization, of degree 6, of the same geometrical arc
(from [Désidéri (2003)]).

3.3 Nested supports and multilevel strategies

The above degree-elevation process is our building block to construct a hierarchy of
rigorously-nested search spaces for the optimizer. As an example, Fig. 3 illustrate three
nested supports of Bézier parameterizations of degree 4, 8 and 16.

COARSE LEVEL (n = 4):

INTERMEDIATE LEVEL (n = 8):

SUPPORT OF FINE-LEVEL PARAMETERIZATION (n = 16):

 3

 2

 1

 0
 4 3 2 1

’fort.81’
’fort.82’

1

Figure 3: One-dimensional embedded parameterizations: the triangles represent the sup-
ports X = {xk} (k = 0, 1, ..., n) of three nested Bézier parameterizations of degree n = 4,
8 and 16 of an RAE2822 airfoil, obtained from the first by 4 and 12 successive degree
elevations (N and H for upper and lower surface respectively) (from [Désidéri (2003)]).

3.4 Experimenting multilevel algorithms on a model problem

For purpose of numerical experimentation, we first consider the following model inverse-
shape test problem:

min J := J
(
y(t)

)
=

pα

A
(55)
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in which x(t) is given, smooth and monotone-increasing,

p =

∫ 1

0

√
x′(t)2 + y′(t)2 ω(t) dt , A =

∫ 1

0

y(t) x′(t) ω(t) dt (56)

are, for specified ω(t) > 0 and α > 1, the pseudo-length of the arc, and the pseudo-area
below the arc. Essentially all smooth unimodal graphs can be retrieved by this formulation
[Désidéri and Zolésio (2005)]. In the following experiments, algorithms are tested for the
case where the weight ω(t) and the exponent α are precisely those for which the unique
minimum is realized by the half-thickness distribution of the RAE2822 airfoil.

In these experiments, the following optimization methods are compared in terms of
iterative convergence, and accuracy:

• Basic method (single-parameterization throughout the convergence process)

• Progressive-degree elevation (from coarse to fine parameterization); analogous in
logic to the so-called “nested iteration”;

• FMOSA, “Fully Multilevel Optimum Shape Algorithm”; analogous to the Full Multi
Grid, “FMG”.

The employed FMOSA (without real optimization) has been a “saw-tooth correction
algorithm”(e.g. [Wesseling (1992)] for terminology) whose skematic is depicted in Table 3.
It involves both degree-elevation steps and (fine-to-coarse) correction steps after smoothing
on a parameterization of upper level.

Fine 4 0
(degree 10) ↗ ↘ ↑
Medium 4 0 4 4
(degree 5) ↗ ↘ ↑ ↘ ↗
Coarse 4 4 4

(degree 2)

Table 3: Skematic of the employed FMOSA saw-tooth correction algorithm.

In the classical multigrid theory, it is well-known that both types of steps (from coarse
level to fine, but also from fine level to coarse) are essential to the optimum linear con-
vergence. In the context of shape optimization algorithms, the theoretical background is
not so clearly established, to our understanding.

The relationship between accuracy and degree is assessed in Fig. 4 both in terms
of functional value at convergence and shape sensitivity. Naturally, near the optimum,
functional values are less sensitive since they are of second-order in terms of shape vari-
ations. Note that for degree n = 10, an incomplete convergence (50 iterations) results
in a degraded shape definition, thus making the choice of a high-degree parameterization
questionable, if not irrelevant.

The iterative convergence of the three methods is evaluated in Fig. 5, from which we
draw the following main conclusions:

• Both multilevel algorithms are superior to the basic method.
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Figure 4: Accuracy vs degree at convergence of standard single-parameterization algo-
rithm: achieved minimum functional value (left) and optimized shape (right); 1050 and
10200 refer to the results of 50 and 200 iterations for n = 10 (from [Désidéri et al. (2004)]).

• The progressive-degree elevation based on 3 levels in 3 times faster, as is classical
for the nested iteration.

• The fully multilevel algorithm outperforms both, being here about 6 times faster
than the basic method.

• Additionally, the experiment also demonstrates that the use of an improprer pro-
jection may cancel out the benefit of the multilevel strategy.

3.5 Self-adaptive multilevel algorithms

In our developments, the adaption phase is done as follows: among all L2-approximants
Bn(X, Y ) of the current estimate of the optimized shape Bn(X0, Y 0), determine the sup-
port X = X1 for which the control polygon is the most regular in the sense of minimal
total variation of the ordinates: TV (Y 1).

The efficiency of the adaption procedure is demonstrated on Fig. 6 from which the
following main conclusions are drawn:

• With a very low-degree parameterization (n = 3), surprisingly high accuracy can be
achieved so long as the basic optimizer is coupled with adaption.

• With a high-degree parameterization (n = 12), the basic method fails to achieve
sufficient iterative convergence to benefit from the accurate shape representation.

• Coupling a multilevel strategy with the adaption procedure results in both higher
accuracy and lower computational cost (see iteration counts indicated step by step
by figures on plot).

VKI - 19 -



3 AN EXAMPLE OF MULTILEVEL & SELF-ADAPTIVE SHAPE-OPTIMIZATION
ALGORITHM 3.5 Self-adaptive multilevel algorithms

n = 2

5 10

10

↖
 24.1

 24.15

 24.2

 24.25

 24.3

 24.35

 180  185  190  195  200  205  210  215  220  225  230

F
U

N
C

T
IO

N
A

L 
J

ITERATIONS

SINGLE PARAMETERIZATION 

n=10
n=5
n=2

�

Non-embedded

Embedded

 24

 24.2

 24.4

 24.6

 24.8

 25

 0  50  100  150  200

F
U

N
C

T
IO

N
A

L 
J

ITERATIONS

SINGLE PARAMETERIZATION 

n=10
n=5
n=2

 24

 24.2

 24.4

 24.6

 24.8

 25

 0  20  40  60  80  100

F
U

N
C

T
IO

N
A

L 
J

ITERATIONS

ALGORITHMS BASED ON PROGRESSIVE DEGREE ELEVATION

EMBEDDED PARAMETRIZATIONS (n=2->5->10)
NON EMBEDDED PARAMETRIZATIONS (n=2->5->10)

POINTS OF DEGREE ELEVATION

10

10

↖
 24.1

 24.15

 24.2

 24.25

 24.3

 24.35

 180  185  190  195  200  205  210  215  220  225  230

F
U

N
C

T
IO

N
A

L 
J

ITERATIONS

SINGLE PARAMETERIZATION 

n=10
n=5
n=2

�

 24

 24.2

 24.4

 24.6

 24.8

 25

 0  50  100  150  200

F
U

N
C

T
IO

N
A

L 
J

ITERATIONS

FULL MULTI-LEVEL ALGORITHM (FMOSA)

FMOSA (n=2->5->10)
PROGRESSIVE DEGREE ELEVATION (n=2->5->10)

SINGLE PARAMETERIZATION (n=10)

 24.1

 24.2

 24.3

 24.4

 24.5

 24.6

 0  5  10  15  20  25  30  35  40  45  50

F
U

N
C

T
IO

N
A

L 
J

ITERATIONS

FULL MULTI-LEVEL ALGORITHM (FMOSA)

FMOSA (n=2->5->10)
PROGRESSIVE DEGREE ELEVATION (n=2->5->10)

SINGLE PARAMETERIZATION (n=10)

Basic
FMOSA

↙
Progressive

Figure 5: Iterative convergence of three methods; top: standard algorithm (left) and
progressive degree-elevation (right) with proper/improper transfers; bottom: basic, pro-
gressive and FMOSA over 200 iterations (left) and 60 iterations (right) (from [Désidéri
et al. (2004)]).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.2  0.4  0.6  0.8  1

Y

X

INITIAL BEZIER PROFILE
NEW PROFILE (SUPERIMPOSED)

INITIAL CONTROL POLY. X0,Y0
NEW CONTROL POLY. X1,Y1

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  100  200  300  400  500  600

J2
=

T
V

(Y
)

ITERATIONS

J2 = TV(Y) VS ITERATIONS

.
.

.

+660+160

+540+500
↘

↗

+2 adaptions

adaptive & multilevel

basic +
adaption

(67)

basic (660)

+60

 6.25

 6.3

 6.35

 6.4

 6.45

 6.5

 6.55

 6.6

 0  2  4  6  8  10  12  14  16

F
U

N
C

T
IO

N
A

L 
J

DEGREE n

COUPLING OPTIMIZATION WITH ADAPTION

AFTER OPTIMIZATION
AFTER ADAPTION

THEORETICAL MINIMUM

 6.275

 6.28

 6.285

 6.29

 6.295

 6.3

 6.305

 0  2  4  6  8  10  12  14  16

F
U

N
C

T
IO

N
A

L 
J

DEGREE n

COUPLING OPTIMIZATION WITH ADAPTION, AND/OR MULTILEVEL STRATEGY

AFTER OPTIMIZATION
AFTER DEGREE ELEVATION

THEORETICAL MINIMUM
HIERARCHICAL STRATEGY

Figure 6: Parameterization adaption illustration; top: regularizing effect on control poly-
gon (left; polygons with/without adaption), and iterative convergence of solver (right);
bottom: accuracy vs degree: basic method and adaption (left), and adaption and hierar-
chy (right) (from [Désidéri et al. (2004)]).

VKI - 20 -



4 MODEL PROBLEM AND TWO-PARAMETERIZATION EIGENMODE
ANALYSIS

4 Model problem and two-parameterization eigen-

mode analysis

In order to demonstrate the convergence mechanism of a basic two-level algorithm, we
first set up a quadratic model reconstruction problem, and then develop an eigenmode
analysis assuming a steepest-descent-type optimizer. For a more extensive presentation,
we refer to [Désidéri (2006)].

4.1 Shape-reconstruction problem and basic two-level algorithm

We introduce the following general notations:
γ : shape to be optimized;
J(γ) : intrinsically-defined functional to be minimized;
X0 , X0′ : nested supports of Bézier parameterizations of degree n , n′ ∈ N (n′ < n);
X0 = En

n′ X
0′ ;

En
n′ : : matrix associated with the linear process of n− n′ degree elevations;

Bn(t)T = (B0
n(t), B1

n(t), ..., Bn
n(t)) : 1× (n + 1)-vector of Bernstein polynomials.

Particularizing the shape γ to be the parameterized arc of Bézier curve of degree n
and control polygon (X0, Y 0) (a ≤ t ≤ b), here denoted:

γ = [x(t), y(t)]ba = [Bn(t)T X0, Bn(t)T Y 0]ba (57)

the non-intrinsic, or parametric function to be minimized, for fixed support X = X0, is
the following:

jn(Y ) = J
(
[Bn(t)T X0, Bn(t)T Y ]10

)
, Y ∈ Rn+1 (58)

Consequently, a basic, perhaps näıve, two-level correction-type ideal algorithm can be
defined as follows, assuming the classical steepest-descent method is used as relaxation
method in the upper-level iteration:

1. Upper-level relaxation phase:
K sweeps of descent method (1 ≤ k ≤ K):

Y k = Y k−1 − ρk j′n(Y k−1) (59)

yielding approximate optimum shape associated with the design vector Y K ∈ Rn+1

(and support X0).

2. Coarse-level correction phase:
solve completely:

min
Y ′∈Rn′+1

jn

(
Y K + En

n′ Y
′) (60)

Consistently with the usual multigrid terminology, one such algorithm is said to be
a correction method because the unknown of the coarse-level iteration is defined to be a
correction vector, here Y ′, to be prolongated, here by the degre-elevation operator En

n′ , and
added to the freshest update of the unknown vector coming from the upper-level iteration,
here Y K ; thus Y ′ is a coarse approximation of a shape correction, and not directly of the
unknown shape itself. This distinction is relevant in the nonlinear case only. Besides,
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the algorithm is said to be ideal because the correction phase, when realized iteratively,
is, for purpose of analysis, assumed to be continued to full convergence. Additionally,
the above method is a saw-tooth algorithm, because the cycle is unsymmetrical, here as
a simple possibility: the cycle terminates by the coarse-level iteration, in contrast for
example, with the commonly-used V-cycle that would in the present context also include
a post-relaxation similar to (59) on the upper-level.

We further particularize the model problem to be a shape-reconstruction or shape-
inverse problem in which:

γ : y(x) ; target: ȳ(x) (61)

J(γ) :=

∫
γ

1
2
[y(x)− ȳ(x)]2 dx (62)

jn(Y ) =

∫ 1

0

1
2

[
Bn(t)T (Y − Ȳ )

]2
nBn−1(t)

T ∆X0︸ ︷︷ ︸
x0(t)′= d

dt
Bn(t)T X0

dt (63)

(Ȳ is the parameter vector associated with the target curve, here assumed, without great
loss of generality, to be a Bézier curve of degree n and support X0. The symbol ∆
represents the forward-difference operator that appears when differentiating Bernstein
polynomials.)

Since the functional is quadratic, the parametric gradient is linear (in Y ):

j′n(Y ) = A(X0)Y − b(X0, Ȳ ) (64)

where:

A(X0) =

∫ 1

0

Bn(t) Bn(t)T︸ ︷︷ ︸
(n + 1)× (n + 1)

matrix

nBn−1(t)
T ∆X0︸ ︷︷ ︸

linear form
in X0

dt

(65)

The matrix A(X0) is, of course, real-symmetric definite positive and can thus be
diagonalized by an orthogonal transformation Ωn:

A(X0) = Ωn Λn ΩT
n Λn =


λ0

λ1

. . .

λn

 (66)

The diagonal matrix Λn has real-positive eigenvalues, arranged in increasing order,

0 ≤ λ0 ≤ λ1 ≤ ... ≤ λn (67)

and the column-vectors of the orthogonal matrix Ωn are the associated eigenvectors

ΩT
n Ωn = Ωn ΩT

n = I (68)
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In the particular case of a uniform support,

x0(t)′ = nBn−1(t)
T ∆X0 ≡ 1 (69)

and the matrix A reduces to the simple form:

A =

∫ 1

0

Bn(t) Bn(t)T dt = {Aα,β} (70)

in which the coefficients {Aα,β} are obtained by a simple calculation:

Aα,β =
1

2n + 1

Cα
n Cβ

n

Cα+β
2n

(71)

4.2 Eigenvalue estimates

4.2.1 Spectral radius, ρ(A) = λmax = λn

Case of a uniform support Let U = (1, 1, ..., 1)T and V = A U , so that:

V =

∫ 1

0

Bn(t) Bn(t)T U dt (72)

But,

Bn(t)T U =
n∑

k=0

Bk
n(t) = 1 (73)

and:

Vk =

∫ 1

0

Bk
n(t) dt = Ck

n

∫ 1

0

tk (1− t)n−k dt =
1

n + 1
= λ0

n Uk (74)

which proves that the vector U is indeed an eigenvector associated with the eigenvalue
λ0

n, and second that λ0
n = ‖A‖∞ . Hence, λ0

n is also the spectral radius of A:

λ0
n =

1

n + 1
= ‖A‖∞ = ρ(A) = λ0

max (75)

Remark. The above calculation also yields the identity:

∀n , ∀α ≤ n :
n∑

β=0

Cα
n Cβ

n

Cα+β
2n

=
2n + 1

n + 1
(76)
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General support, upper bound To establish this upper bound on λmax(X) over
all admissible supports X = {xk} (k = 0, 1, ..., n) associated with monotone-increasing
sequences {xk} for which ∀t , x′(t) ≥ 0, we recall that since the matrix A(X) is real-
symmetric, definite positive, its largest eigenvalue, λmax, is equal to its induced Euclidean
norm:

λmax = ‖A(X)‖2 (77)

Therefore,

λmax = max
Y ∈Rn+1 , ‖Y ‖2=1

Y T A(X) Y = Y T
M A(X) YM (78)

for a certain normalized vector YM ∈ Rn+1 , ‖YM‖2 = 1. But:

Y T
M A(X) YM =

∫ 1

0

Y T
M Bn(t) Bn(t)T YM x′(t) dt =

∫ 1

0

(
Bn(t)T YM

)2

x′(t) dt (79)

in which the two factors in the integrand are positive; consequently:

0 ≤ Y T
M A(X) YM ≤ ‖x′‖∞

∫ 1

0

(
Bn(t)T YM

)2

dt (80)

But x′(t) = n Bn−1(t)
T ∆X, and since the sequence {xk} increases from 0 to 1 so that

0 ≤ xk − xk−1 ≤ 1, one has:

0 ≤ x′(t) ≤ n
n∑

k=1

Bk−1
n−1(t) = n (81)

and:

‖x′‖∞ ≤ n (82)

Additionally,∫ 1

0

(
Bn(t)T YM

)2

dt ≤ max
Y ∈Rn+1 , ‖Y ‖2=1

∫ 1

0

(
Bn(t)T Y

)2

dt = λmax

(
A(X0)

)
︸ ︷︷ ︸

λ0
max

=
1

n + 1
(83)

in which X0 corresponds to the case of a uniform support for which the maximum eigen-
value has been established in the previous paragraph.

Ultimately, the following upper bound holds:

ρ
(
A(X)

)
= λmax

(
A(X)

)
≤ n

n + 1
< 1 (84)

This upper bound also applies to any diagonal block of matrix A(X).
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4.2.2 Characterization of the smallest effective eigenvalue, λ1

We now restrict our attention to a parametric optimization that only has n − 1 degrees
of freedom, obtained for fixed support X, by enforcing homogeneous boundary conditions
to the function y(t). For this, the first and last components of the vector Y are set to 0
so that:

Y = F η (η ∈ Rn−1) (85)

where the (n + 1) × (n − 1) matrix F is obtained by banding the identity matrix In−1

above and below by rows of 0. In this context, the challenge is to estimate the smallest
eigenvalue λ1 of the (n− 1)× (n− 1) central diagonal block F T A F .

Let η1 ∈ Rn−1 be the eigenvector, Y1 = F η1, and y1(t) = Bn(t)T Y1 the associated
eigenfunction. Then

λ1 Y1 = A Y1 =

∫ 1

0

Bn(t) Bn(t)T Y1 x′(t) dt =

∫ 1

0

Bn(t) y1(t) x′(t) dt (86)

Multiplying by Bn(τ)T yields:

λ1 y1(τ) =

∫ 1

0

K(t, τ) y1(t) dt

K(t, τ) := Bn(τ)T Bn(t) x′(t)

(87)

By multiplying λ1 y1(τ) by y1(τ) and integrating w.r.t. τ from 0 to 1, one gets:

λ1 =

∫∫
[0,1]×[0,1]

K(t, τ) y1(τ) y1(t) dτ dt∫ 1

0
y1(τ)2 dτ

(88)

In the case of a uniform support, the above Rayleigh quotient simplifies to the follow-
ing:

λ0
1 =

∥∥∥∫ 1

0
Bn(t) y1(t) dt

∥∥∥2

2∫ 1

0
y1(t)2 dt

(89)

in which ‖ ‖2 denotes the Euclidian norm in Rn+1:∥∥∥∥∫ 1

0

Bn(t) y1(t) dt

∥∥∥∥2

2

=
n+1∑
k=0

(∫ 1

0

Bk
n(t) y1(t) dt

)2

=
n+1∑
k=0

(
y1(tk)

∫ 1

0

Bk
n(t) dt

)2

(90)

for certain intermediate values {tk}, since the mean-value theorem applies since Bk
n(t) ≥ 0.

However, only a very accurate approximation of the unknown polynomial function
y1(t), injected in (88) or (89), could yield a valuable estimate for λ1.
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4.3 Eigenmodes, frequency pairing

In the absence of an expression for the eigensystem in closed form, and for purpose of
illustration, the diagonalization of the matrix has been accomplished numerically, in the
case of homogeneous boundary conditions as in subsection 4.2.2, for which only the central
diagonal block F T A F matters, and assuming a uniform support X.

The eigenvectors of this block, associated with the fixed support X, define control
polygons that are represented on Fig. 7 in the case n− 1 = 8 of a fine parameterization,
for increasing eigenvalue λm (m = 1, 2, ..., 8). The corresponding Bézier curves are also
plotted on the same figure, but these are not normalized; the normalized Bézier curves
are shown on Fig. 8. Since the support is uniform, these Bézier curves admit simple
polynomial representations: x(t) = t, y(t) = y(x) of degree 8. From these representations,
it appears that these polynomials exhibit patterns similar to Fourier modes in terms of
sign alternations. The novelty here, in contrast with the conventional setting of multigrid
for a typical elliptic PDE, is that the matrix A which defines the algebraic system to be
solved is a form of discrete integration, instead of differential, operator. As a result, as
the eigenvalue λm increases, the apparent frequency diminishes, and this constitutes an
unusual situation.

Second, the diagonalization is made again for the embeded coarser parameterization of
degree n′ = 5. The corresponding control polygons are shown in raw form on top of Fig.
9. Applying degree-elevation four times to these polygons yields equivalent polygons,
that is defining the same Bézier curves, but associated with the fine support X; these
are shown below on the same figure, thus permitting a direct comparison with the former
fine-parameterization eigensystem. Evidently, the coarse-parameterization eigenmodes
are very close approximations to the upper-half eigenmodes of the fine parameterization
associated with the large eigenvalues, that is, the low frequencies.

Consequently, the steepest-descent method defined in (59) and viewed as a point-
Jacobi iteration with matrix A, filters out predominently the low-frequency modes. There-
fore, it cannot be considered as a smoother in the basis of the eigenvectors of matrix A.
Hence, to our understanding, the classical modal-analysis of multigrid cannot be applied
straightforwardly. The evidence of effectiveness of the multilevel strategy provided in Sec-
tion 3 should be supported differently. Instead of that, we propose, in the next section,
a new formulation for the coarse-level iteration to be compatible with this eigensystem
analysis. Before this, we provide the eigenvalue spectrum and condition number for the
case n− 1 = 8.

4.4 Numerical spectrum, condition number

The numerical spectrum of eigenvalues of the block F T A F in case n = 9 is given on
Fig. 10. It exhibits certain very small eigenvalues even though the degree n is not very
high, indicating that the condition number of the system increases very rapidly with the
degree, as confirmed by the results of Fig. 11 showing an exponential explosion. From
these data, one may question how many modes can actually be resolved by a standard
iteration, giving support to the alledgement according which only a hierarchical approach
can be effective on all the modes.
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Figure 7: Upper-level eigenmodes, m = 1, 2, ..., n − 1 = 8 : eigenvectors of the central
diagonal block F T A F arranged by increasing λm and corresponding Bézier curves.
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Figure 8: Upper-level eigenmodes, m = 1, 2, ..., n − 1 = 8 : renormalized Bézier curves
represented by the discrete eigenvectors.
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Figure 9: Lower-level eigenmodes, m = 1, 2, ..., n′ − 1 = 4 : eigenvectors of the central
diagonal block F T A F arranged by increasing λ′m and corresponding Bézier curves; top:
on the coarse-parameterization support; bottom: on the fine-parameterization support
(after degree elevation).
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5 Conclusions

In this first part, we have reviewed some previous work on multilevel parametric optimiza-
tion relying on the construction of a sequence of nested Bézier parameterizations. The
approach is indeed effective. Progressive degree-elevation algorithms have been shown by
numerical experiments to converge faster; the gain factor in convergence rate is equal to
the number of levels, as it is classical for the nested iteration. This suggests that a simple
and convenient algorithm would be to perform a few iterations with all the intermediate
degrees progressively, but this has not been tested. A saw-tooth algorithm analogous in
multilevel-structure to the Full Multi-Grid (FMG) method is even more efficient, although
it is difficult to demonstrate a form of asymptotic linear convergence since the degrees are
not large in practice. Additionally, a parametertization-adaption procedure was proposed
and shown to be very effective.

A simple shape-reconstruction model problem has been set up for purpose of analysis.
It consists of the minimization of a quadratic functional, so that the steepest-descent
algorithm utilized as the optimizer could be viewed as the classical point-Jacobi iteration
applied to a certain matrix system. The eigensystem of this matrix has been analyzed for
two nested parameterizations, permitting us to make the following observations:

1. The eigenmodes that actually are polynomials, are so-to-speak “Fourier”-like in
terms of sign alternation.

2. Lower-level eigenmodes are indeed close to the lower-frequency modes of the upper-
level eigensystem.

3. But, the pairing between the frequency and the generic eigenvalue is inverse, as it
is for an integration operator.

Recently, in [Désidéri (2006)], these observations have led us to define a new formula-
tion for the ideal two-level iteration in which the reduction of dimension, in the coarse-level
correction phase, is performed in a subspace in which the error vector is actually smooth,
as a result of the upper-level relaxation. This alternative is currently being tested.

Lastly, concerning the parameterization-adaption procedure, we note that it was orginally
defined to be a regularization procedure, effectively reducing the total variation associ-
ated with the control polygon of the Bézier representation. This makes sense a posteriori
since the eigensystem analysis has shown that the optimization phase is inversely an
anti-smoothing process.
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