Jean-Antoine Désidéri

Foreword

Context

C. Multi-Objective

Engineering
Introduction: the classical Parete

front approach and alternatives

A challenging e

Hierarchical territory splitting

Applications

Applications

Summary an

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

HIERARCHICAL SHAPE OPTIMIZATION:

Cooperation and Competition in Multi-Disciplinary Approaches

Jean-Antoine Désidéri

INRIA Project-Team OPALE Sophia Antipolis Méditerranée Center (France)

http://www-sop.inria.fr/opale

Ecole d'été de mécanique des fluides, Karlsruhe Institute of Technology, Université franco-allemande, Bad Herrenalb, 6-10 Septembre 2010

Jean-Antoine Désidéri

oreword

Context

ierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

A challenging exercise

i noraromour te

An a discipling optimization strate

Outline

1 Foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineerin Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

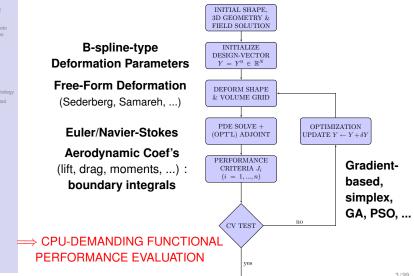
General conclusion

Jean-Antoine Désidéri

Context

PDE-Constrained Optimization

Example of CAD-free Optimum-Shape Design in Aerodynamics



Jean-Antoine Désidéri

Foreword

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

Hierarchical territory splits

Applications

Summary and perspective

An n-discipline optimization strategy

The two discipline case revisited

General conclusion

Outline

foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An *n*-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

oreword

Hierarchical principles

IX. Multi-Objective
Optimization, Concurren

Introduction: the classical Pareto

Nash games

Hiorarchical torritory colitt

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Hierarchical principles used in numerical shape optimization

Hierarchical Physical Models of High and Low Fidelity

- Simplified Physics
- Statistical Models :
 - state : Proper Orthogonal Decomposition (POD)
 - functional metamodels : surface response, Kriging, ANN, etc
- → ANN used in present applications, but not described here

Hierarchical Geometrical Representations

Multilevel algorithms at the stage of analysis (multigrid) or optimization (hierarchical smoothing, one-shot, multilevel parameterization, etc)

---- One slide prepared

Hierarchical Treatment of Multi-Disciplinary Optimization

Cooperation and Competition (Nash Games)

--- The focus of this talk

Jean-Antoine Désidéri

oreword

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

isn games

Hierarchical territory splitt

Applications

Summary and perspective

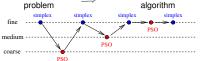
An n-discipline optimization strategy

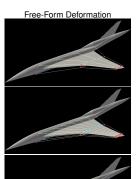
The two-discipline case revisited

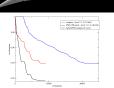
General conclusion

Multilevel shape optimization

- Basic validation of concept¹
- Analysis of algebraic model²
- Size experiments in compressible aerodynamics^{3,4}
- Parameterization self-adaption procedures⁵
- Multilevel shape optimization of antennas⁶
- Stochastic/deterministic Hybridization⁷
- Software: FAMOSA platform + Scilab toolbox
- Participation in two European short courses on optimization (ERCOFTAC, Von Karman Institute)
- Invited conference at the German Aerospace Lab (DLR Braunschweig)
- On-going: extension to algebraic hierarchical basis
- J. Computational Physics, 2007
- 2 Advances in Numerical Mathematics, 2006
- 3 B. Abou El Majd's Doctoral Thesis, 2007
- 4 European J. of Computational Mechanics, 2008
- European Series in Applied and Industrial Mathematics, 2007
 B. Chaigne's Doctoral Thesis, 2009
- Optimisation Multidisplinaire en Mécanique. Hermès, 2009
- stiff + multimodal \implies multilevel + hybrid + parallel







Jean-Antoine Désidéri

Foreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto front approach and alternatives

lash games

A challenging e

i nerarcincar territory spi

rippiioutions

Summary and perspectiv

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Outline

1 Foreword
Context
Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering Introduction: the classical Pareto front approach and alternatives

Nash games
A challenging exercise
Hierarchical territory splitting
Applications
Summary and perspectives
An *n*-discipline optimization strategy
The two-discipline case revisited
General conclusion

Jean-Antoine Désidéri

oreword

Hiorarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Vash games

Hierarchical territory enlitti

A . . P . . P . . .

An a-discipline optimization strategy

All rediscipline optimization strategy

The two-discipline case

Multi-objective optimization

Examples in aerodynamic design in Aeronautics

- Criteria are usually **field functionals**, thus costly-to-evaluate
 - Multi-criterion (single-flow conditions)
 - e.g. lift and moments (stability/maneuverability)
 - Multi-point (several flow conditions) e.g.:
 - drag reduction at several cruise conditions (towards "robust design"), or
 - lift maximization at take-off or landing conditions, drag reduction at cruise
 - Multi-discipline (Aerodynamics + others)
 e.g. aerodynamic performance versus criteria related to: structural design, acoustics, thermal loads, etc
 - Special case: 'preponderant' or 'fragile' discipline
- Objective: devise cost-efficient algorithms to determine appropriate trade-offs between concurrent minimization problems associated with the criteria J_A, J_B, ...

Jean-Antoine Désidéri

Foreword

Uinemedical asiasial

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash game:

Hierarchical territory spl

Applications

Summary and perspecti

An n-discipline optimization strated

The two discipline case revisited

General conclusio

Notion of dominance/non-dominance

for minimization problems

Let $Y \in \mathbb{R}^N$ denote the vector of design variables.

If several minimization problems are to be considered concurrently, a design point Y^1 is said to dominate in efficiency the design point Y^2 , symbolically

$$Y^1 \succ Y^2$$

iff, for all the criteria to be minimized $J = J_A$, J_B , ...

$$J\left(Y^{1}\right) \leq J\left(Y^{2}\right)$$

and at least one of these inequalities is strict.

Otherwise: non-dominance \iff $Y^1 \not\succ Y^2$ and $Y^2 \not\succ Y^1$

Jean-Antoine Désidéri

oreword

Hiorarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

Hierarchical territory splitti

Applications

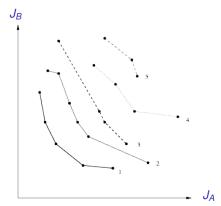
T----------

General conclusio

Pareto fronts

GA's relying on fitness function related to front index

- NPGA: Niched Pareto Genetic Algorithm, Goldberg et al, 1994
- NSGA: Nondominated Sorting Genetic Algorithm, Srinivas & Deb, 1994
- MOGA: Multiobjective Genetic Algorithm, Fonseca et al, 1998
- SPEA: Strength Pareto Evolutionary Algorithm, Zitzler et al, 1999



Jean-Antoine Désidéri

oreword

Uinenshinal asianiala

IX. Multi-Objective

Introduction: the classical Pareto front approach and alternatives

Nash games

Analiantinas

Applications

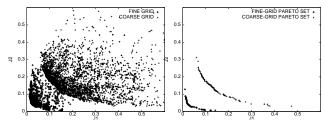
An n-discipline optimiz

The two-discipline case revisited

General conclusion

Example of airfoil shape concurrent optimization

 J_A : transonic- cruise pressure drag (minimization); J_B : subsonic take-off or landing lift (maximization); Euler equations; Marco *et al*, INRIA RR 3686 (1999).



Accumulated populations and Pareto sets (independent simulations on a coarse and a fine meshes)

https://hal.inria.fr/inria-00072983

Jean-Antoine Désidéri

oreword

...

X. Multi-Objective

Introduction: the classical Pareto

front approach and alternatives

Nash games

Hierarchical territory splitting

Annlications

Summary and parenactive

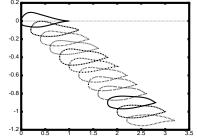
An n-discipline optimization strate

The two-discipline case revisited

General conclusio

Airfoil shapes of Pareto-equilibrium front

Non-dominated designs



transonic low-drag

Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

Hierarchical territory split

Summary and parapartises

An n-discipline optimization strate

The two-discipline case revisited

General conclusion

Numerical efficiency

Principal merits

- Very rich unbiased information provided to designer
- Very general: applies to non-convex, or discontinuous Pareto-equilibrium fronts
- Main disadvantages
 - Incomplete sorting (decision still to be made)
 - Very costly

Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash game

I linearchinal territory selist

merarchical territory splitt

rippilottions

A. . dissisting antiquination strate.

The two discipline case revisited

General conclusion

Alternatives to costly Pareto-front identification

1. Agglomerated criterion

Minimize agglomerated criterion

$$J = \alpha J_A + \beta J_B + ...$$

for some appropriate constants $\alpha,\,\beta,\,...$

$$[\alpha] \sim [J_A]^{-1}, \quad [\beta] \sim [J_B]^{-1}$$

Unphysical, arbitrary, lacks of generality, ...

Similar alternative:

• First, solve *n* independent single-objective minimizations :

$$J^* = \min J$$
 for $J = J_{\Delta}, J_{B}, ...$

 Second, solve the following multi-constrained single-objective minimization problem:

min
$$T$$
 subject to : $J_A \leq J_A^* + \alpha T$, $J_B \leq J_B^* + \beta T$, ...

Jean-Antoine Désidéri

oreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challengin

Hierarchical territory splitting

Applications

Summary and perspective

An n-discipline optimization strategy

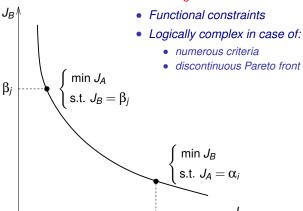
The true dissiplies were revisited

General conclusion

Alternatives (cont'd)

2. Pointwise determination of Pareto front

Shortcomings:



 α_i

Jean-Antoine Désidéri

Foreword

I Conton

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

Hierarchical territory splitt

Applications

Summary and perspective

An n-discipline optimization strate

The two-discipline case revisited

General conclusion

Alternatives (cont'd)

3. Multi-level modeling, METAMODELS

- For each discipline A, B, ..., consider a hierarchy of models and corresponding criteria based on a METAMODEL (POD, ANN, Kriging, surface response, interpolation, ...);
- Devise a multi-level strategy for multi-objective optimization in which complexity is gradually introduced.

This is the strategy adopted in the *« OMD » Network on Multi-Disciplinary Optimization* supported by the French ANR.

See also: web site of Prof. K. Giannakoglou for acceleration techniques using parallel computing:

http://velos0.ltt.mech.ntua.gr/research/

Jean-Antoine Désidéri

Introduction: the classical Pareto front approach and alternatives

Hierarchical territory splitting

The two-discipline case revisited

Alternatives (end)

4. Game strategies

Symmetrical game:

Nash

 Unsymmetrical or hierarchical game: Stackelberg (leader-follower)

Jean-Antoine Désidéri

oreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Paret front approach and alternatives

Nash games

Hierarchical territory splitt

Common and assessed

An n-discipline optimization strateg

General conclusion

Outline

foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise
Hierarchical territory splitting
Applications
Summary and perspectives

An *n*-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

oreword

Uissasshinal saissial

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

I linearchine Lauritan and the

Annlications

Summary and norenectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Nash games involving primitive variables

Prototype example of equilibrium between two criteria

• Split the design vector *Y* into two sub-vectors:

$$Y = (Y_A, Y_B)$$

and use them as the *strategies* of two independent *players A* and *B* in charge of minimizing the criteria J_A and J_B respectively.

• Seek an equilibrium point $\overline{Y} = (\overline{Y}_A, \overline{Y}_B)$ such that:

$$\overline{\mathbf{Y}}_{\mathbf{A}} = \operatorname{Argmin}_{\mathbf{Y}_{\mathbf{A}}} \mathbf{J}_{\mathbf{A}} \left(\mathbf{Y}_{\mathbf{A}}, \overline{\mathbf{Y}}_{\mathbf{B}} \right)$$

and

$$\overline{Y}_B = \operatorname{Argmin}_{Y_B} J_B (\overline{Y}_A, Y_B)$$

... many examples in market or social negociations.

Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto

Nash games

Hierarchical territory splir

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Possible parallel algorithm implementation

Often requires under-relaxation to converge

Initialize both sub-vectors:

$$Y_A := Y_A^{(0)} \qquad Y_B := Y_B^{(0)}$$

- 2 Perform in parallel:
- **Retrieve** and maintain fixed $Y_B = Y_B^{(0)}$
- Update Y_A alone

by K_A design cycles to minimize or reduce $J_A\left(Y_A, Y_B^{(0)}\right)$; obtain $Y_A^{(K_A)}$.

by K_B design cycles to minimize or reduce $J_B\left(Y_A^{(0)}, Y_B\right)$; obtain $Y_B^{(K_B)}$.

3 Update sub-vectors to prepare information exchange

$$Y_A^{(0)} := Y_A^{(K_A)} \qquad Y_B^{(0)} := Y_B^{(K_B)}$$

and return to step 2 or stop (if convergence achieved).

Jean-Antoine Désidéri

oreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto

Nash games

i iletatoriteat territory of

Applications

Summary and perspectives

An n-discipline optimization strateg

General conclusion

Invariance of Nash equilibrium

through arbitrary scaling laws

Let Φ and Ψ be smooth, strictly monotone-increasing functions.

The Nash equilibrium point $(\overline{Y}_A, \overline{Y}_B)$ associated with the formulation:

$$\overline{Y}_{A} = \operatorname{Argmin}_{Y_{A}} \Phi \left[J_{A} \left(\underline{Y}_{A}, \overline{Y}_{B} \right) \right]$$

and

$$\overline{Y}_{B} = \operatorname{Argmin}_{Y_{B}} \Psi \Big[J_{B} \left(\overline{Y}_{A}, Y_{B} \right) \Big]$$

does not depend on Φ or Ψ .

The <u>split of territories</u>, $Y = (Y_A, Y_B)$, is therefore the <u>sole critical element</u> in a Nash game.

Jean-Antoine Désidéri

oreword

Contaxt

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareti front approach and alternatives

Nash games

A shellanning assession

Hierarchical

Applications

Summary and a

An n-discipline optimization strategy

General conclusi

My basic problematics

Given smooth criteria $J_A(Y)$, $J_B(Y)$, ... $(Y \in \mathbb{R}^N)$ and exact or approximate information on gradients and Hessians, determine an appropriate split of design variables Y to realize a multi-criterion optimization via a sensible Nash game.

Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto

Nash games

Hierarchical territory solitt

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Example of equilibrium with physically-relevant split

From Tang-Désidéri-Périaux, J. Optimization Theory and Applications (JOTA, Vol. 135, No. 1, October 2007)

Shape parameterization:

Hicks-Henne basis functions

Lift-Control (C_L) in Subsonic conditions (1st design point)

Drag-Control (C_D) in Transonic conditions (2nd design point)

$$\min_{\Gamma_1} J_A = \int_{\Gamma_C} (p - p_{Sub})^2 \quad \min_{\Gamma_2} J_B = \int_{\Gamma_C} (p - p_{trans})^2$$

Exchange of information every 5 +10 parallel design iterations

Jean-Antoine Désidéri

oreword

Hiorarchical principles

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

15-----

Hierarchical territory splitti

Applications

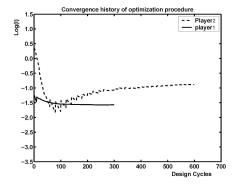
Summary and perspectives

An n-discipline optimization strateg

i ne two-discipline case revisited

General conclusion

Convergence of the two criteria towards the Nash equilibrium



Jean-Antoine Désidéri

oreword

COMON

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto

Nash games

Hierarchical territory splitting

Summary and norenactives

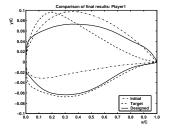
An n-discipline optimization strategy

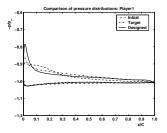
The two-discipline case revisited

General conclusion

Shapes and pressure distribution at 1st design point

Subsonic flow





Jean-Antoine Désidéri

oreword

Hiorarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

Hierarchical territory splitting

Innlications

Summary and perspectives

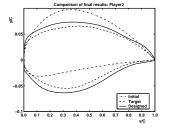
An n-discipline optimization strategy

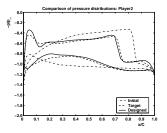
The two-discipline case revisited

General conclusio

Shapes and pressure distribution at 2nd design point

Transonic flow





Jean-Antoine Désidéri

Foreword

Hierarchical principles

IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

Hierarchical territory split

Applications

Summary and perspective

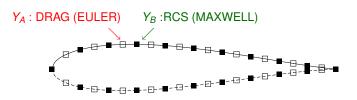
An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Another type of territory split

for multi-disciplinary optimization; from H.Q. Chen-Périaux-Désidéri



Two players A and B, controling Y_A (\blacksquare) and Y_B (\square) respectively, optimize their own criterion J_A (e.g. DRAG) or J_B (e.g. RCS), and exchange information at regular intervals.

Geometrical regularity is maintained.

Jean-Antoine Désidéri

oreword

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

Hiorarchical torritory enlitt

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Computational efficiency

Principal merits

- Also fairly general (no penalty constants to choose)
- Applicable to optimization algorithms of all types (deterministic/evolutionary) and their combinations
- Much more economical

Shortcomings

- Relation to Pareto-equilibrium front seldomly clear
- Defining territories pertinently raises fundamental questions

Jean-Antoine Désidéri

oreword

Context

lierarchical principle

IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pare front approach and alternatives

A challenging exercise

Hierarchical territory s

Applications

Summary and perspectives

An n-discipline optimization strateg

The two discipline case revisited

General conclusio

Outline

foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Application

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives Nash games

A challenging exercise

Hierarchical territory spl

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusio

A difficult two-discipline wing shape optimization

Jeux dynamiques en optimisation couplée fluide-structure. In: Abou El Majd, Doctoral Thesis, University of Nice-Sophia Antipolis, September 2007.

$$Y = (Y_A, Y_S) \in \mathbb{R}^N$$

• **Aerodynamics** – $\min_{Y_A} J_A$:

$$J_A = \frac{C_D}{C_{D_0}} + 10^4 \max\left(0, 1 - \frac{C_L}{C_{L_0}}\right)$$

• Structural design – $\min_{Y_S} J_S$:

$$J_{\mathcal{S}} = \iint_{\mathcal{S}} \left\| \sigma.n \right\| dS + K_{1} \max \left(0, 1 - \frac{V}{V_{\mathcal{A}}} \right) + K_{2} \max \left(0, \frac{S}{S_{\mathcal{A}}} - 1 \right)$$

stress σ calculated by EDF code *ASTER*; S_A and V_A wing surface and volume after aerodynamic optimization

Jean-Antoine Désidéri

oreword

IX. Multi-Objective Optimization, Concurrent

Introduction: the classical Parett front approach and alternatives

A challenging exercise

Hierarchical territory spl

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusio

A trial splitting strategy using primitive variables

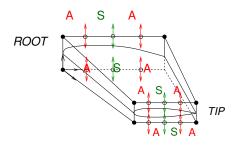
A total of 12 degrees of freedom $(4 \times 1 \times 1)$

Alternating split of root and tip parameters

Structural territory:

4 vertical displacements of mid-control-points of upper and lower surfaces, $\textit{Y}_{\textit{S}} \in \mathbb{R}^4$

Aerodynamic territory: 8 remaining vertical displacements, $Y_A \in \mathbb{R}^8$



Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective Optimization, Concurrent

Introduction: the classical Parfront approach and alternative

Nash games

A challenging exercise

Hierarchical territory splitti

Applications

Summary and perspectives

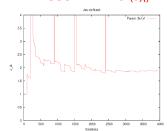
An n-discipline optimization strategy

The two-discipline case revisited

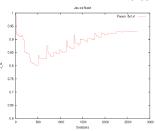
Convergence of the two criteria (simplex iterations)

Asymptotic Nash equilibrium

PRESSURE DRAG (J_A)



STRESS INTEGRAL (J_S)



Very antagonistic coupling

Jean-Antoine Désidéri

oreword

Context

V Multi Objective

Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

A challenging exercise

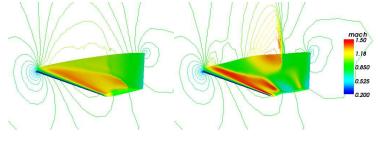
A

ripprioutions

711 // Gloupine optimization strategy

General conclusion

Aerodynamic optimum shape and shape resulting from inappropriate Nash equilibrium



Aerodynamics optimized alone

Unacceptable coupling

Jean-Antoine Désidéri

oreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

A challenging e

Hierarchical territory splitting

Applications

An a discipling optimization strate

The two-discipline case revisited

General conclusion

Outline

1 Foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

Foreword

Context

K. Multi-Objective

Introduction: the classical Pareti front approach and alternatives

Nash games

A challenging ex

Hierarchical territory splitting

Applications

Summary and perspectives

General conclusion

Recommended Eigensplitting

Split of Territories in Concurrent Optimization, J.A.D., INRIA Research Report 6108, 2007; https://hal.inria.fr/inria-00127194

(1) First Phase : optimize primary discipline (A) alone

$$\min_{Y\in\mathbb{R}^N}J_A(Y)$$

subject to *K* equality constraints:

$$g(Y) = (g_1, g_2, ..., g_K)^T = 0$$

Get:

- 1 Single-discipline optimal design vector : Y_A^*
- 2 Hessian matrix (primary discipline) : $H_A^* = H_A(Y_A^*)$
- 3 Active constraint gradients : $\nabla g_k^* = \nabla g_k(Y_A^*)$ (k = 1, 2, ..., K)

Introduction: the classical Pare front approach and alternatives

ivasii gailles

Hierarchical territory splitting

Annlications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Eigensplitting - cont'd

(2) Construct orthogonal basis in preparation of split

1 Transform $\{\nabla g_k^*\}$ into $\{\omega^k\}$ (k=1,2,...,K) by Gram-Schmidt orthogonalization process, and form the projection matrix :

$$\textit{P} = \textit{I} - \left\lceil \omega^1 \right\rceil \left\lceil \omega^1 \right\rceil^t - \left\lceil \omega^2 \right\rceil \left\lceil \omega^2 \right\rceil^t - \dots - \left\lceil \omega^K \right\rceil \left\lceil \omega^K \right\rceil^t$$

2 Restrict Hessian matrix to subspace tangent to constraint surfaces:

$$H_A' = P H_A^* P$$

3 Diagonnalize matrix H'_A ,

$$H'_A = \Omega \operatorname{Diag}(h'_k) \Omega^t$$

using an appropriate ordering of the eigendirections:

$$h'_1 = h'_2 = ... = h'_K = 0$$
; $h'_{K+1} \ge h'_{K+2} \ge ... \ge h'_N$

Tail column-vectors of matrix Ω correspond to directions of least sensitivity of primary criterion J_A subject to constraints.

Jean-Antoine Désidéri

Foreword

Hiorarchical principal

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Paret front approach and alternatives

A challenging ev

Hierarchical territory splitting

Applications

C....................................

An n-discipline optimization strateg

The hor discipline area socialized

General conclusi

Eigensplitting - end

(3) Organize the Nash game in the eigenvector-basis Ω

Consider the splitting of parameters defined by:

$$Y = Y_A^* + \Omega \begin{pmatrix} U \\ V \end{pmatrix}, U = \begin{pmatrix} u_1 \\ \vdots \\ u_{N-p} \end{pmatrix}, V = \begin{pmatrix} v_p \\ \vdots \\ v_1 \end{pmatrix}$$
 (1)

Let ϵ be a small positive parameter (0 \leq ϵ \leq 1), and let \overline{Y}_{ϵ} denote the Nash equilibrium point associated with the concurrent optimization problem:

in which again the constraint g = 0 is not considered when K = 0, and

$$J_{AB} := \frac{J_A}{J_A^*} + \varepsilon \left(\theta \frac{J_B}{J_B^*} - \frac{J_A}{J_A^*} \right) \tag{3}$$

where θ is a strictly-positive relaxation parameter ($\theta < 1$: under-relaxation; $\theta > 1$: over-relaxation).

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principle

IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Paret front approach and alternatives

Nash games

A challenging exer

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

General conclusion

General conclusi

Theorem; setting 1.

Split of Territories in Concurrent Optimization, J.A.D.,
INRIA Research Report 6108, 2007;
https://hal.inria.fr/inria-00127194

Let *N*, *p* and *K* be positive integers such that:

$$1 \le p < N, \quad 0 \le K < N - p \tag{4}$$

Let J_A , J_B and, if $K \ge 1$, $\{g_k\}$ $(1 \le k \le K)$ be K + 2 smooth real-valued functions of the vector $Y \in \mathbb{R}^N$. Assume that J_A and J_B are positive, and consider the following primary optimization problem.

$$\min_{Y \in \mathbb{R}^N} J_A(Y) \tag{5}$$

that is either unconstrained (K = 0), or subject to the following K equality constraints:

$$g(Y) = (g_1, g_2, ..., g_K)^T = 0$$
 (6)

Assume that the above minimization problem admits a local or global solution at a point $Y_A^* \in \mathbb{R}^N$ at which $J_A^* = J_A(Y_A^*) > 0$ and $J_B^* = J_B(Y_A^*) > 0$, and let H_A^* denote the Hessian matrix of the criterion J_A at $Y = Y_A^*$.

If K = 0, let P = I and $H'_A = H^*_A$; otherwise, assume that the constraint gradients, $\{\nabla g^*_K\}$ (1 $\leq k \leq K$), are linearly independent.

Jean-Antoine Désidéri

oreword

Context

Hierarchical principle

IX. Multi-Objective Optimization, Concurren Engineering

Introduction: the classical Pare front approach and alternatives

A challenging exercis

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Theorem; setting 2.

Apply the Gram-Schmidt orthogonalization process to the constraint gradients, and let $\{\omega^k\}$ $(1 \le k \le K)$ be the resulting orthonormal vectors. Let P be the matrix associated with the projection operator onto the K-dimensional subspace tangent to the hyper-surfaces $g_k = 0$ $(1 \le k \le K)$ at $Y = Y_A^*$,

$$P = I - \left[\omega^{1}\right] \left[\omega^{1}\right]^{t} - \left[\omega^{2}\right] \left[\omega^{2}\right]^{t} - \dots - \left[\omega^{K}\right] \left[\omega^{K}\right]^{t} \tag{7}$$

Consider the following real-symmetric matrix:

$$H_A' = P H_A^* P \tag{8}$$

Let Ω be an orthogonal matrix whose column-vectors are normalized eigenvectors of the matrix H_A' organized in such a way that the first K are precisely $\{\omega^k\}$ ($1 \le k \le K$), and the subsequent N-K are arranged by decreasing order of the eigenvalue

$$H'_{k} = \omega^{k} \cdot H'_{A} \omega^{k} = \omega^{k} \cdot H^{*}_{A} \omega^{k} \quad (K+1 \le k \le N)$$
 (9)

Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

A criallerightig exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Theorem; setting 3.

Consider the splitting of parameters defined by:

$$Y = Y_A^* + \Omega \begin{pmatrix} U \\ V \end{pmatrix}, U = \begin{pmatrix} u_1 \\ \vdots \\ u_{N-p} \end{pmatrix}, V = \begin{pmatrix} v_p \\ \vdots \\ v_1 \end{pmatrix}$$
 (10)

Let ϵ be a small positive parameter (0 \leq ϵ \leq 1), and let \overline{Y}_{ϵ} denote the Nash equilibrium point associated with the concurrent optimization problem:

$$\begin{cases} \min\limits_{U\in\mathbb{R}^{N-p}} J_{\mathsf{A}} \\ \text{Subject to: } g = 0 \end{cases} \quad \text{and} \quad \begin{cases} \min\limits_{V\in\mathbb{R}^p} J_{\mathsf{A}B} \\ \text{Subject to: } no \ constraints \end{cases}$$

in which again the constraint q=0 is not considered when K=0, and

$$J_{AB} := \frac{J_A}{J_A^*} + \varepsilon \left(\theta \frac{J_B}{J_B^*} - \frac{J_A}{J_A^*} \right) \tag{12}$$

where θ is a strictly-positive relaxation parameter ($\theta < 1$: under-relaxation; $\theta > 1$: over-relaxation).

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principle:

IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareti front approach and alternatives

readii gained

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Theorem: conclusions 1.

Then:

[Optimality of orthogonal decomposition] If the matrix H'_A is positive semi-definite, which is
the case in particular if the primary problem is unconstrained (K = 0), or if it is subject to
linear equality constraints, its eigenvalues have the following structure:

$$h'_1 = h'_2 = ... = h'_K = 0$$
 $h'_{K+1} \ge h'_{K+2} \ge ... \ge h'_N \ge 0$ (13)

and the tail associated eigenvectors $\{\omega^k\}$ $(K+1 \le k \le N)$ have the following variational characterization:

$$\begin{array}{lll} \boldsymbol{\omega}^{N} & = \operatorname{Argmin}_{\boldsymbol{\omega}} \left[\boldsymbol{\omega}.H_{A}^{*}\boldsymbol{\omega}\right] & \text{s.t. } \|\boldsymbol{\omega}\| = 1 \text{ and } \boldsymbol{\omega} \perp \left\{\boldsymbol{\omega}^{1},\boldsymbol{\omega}^{2},...,\boldsymbol{\omega}^{K}\right\} \\ \boldsymbol{\omega}^{N-1} & = \operatorname{Argmin}_{\boldsymbol{\omega}} \left[\boldsymbol{\omega}.H_{A}^{*}\boldsymbol{\omega}\right] & \text{s.t. } \|\boldsymbol{\omega}\| = 1 \text{ and } \boldsymbol{\omega} \perp \left\{\boldsymbol{\omega}^{1},\boldsymbol{\omega}^{2},...,\boldsymbol{\omega}^{K},\boldsymbol{\omega}^{N}\right\} \\ \boldsymbol{\omega}^{N-2} & = \operatorname{Argmin}_{\boldsymbol{\omega}} \left[\boldsymbol{\omega}.H_{A}^{*}\boldsymbol{\omega}\right] & \text{s.t. } \|\boldsymbol{\omega}\| = 1 \text{ and } \boldsymbol{\omega} \perp \left\{\boldsymbol{\omega}^{1},\boldsymbol{\omega}^{2},...,\boldsymbol{\omega}^{K},\boldsymbol{\omega}^{N},\boldsymbol{\omega}^{N-1}\right\} \\ \vdots & \vdots & \\ \boldsymbol{(14)} \end{array}$$

41/99

Jean-Antoine Désidéri

oreword

Context

Hierarchical principle

IX. Multi-Objective Optimization, Concurrent Engineering

front approach a

Nasn games

71 ontailonging oxoroise

Hierarchical territory splitting

Applications

An a discipling optimization stratogy

All rediscipline optimization strategy

The two-discipline case revisited

General conclusio

Theorem; conclusions 2 (cont'd).

[Preservation of optimum point as a Nash equilibrium] For ε = 0, a Nash equilibrium point
exists and it is:

$$\overline{Y}_0 = Y_A^* \tag{15}$$

• [Robustness of original design] If the Nash equilibrium point exists for $\varepsilon > 0$ and sufficiently small, and if it depends smoothly on this parameter, the functions:

$$j_{A}(\varepsilon) = J_{A}(\overline{Y}_{\varepsilon}), \quad j_{AB}(\varepsilon) = J_{AB}(\overline{Y}_{\varepsilon})$$
 (16)

are such that:

$$j_A'(0) = 0 \tag{17}$$

$$j'_{AB}(0) = \theta - 1 \le 0 \tag{18}$$

and

$$j_A(\varepsilon) = J_A^* + O(\varepsilon^2) \tag{19}$$

$$j_{AB}(\varepsilon) = 1 + (\theta - 1)\varepsilon + O(\varepsilon^2)$$
 (20)

Jean-Antoine Désidéri

Foreword

...

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pare front approach and alternative

Nash games

A challenging exerci

Hierarchical territory splitting

Applications

An a discipling optimization of

The two-discipline case revisite

General conclusion

Theorem; conclusions 3 (end).

In case of linear equality constraints, the Nash equilibrium point satisfies identically:

$$u_k(\varepsilon) = 0 \quad (1 \le k \le K)$$
 (21)

$$\overline{Y}_{\varepsilon} = Y_{A}^{*} + \sum_{k=K+1}^{N-p} u_{k}(\varepsilon) \omega^{k} + \sum_{j=1}^{p} v_{j}(\varepsilon) \omega^{N+1-j}$$
(22)

• For K = 1 and p = N - 1, the Nash equilibrium point $\overline{Y}_{\varepsilon}$ is Pareto optimal.

Jean-Antoine Désidéri

Foreword

Contaxt

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pa

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strate

The two-discipline case revisited

General conclusion

Proof; (1)

• Optimality of initial point (Y_A^*) :

$$\begin{split} \nabla J_A^* + \sum_{k=1}^K \, \lambda_k \, \nabla g_k^* &= 0 \,, \quad g = 0 \\ \Longrightarrow \nabla J_A^* \in \mathcal{Sp}\left(\omega^1 \,,\, \omega^2 \,,...,\, \omega^K \right) \text{(Gram-Schmidt)} \end{split}$$

• For $\varepsilon = 0$:

$$J_A = J$$
, $J_{AB} = \frac{J_A}{J_A^*} = \text{const.} \times J$, $\nabla J_{AB} = \frac{J_A}{J_A^*} = \text{const.} \times \nabla J$

Jean-Antoine Désidéri

oreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Par

Nash games

A challenging exercise

Hierarchical territory splitting

Ameliantinas

Applications

Cummary or

An n-discipline optimization strategy

The true discipline case contained

General conclusion

Proof; (2)

 Optimality of sub-vector U w.r.t. criterion J_A = J for fixed V and under equality constraints:

$$\left(\frac{\partial J}{\partial U}\right)_{V} = \nabla J \cdot \left(\frac{\partial Y}{\partial U}\right)_{V} = -\sum_{k=0}^{K} \lambda_{k} \nabla g_{k}^{*} \cdot \left(\frac{\partial Y}{\partial U}\right)_{V}$$
$$= -\sum_{k=0}^{K} \lambda_{k} \left(\frac{\partial g_{k}^{*}}{\partial U}\right)_{V}$$
$$\Longrightarrow \left(\frac{\partial}{\partial U}\right)_{V} \left(J + \sum_{k=0}^{K} \lambda_{k} g_{k}\right) = 0 \text{ and } g = 0$$

Jean-Antoine Désidéri

oreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto front approach and alternatives

Nasn games

IP----Pi--II---A-----PiP-

Hierarchical territory splitting

Applications

Summary and perspectives

An indiscipline optimization strategy

General conclusion

Proof; (3)

Optimality of sub-vector V w.r.t. criterion J_{AB} ∼ J for fixed U:

$$Y = \frac{Y_A^*}{\Lambda} + \Omega \left(\begin{array}{c} U \\ V \end{array} \right)$$

$$\left(\frac{\partial J}{\partial V}\right)_{U} = \nabla J \cdot \left(\frac{\partial Y}{\partial V}\right)_{U} = \nabla J \cdot \underbrace{\Omega \left(\begin{array}{cc} 0 & 0 \\ 0 & l_{p} \end{array}\right)} = 0$$

$$\in \mathcal{S}\!\rho\left(\omega^{N-p+1},...,\omega^{N}\right)$$

provided K < N - p + 1.

 $\implies Y_A^* = \overline{Y}_0$ (initial Nash equilibrium point)

 \implies Continuum of equilibrium points parameterized by ε

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective Optimization, Concurren Engineering

Introduction: the classical Pa

Nash games

A challenging exercis

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline cas

General conclusion

Proof; (4)

Case of linear equality constraints

• Linearly-independent constraint gradient vectors $\{L_k = \nabla g_k^*\}$ $(1 \le k \le K)$ (otherwise reduce K):

$$g_k = L_k \cdot Y - b_k = L_k \cdot (Y - Y_A^*) = 0 \quad (1 \le k \le K)$$

Continuum of Nash equilibrium points parameterized by ε:

$$\overline{Y}_{\varepsilon} = Y_A^* + \sum_{j=1}^{N-\rho} u_j(\varepsilon) \omega^j + \sum_{j=1}^{\rho} v_j(\varepsilon) \omega^{N+1-j}$$

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principle

IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

A shellensine sussei

A challenging exerc

Hierarchical territory splitting

Applications

General conclusio

Proof; (5)

Case of linear equality constraints (end)

• By orthogonality of the eigenvectors, and since $L_k = \nabla g_k^* \in Sp(\omega^1,...,\omega^K)$, the equality constraints,

$$< L_k, \sum_{j=1}^{N-\rho} u_j(\varepsilon) \omega^j + \sum_{j=1}^{\rho} v_j(\varepsilon) \omega^{N+1-j} > = 0 \quad (1 \le k \le K)$$

simplify to:

$$< L_k, \sum_{j=1}^K u_j(\varepsilon) \omega^j > = 0 \quad (1 \le k \le K)$$

and this is an invertible homogeneous linear system of K equations for the K unknowns $\{u_j(\varepsilon)\}$ $(1 \le j \le K)$.

$$\Longrightarrow u_1(\varepsilon) = u_2(\varepsilon) = \dots = u_K(\varepsilon) = 0, \ \overline{Y}_{\varepsilon} - Y_A^* \perp \nabla J_A^*, \ j_A'(0) = 0 \quad \square$$

Jean-Antoine Désidéri

Foreword

Contoxt

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

front approach and alter

A challenging ex

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

General conclusion

Proof; (6)

Case of nonlinear equality constraints

 Define neighboring Nash equilibrium point associated with linearized constraints, Y

_ε, for which:

$$J_A\left(\overline{Y}_{\varepsilon}^L\right) = J_A^* + O(\varepsilon^2)$$

Define projections:

$$\overline{Y}_{\varepsilon} - \overline{Y}_{\varepsilon}^{L} = v + w$$

where $v \in Sp(L_1, L_2, ..., L_K)$ and $w \in Sp(L_1, L_2, ..., L_K)^{\perp}$.

 Assume local regularity and smoothness of the hyper-surfaces q_k = 0:

$$v = O(\varepsilon), \quad w = O(\varepsilon^2)$$

Jean-Antoine Désidéri

oreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternative:

Nash games

A challenging ex

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

General conclusio

Proof; (7)

Case of nonlinear equality constraints (end)

• Then:

$$\begin{split} j_{A}(\varepsilon) &= J_{A}\left(\overline{Y}_{\varepsilon}^{L} + v + w\right) \\ &= J_{A}\left(\overline{Y}_{\varepsilon}^{L} + v + w\right) \\ &= J_{A}\left(\overline{Y}_{\varepsilon}^{L}\right) + \nabla J_{A}\left(\overline{Y}_{\varepsilon}^{L}\right) \cdot (v + w) + O(\varepsilon^{2}) \\ &= J_{A}\left(\overline{Y}_{\varepsilon}^{L}\right) + \nabla J_{A}^{*} \cdot (v + w) + O(\varepsilon^{2}) \quad \text{provided } \nabla J_{A}^{*} \text{ is smooth} \\ &= J_{A}\left(\overline{Y}_{\varepsilon}^{L}\right) + O(\varepsilon^{2}) \quad \text{since } \nabla J_{A}^{*} \cdot v = 0 \text{ and } \nabla J_{A}^{*} \cdot w = O(\varepsilon^{2}) \\ &= J_{A}^{*} + O(\varepsilon^{2}) \quad \text{and } j_{A}^{\prime}(0) = 0 \text{ again.} \end{split}$$

 \implies Concerning the primary criterion J_A , the initial design is robust w.r.t. small perturbations in ε

Jean-Antoine Désidéri

oreword

Contout

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

A criallenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strate

The two-discipline case revisited

General conclusion

Proof; (8) (end)

• Lastly, the secondary criterion satisfies:

$$j_{AB}(\varepsilon) = \frac{j_A(\varepsilon)}{J_A^*} + \varepsilon \left(\theta \frac{j_B(\varepsilon)}{J_B^*} - \frac{j_A(\varepsilon)}{J_A^*} \right)$$
$$j'_{AB}(0) = 0 + 1 \times (\theta - 1) + 0 = \theta - 1 \le 0 \quad \Box$$

Jean-Antoine Désidéri

oreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

A challenging exercise

Applications

Summary and parenactive

outilitary and peropeouve

An n-discipline optimization strategy

The two discipline case revisited

General conclusion

Outline

foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An *n*-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

Foreword

Contaxt

Hierarchical principle:

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paretr front approach and alternatives

Nash games

Hiorarchical torritory on

Hierarchical territory splitti

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Example

Variables:

$$Y = \left(y_0, y_1, y_2, y_3\right) \in \mathbb{R}^4$$

Primary problem:

Secondary problem:

$$\min J_A(Y) = \sum_{k=0}^3 \frac{y_k^2}{A^k}$$

$$\min J_B(Y) = \sum_{k=0}^3 y_k^2$$

Subject to:
$$g = 0$$

A: antagonism parameter (A
$$\geq$$
 1) $g = \sum_{k=0}^{3} \left(y_k - A^k\right)$, or $y_0^4 y_1^3 y_2^2 y_3 - 96\sqrt{3} = 0$

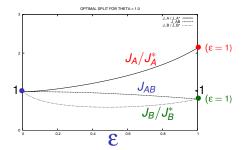
Jean-Antoine Désidéri

Applications

Case of a nonlinear constraint:

$$g = y_0^4 y_1^3 y_2^2 y_3 - 96\sqrt{3} = 0$$

Continuation method (A = 3, $\theta = 1$)



The continuum of Nash equilibriums as ε varies

NOTE: the function $j_B(\epsilon)=\frac{J_B(\overline{Y}_\epsilon)}{J_B^*}$ is not monotone! $(\epsilon^*\sim 0.487)$

Jean-Antoine Désidéri

oreword

I Contox

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

Applications

Cummary and name

Summary and perspective

An n-discipline optimization strategy

The two-discipline case revisited

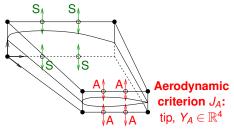
General conclusion

Aerodynamic & structural concurrent optimization exercise

From B. Abou El Majd's Doctoral Thesis

First strategy: split of primitive variables (after many unsuccessful trials)

A total of 8 degrees of freedom $(3 \times 1 \times 1)$



Jean-Antoine Désidéri

oreword

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parett front approach and alternatives

Nash games

Hierarchical territory splitti

Applications

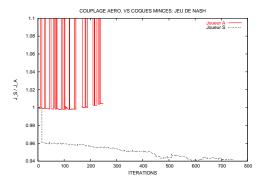
Summary and perspectives

71177 discipline optimization strateg

General conclusion

Aerodynamic metamodel vs structural model

Split of primitive variables - convergence of the two criteria



- Nash equilibrium not completely reached (yet)
- But acceptable improved solution attained

Jean-Antoine Désidéri

oreword

Context

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Paret front approach and alternatives

Nash games

Hierarchical territory splitti

Applications

Summary and perspective

All rediscipline optimization strai

General conclusion

Aerodynamic metamodel vs structural model

Split of primitive variables - evolution of cross sections

Black: Initial Red : Final



- Structural parameters Y_S enlarge and round out root; shape altered in shock region
- Aerodynamic parameters Y_A attempt to compensate in the critical tip region

Jean-Antoine Désidéri

oreword

Hiorarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parete front approach and alternatives

Nash games

I financial tanitan and the

Applications

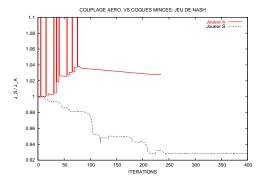
Summary and perspectives

An n-discipline optimization strateg

General conclusion

Aerodynamic metamodel vs structural model

Projected-Hessian-based Eigensplit - convergence of the two criteria



- More stable Nash equilibrium reached
- Aero. criterion: < 3% degradation; Structural: $\sim 7\%$ gain

Jean-Antoine Désidéri

oreword

I Conton

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

Hierarchical territory splittir

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Aerodynamic metamodel vs structural model

Projected-Hessian-based Eigensplit - evolution of cross sections

Black: Initial Red : Final

- Smoother, and smaller deviation
- Meta-model-based split able to identify structural parameters preserving the geometry spanwise in the shock region !!!

Jean-Antoine Désidéri

oreword

...

K. Multi-Objective

Engineering

front approach and alternatives

lash games

Hierarchical territory splitting

Applications

Summary and perspectives

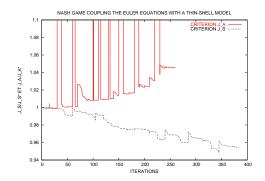
An n-discipline optimization strate

The two-discipline case revisited

General conclusion

Eulerian aerodynamic model vs structural model

Split of primitive variables - convergence of the two criteria



Jean-Antoine Désidéri

oreword

I Contox

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

Hierarchical territory enlitti

Applications

Summary and persi

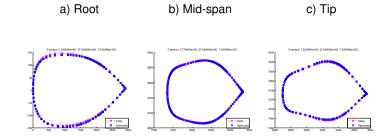
An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Eulerian aerodynamic model vs structural model

Split of primitive variables - evolution of cross sections



ONLY MINUTE SHAPE VARIATIONS PERMITTED BY CONSTRAINTS ⇒ poor performance of optimization

Jean-Antoine Désidéri

oreword

COMON

IX. Multi-Objective Optimization, Concurrent

Introduction: the classical Paret

Nash games

Hierarchical territory splitting

Applications

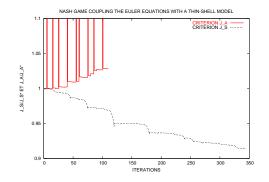
Summary and perspectives

71177 discipline optimization strategy

General conclusio

Eulerian aerodynamic model vs structural model

Projected-Hessian-based Eigensplit - convergence of the two criteria



Jean-Antoine Désidéri

oreword

Context

IX. Multi-Objective Optimization, Concurrent

Introduction: the classical Pareti front approach and alternatives

Nash games

Hierarchical territory splitti

Applications

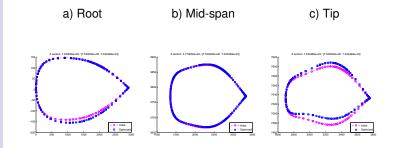
Summary and perspectives

An n-discipline optimization strategy

General conclusio

Eulerian aerodynamic model vs structural model

Projected-Hessian-based Eigensplit - evolution of cross sections



A SUBSPACE RESPECTING CONSTRAINTS HAS BEEN FOUND IN WHICH OPTIMIZATION CAN PERFORM

Jean-Antoine Désidéri

oreword

Contoxt

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

asii games

Hierarchical territory splitting

Applications

Cummary and parenactive

An n-discipline optimization strateg

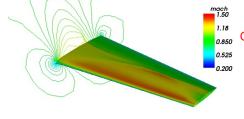
The two-discipline case revisited

General conclusion

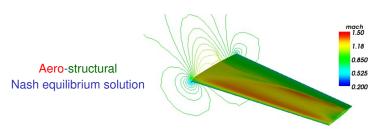
Mach number surface distributions

Original aerodynamic absolute optimum vs recommended

Nash equilibrium solution



Original aerodynamic absolute optimum



Jean-Antoine Désidéri

oreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Parel front approach and alternatives

Nash games

A challenging exercise

Hierarchical ter

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Outline

foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An *n*-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

Foreword

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

A challenging ex

Applications

Summary and perspectives

An n-discipline optimization strate

The two-discipline case revisited

General conclusi

Summary (1)

- An abstract split of territories is recommended for cases in
 which the design must remain sub-optimal w.r.t. a given
 primary, i.e. preponderant or fragile functional. The split is
 defined through an eigenproblem involving the Hessian matrix
 and the constraint gradient vectors. These quantities may be
 approximated through meta-models.
- A continuum of Nash equilibriums originating from the point Y_A^* of optimality of the primary functional alone (subject to constraints), can be identified through a perturbation formulation. The property of preservation of the initial optimum $(\overline{Y}_0 = Y_A^*)$, is more trivially satisfied for unconstrained problems $(\nabla J_A^* = 0)$.

Jean-Antoine Désidéri

oreword

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

reasii gaiiles

...

Applications

Summary and perspectives

An a discipling optimization of

The two-discipline case revisited

General conclusi

Summary (end)

- Robustness: along the continuum, small deviations away from the initial point $\overline{Y}_0 = Y_A^*$ induce second-order variations in the primary functional: $J_A(\overline{Y}_{\epsilon}) = J_A^* + O(\epsilon^2)$; J_A is 'insensitive' to small ϵ .
- Aerodynamic-Structural coupled shape optimization exercise:
 - the ANN-based automatic eigen-splitting was found able to recognize that the structural parameters should not alter the shock region;
 - as a result, a gain of about 8 % in the structural criterion has been achieved, at the expense of only a 3 % degradation in the aerodynamic criterion.

Jean-Antoine Désidéri

Foreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory spli

Applications

An n-discipline optimization strategy

An n-discipline optimization strategy

The hor discipline case or delical

General conclusion

Outline

1 Foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An *n*-discipline optimization strategy

The two-discipline case revisited

General conclusion

Introduction: the classical Paret

Nash games

A challenging exer

merarchical territory spi

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Initial setting

Initial design vector:

$$Y^0 \in \mathcal{H}$$
 (usually $\mathcal{H} = \mathbb{R}^N$; $N \ge n$)

Smooth criteria:

$$J_i(Y)$$
 $(1 \le i \le n)$ (at least C^2)

Available gradients : $u_i^0 = \nabla J_i^0$

Hessian matrices : H_i^0 , and their norms, e.g. :

$$\left\| \mathcal{H}_{i}^{0} \right\| = \sqrt{\operatorname{trace}\left[\left(\mathcal{H}_{i}^{0}\right)^{2}\right]}$$

Superscript 0 indicates an evaluation at $Y = Y^0$

Jean-Antoine Désidéri

oreword

Context

Hierarchical principle

IX. Multi-Objective
Optimization, Concurren

Introduction: the classical Parete

Nash games

A shellessine o

Hiorarchical ton

Anntinations

Summary and perspective

An n-discipline optimization strategy

An n-discipline optimization strategy

General conclusion

Preliminary transformation of criteria

 J_i is replaced by:

$$\widetilde{\widetilde{J}}_{i}\left(Y\right) = \exp\left(\alpha_{i} \frac{\left\|H_{i}^{0}\right\|}{\left\|\nabla J_{i}^{0}\right\|^{2}} \left(J_{i} - J_{i}^{0}\right)\right) + \varepsilon_{0} \phi\left(\frac{\left\|Y - Y^{0}\right\|^{2}}{R^{2}} - 1\right)$$

$$\phi(x) = 0 \text{ if } x \le 0, \text{ and } x \exp\left(-\frac{1}{x^2}\right) \text{ if } x > 0 \quad (\text{of class } C^{\infty})$$

Scaling :
$$\alpha_i \frac{\|H_i^0\|}{\|\nabla J_i^0\|} = \frac{\gamma}{R} \sim 1$$

$$\mathcal{B}_{R} = \mathcal{B}\left(Y^{0}, R\right)$$
: working ball

Behavior at ∞ : $\tilde{\tilde{J}}_i \to \infty$ as $||Y|| \to \infty$.

Jean-Antoine Désidéri

oreword

I Conton

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

A challonging

I lineared in a Line

Applications

An n-discipline optimization strategy

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Properties of transformed criteria

For all i:

- J_i and $\tilde{\tilde{J}}_i$ have same regularity.
- \tilde{J}_i is dimensionless and strictly positive, it varies as J_i itself in the working ball $\mathcal{B}_R = \mathcal{B}\left(Y^0, R\right)$;
- For appropriate $lpha_i$ and γ : $\left\|
 abla ilde{J}_i^{\widetilde{i}} \, \, ^0
 ight\| \sim 1$
- ullet $ilde{ ilde{J}_i}$ $\left(Y^0
 ight) = 1$ and $\lim_{\|Y\| o \infty} ilde{ ilde{J}_i} = \infty;$

DOUBLE SUPERSCRIPT " IMPLICIT FROM HERE ON

Jean-Antoine Désidéri

oreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrer

Introduction: the classical Paret front approach and alternatives

Nash games

A challenging exe

A . . P. . . P. . . .

Applications

Summary and perspectives

An n-discipline optimization strategy

The two discipline areas arrighted

General conclusion

Extend notion of stationarity

Lemma: Let Y^0 be a Pareto-optimal point of the smooth criteria $J_i(Y)$ ($1 \le i \le n \le N$), and define the gradient-vectors $u_i^0 = \nabla J_i\left(Y^0\right)$ in which ∇ denotes the gradient operator. There exists a convex combination of the gradient-vectors that is equal to zero:

$$\sum_{i=1}^n \alpha_i \, u_i^0 = 0 \,, \qquad \alpha_i \geq 0 \, \left(\forall i \right) \,, \qquad \sum_{i=1}^n \alpha_i = 1 \,.$$

Proposed definition: [Pareto-stationarity]

The smooth criteria $J_i(Y)$ ($1 \le i \le n \le N$) are [here] said to be Pareto-stationary at the design-point Y^0 iff there exists a convex combination of the gradient-vectors, $u_i^0 = \nabla J_i(Y^0)$, that is equal to zero.

Jean-Antoine Désidéri

Foreword

Cantant

Hierarchical principle:

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Paret front approach and alternatives

Nash games

A challenging of

Hierarchical territory spl

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Postulate of evidence

At Pareto-optimal design-points, we cannot improve all criteria simultaneously

... BUT AT ALL OTHER DESIGN-POINTS ... YES, WE CAN!

In an optimization iteration, Nash equilibrium design-points should only be sought after completion of a cooperative-optimization phase during which all criteria improve.

¹Obama, 2009

Jean-Antoine Désidéri

Foreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parel front approach and alternatives

Nash games

A challenging exer

Theratoriloai territory opiitt

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Descent direction common to *n* disciplines (1)

Lemma:

Let $\{u_i\}$ (i = 1, 2, ..., n) be a family of n vectors in a Hilbert space \mathcal{H} of dimension at least equal to n. Let U be the set of the strict convex combinations of these vectors:

$$U = \left\{ w \in H \ / \ w = \sum_{i=1}^{n} \alpha_{i} u_{i}; \ \alpha_{i} > 0, \ \forall i; \ \sum_{i=1}^{n} \alpha_{i} = 1 \right\}$$

and \overline{U} its closure, the convex hull of the family. Let ω be the unique element of \overline{U} of minimal norm. Then :

$$\forall \overline{u} \in \overline{U}, \ (\omega, \overline{u}) \geq \|\omega\|^2 := C_{\omega} \geq 0$$

Jean-Antoine Désidéri

Foreword

Hiorarchical prin

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

A challenging exer

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Descent direction common to *n* disciplines (2)

Proof of Lemma:

Existence and uniqueness of the minimal-norm element $\omega \in \overline{U}$: \overline{U} is closed and convex, $\|\ \|$ is continuous, and bounded from below. Let $\overline{u} \in \overline{U}$ (arbitrary) and $r = \overline{u} - \omega$. Since \overline{U} is convex:

$$\forall \epsilon \in [0,1], \ \omega + \epsilon r \in \overline{U}$$

Since ω is the minimal-norm element $\in \overline{U}$:

$$\|\omega + \varepsilon r\|^2 - \|\omega\|^2 = (\omega + \varepsilon r, \omega + \varepsilon r) - (\omega, \omega) = 2\varepsilon(\omega, r) + \varepsilon^2(r, r) \ge 0$$

and this implies that $(\omega, r) \ge 0$; in other words :

$$\forall \bar{u} \in \overline{U}, \ (\omega, \bar{u} - \omega) \geq 0$$

where equality stands whenever ω is the orthogonal projection of 0 onto \overline{U} . Etc.

Jean-Antoine Désidéri

oreword

Ularanabiant aris

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

A challenging exe

Hiorarchical torrito

Applications

Summary and perspective

An a discipline entimization strategy

An n-discipline optimization strategy

The two-discipline case revisited

General conclusio

Descent direction common to *n* disciplines (3)

Theorem:

Let \mathcal{H} be a Hilbert space of finite or infinite dimension N. Let $J_i(Y)$ $(1 \le i \le n \le N)$ be n smooth functions of the vector $Y \in \mathcal{H}$, and Y^0 a particular admissible design-point, at which the gradient-vectors are denoted $u_i^0 = \nabla J_i(Y^0)$, and

$$\mathcal{U} = \left\{ w \in \mathcal{H} / w = \sum_{i=1}^{n} \alpha_{i} u_{i}^{0}; \ \alpha_{i} > 0 \ (\forall i); \ \sum_{i=1}^{n} \alpha_{i} = 1 \right\}$$
 (23)

Let ω be the minimal-norm element of the convex hull $\,{\cal U},$ closure of $\,{\cal U}.$ Then :

- either $\omega = 0$, and the criteria $J_i(Y)$ ($1 \le i \le n$) are Pareto-stationary at $Y = Y^0$:
- ② or $\omega \neq 0$ and $-\omega$ is a descent direction common to all the criteria; additionally, if $\omega \in \mathcal{U}$, the inner product (\bar{u}, ω) is equal to the positive constant $C_{\omega} = ||\omega||^2$ for all $\bar{u} \in \overline{U}$.

Jean-Antoine Désidéri

oreword

Hierarchical principles

K. Multi-Objective

Optimization, Concurrent Engineering

Introduction: the classical Parel front approach and alternatives

A challenging exercise

Hierarchical territory splitting

Summary and persp

An n-discipline optimization strategy

An //-discipline optimization strategy

General conclusion

Descent direction common to *n* disciplines (4)

Proof of Theorem:

The first part of the conclusion is a direct application of the Lemma.

Directional derivatives : $\{(u_i, \omega)\}\ (i = 1, 2, ..., n)$.

Assume that $\omega \in U$ and not simply \overline{U} .

Define $j(u) = ||u||^2 = (u, u)$. Then, ω is the solution to the following minimization problem :

$$\min_{\alpha} j(u), \ u = \sum_{i=1}^{n} \alpha_i u_i, \ \sum_{i=1}^{n} \alpha_i = 1$$

since none of the constraints $\alpha_i \ge 0$ is saturated. The Lagrangian,

$$h = j + \lambda \left(\sum_{i=1}^{n} \alpha_i - 1 \right)$$

is stationary w.r.t the vector $\alpha \in \mathbb{R}^{\textit{N}}_{+}$ and the real variable λ :

$$\forall i: \frac{\partial h}{\partial \alpha_i} = 0, \text{ et } \frac{\partial h}{\partial \lambda} = 0$$

Therefore, for any index i:

$$\frac{\partial j}{\partial \alpha} + \lambda = 0$$

But, j(u) = (u, u) and for $u = \omega = \sum_{i=1}^{n} \alpha_i u_i$, we have:

$$\frac{\partial j}{\partial \alpha_i} = 2(\frac{\partial u}{\partial \alpha_i}, u) = 2(u_i, \omega) = -\lambda \Longrightarrow (u_i, \omega) = -\lambda/2$$
 (a constant).

By linearity, this extends to any convex combination of the $\{u_i\}_{(i=1,2,...,n)}$.

Jean-Antoine Désidéri

Foreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parete front approach and alternatives

Nash games

71 Gridinoriging C

Ameliantinas

* ipprioutions

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

"Cooperative-Optimization": Multiple-Gradient Descent Algorithm (MGDA)

From a non-stationary design-point Y^0 , construct a sequence $\{Y^i\}$ (i = 0, 1, 2...):

Compute for all i (1 $\leq i \leq n$):

$$u_i^0 = \nabla J_i^0$$

and apply the theorem to define ω^0 . If $\omega^0 \neq 0$, consider:

$$j_i(t) = J_i(Y^0 - t\omega^0) \quad (1 \le i \le n)$$

and identify $h^0 > 0$, the largest real number for which these functions of t are strictly-monotone decreasing over $[0, h^0]$. Let:

$$Y^1 = Y^0 - h^0 \omega^0$$

so that:

$$J_{i}\left(Y^{1}\right) < J_{i}\left(Y^{0}\right)$$

and so on.

Jean-Antoine Désidéri

oreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Theraconcar territo

Applications

Summary and perspective

An n-discipline optimization strategy

The two-discipline case revisited

General conclusio

Two possible situations

Either: the construction stops after a finite number of steps, at a P-stationary design-point Y^r ; then possibly proceed with the "competitive-optimization" phase;

or: the sequence $\{Y^i\}$ is infinite.

Jean-Antoine Désidéri

Foreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pare front approach and alternatives

Nash games

A challenging ex

Hiorarchical to

. . .

outilitary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusio

Case of an infinite sequence $\{Y^i\}$ (i = 0, 1, 2...)

Then:

- The corresponding sequence of criterion $\{J_i\}$, for any given i, is strictly monotone-decreasing, and positive, thus bounded.
- Since the criterion J_i(Y) is ∞ at ∞, the sequence {Yⁱ} is itself bounded. (ℋ is assumed reflexive.)
- There exists a weakly convergent subsequence; let Y* be the limit.

We conjecture that Y^* is P-stationary. (Otherwise, restart with $Y^0 = Y^*$.)

Jean-Antoine Désidéri

An n-discipline optimization strategy

Summary: practical implementation

One is led to solve the following quadratic-form minimization in \mathbb{R}^n :

$$\min_{\alpha \in \mathbb{R}^n} \|\omega\|^2$$

subject to the following constraints/notations:

$$\omega = \sum_{i=1}^{n} \alpha_{i} u_{i}, \ u_{i} = \nabla J_{i} \left(Y^{0} \right), \ \alpha_{i} \geq 0 \ \left(\forall i \right), \ \sum_{i=1}^{n} \alpha_{i} = 1$$

Then, we recommend:

- if $\omega \neq 0$, to use $-\omega$ as a descent direction;
- otherwise (Pareto-stationarity), to analyze local Hessians. and:
 - if all positive-definite (Pareto-optimality): stop:
 - otherwise : stop anyway (if design satisfactory), or elaborate a sensible Nash game from Y⁰ in the eigenvector basis of $\sum_{i=1}^{n} \alpha_i H_i^0$.

Jean-Antoine Désidéri

oreword

Context

lierarchical principle:

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pare front approach and alternatives

Nash games

A challenging exercise

. . . .

Summary and narenactive

An n-discipline optimization strate

The two-discipline case revisited

General conclusion

Outline

1 Foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An *n*-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

oreword

Context

Hierarchical principle

IX. Multi-Objective
Optimization, Concurren

Introduction: the classical Paret

Nash games

Hierarchical territory splitting

- -- --

outilitary and perspective

An n-discipline optimization strate

The two-discipline case revisited

General conclusion

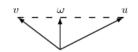
Cooperative phase

Let:

$$u = u_1 = \nabla J_1(Y^0), v = u_2 = \nabla J_2(Y^0), \alpha_1 = \alpha, \alpha_2 = 1 - \alpha.$$

Then:

$$\alpha^* = \frac{v \cdot (v - u)}{\|u - v\|^2} = \frac{\|v\|^2 - v \cdot u}{\|u\|^2 + \|v\|^2 - 2u \cdot v}$$
$$0 < \alpha^* < 1 \iff \widehat{(u, v)} > \cos^{-1} \frac{\min(\|u\|, \|v\|)}{\max(\|u\|, \|v\|)}$$



Jean-Antoine Désidéri

oreword

CONTEXT

K. Multi-Objective

Optimization, Concurrent Engineering

Introduction: the classical Pareti front approach and alternatives

don games

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

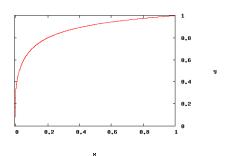
General conclusion

Multiple-Gradient Descent Algorithm (MGDA)

Illustration of MGDA in a simple case (A. Zerninati)¹

$$\begin{cases} J_1(x,y) = 4x^2 + y^2 + xy & \text{minimum in } (0,0) \\ J_2(x,y) = (x-1)^2 + 3(y-1)^2 & \text{minimum in } (1,1) \end{cases}$$

Pareto front



Jean-Antoine Désidéri

oreword

Context

lierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parel front approach and alternatives

Nash games

Hierarchical territory splitting

Hierarchical territory splittir

Applications

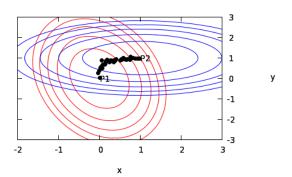
Summary and perspectives

The two-discipline case revisited

General conclusion

Illustration of MGDA in a simple case²

Isovalue contours and Pareto-optimal solutions (via PSO)



Jean-Antoine Désidéri

oreword

Context

nerarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Paret

Nash games

Hierarchical territory splitting

Thoracomount

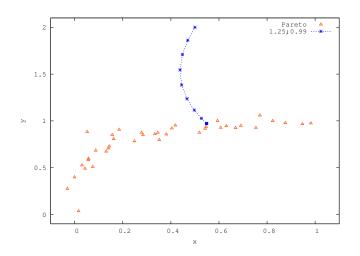
Summary and paranactives

The two-discipline case revisited

General conclusion

Illustration of MGDA in a simple case³

Convergence to a Pareto-optimal solution



Jean-Antoine Désidéri

Foreword

CONTEXT

K. Multi-Objective

Introduction: the classical Paret

Nont approach and alternative

A challenging or

Hierarchical territory splitti

Applications

Summary and perspectives

The two-discipline case revisited

General conclusion

Competitive phase

What to do if the initial design-point Y^0 is Pareto-stationary w.r.t. (J_A, J_B) ?

Let us examine first the convex case:

- Stationary point of type I : $\nabla J_A^0 = \nabla J_B^0 = 0$ Simultaneous minimum of J_A and J_B : STOP
- Stationary point of type II : e.g. $\nabla J_A^0 = 0$ and $\nabla J_B^0 \neq 0$ J_A minimum, J_B reducible: STOP, or NASH equilibrium with hierarchical split of variables
- Stationary point of type III : $\nabla J_A^0 + \lambda \nabla J_B^0 = 0 \ (\lambda > 0)$ Pareto-optimality: STOP

Jean-Antoine Désidéri

oreword

Uinemakinal asiasiala

IX. Multi-Objective
Optimization, Concurrent

front approach and alternative

Nash games

Hierarchical territory splitti

Applications

Summary and perspectives

An n-discipline optimization strate

The two-discipline case revisited

General conclusio

Non-convex case (1)

P-Stationary design-point of type I : $\nabla J_A^0 = \nabla J_B^0 = 0$

 H_A^0 , H_B^0 : Hessian matrices of J_A , J_B at $Y = Y^0$

- If $H_A^0 > 0$ and $H_B^0 > 0$: CONVEX CASE: STOP
- H_A⁰ > 0 and H_B⁰ has some <0 eigenvalues
 <p>J_A minimum, J_B is reducible:
 STOP, or NASH equilibrium with the hierarchical split of territory based on the eigenstructure of the Hessian matrix H_A⁰.

Jean-Antoine Désidéri

The two-discipline case revisited

Non-convex case (2)

P-Stationary design-point of type I : $\nabla J_A^0 = \nabla J_B^0 = 0$

 If both Hessian matrices have some <0 eigenvalues, define families of linearly independent eigenvectors:

$$\mathcal{F}_{A} = \{ u_1, u_2, ..., u_p \}$$
 $\mathcal{F}_{B} = \{ v_1, v_2, ..., v_q \}$

• If $\mathcal{F}_A \cup \mathcal{F}_B$ is linearly dependent, $\sum_{i=1}^{p} \alpha_i u_i - \sum_{i=1}^{q} \beta_i v_i = 0$ Then, a common descent direction is $-w^r$:

$$w^r = \sum_{i=1}^{\rho} \alpha_i u_i = \sum_{j=1}^{q} \beta_j v_j$$

 Otherwise, SpF_A ∩ SpF_B = {0}: STOP, OR determine the NASH equilibrium point using \mathcal{F}_A (resp. \mathcal{F}_B) as the strategy of A (resp. B).

Jean-Antoine Désidéri

oreword

Union the state of the state of

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parel front approach and alternatives

Nash games

A challenging

merarchical territory spi

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

Non-convex case (3)

P-Stationary design-point of type II : $\nabla J_A^0 = 0$ and $\nabla J_B^0 \neq 0$

• $H_A^0 > 0$:

Case already studied: NASH equilibrium in the hierarchical basis of eigenvectors of H_A^0 .

- H_A^0 has some <0 eigenvalues associated with the eigenvectors: $\mathcal{F}_A = \{ u_1, u_2, ..., u_p \}$
 - if ∇J⁰_B is not ⊥ SpF_A: a descent direction common to J_A and J_B exists in SpF_A: use it to reduce both criteria.
 - otherwise, ∇J⁰_B ⊥ SpF_A: we propose to identify the NASH equilibrium using same split as above.

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Paret front approach and alternatives

Nash games

A criallenging e

Applications

Summary and perspective

An n-discipline optimization strate

The two-discipline case revisited

General conclusio

Non-convex case (4)

P-Stationary design-point of type III : $\nabla J_A^0 + \lambda \nabla J_B^0 = 0 \ (\lambda > 0)$

Let

$$u_{AB} = \frac{\nabla J_A^0}{\|\nabla J_A^0\|} = -\frac{\nabla J_B^0}{\|\nabla J_B^0\|}$$

Consider possible move in hyperplane $\perp u_{AB}$. For this, consider reduced Hessian matrices:

$$H_A^{\prime 0} = P_{AB} H_A^0 P_{AB} \qquad H_B^{\prime 0} = P_{AB} H_B^0 P_{AB}$$

where: $P_{AB} = I - [u_{AB}] [u_{AB}]^t$.

Analysis in orthogonal hyperplane is that of a stationary point of type a and dimension N-1.

Jean-Antoine Désidéri

oreword

Context

Hierarchical principles

Optimization, Concurrent Engineering

Introduction: the classical Parel front approach and alternatives

Nash games

Hierarchical territory splitti

Applications

Summary and perspective

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Outline

1 Foreword

Context

Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering

Introduction: the classical Pareto front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Jean-Antoine Désidéri

oreword

UP-----

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nash games

Hierarchical territory split

Applications

Summary and perspective

An n-discipline optimization strateg

General conclusion

Conclusion

Recommended strategy for multidisciplinary optimization

Design of Experiment

Select an appropriate set of initial designs

For each initial design:

- Perform a <u>"COOPERATIVE-OPTIMIZATION"</u> phase : at each iteration, all criteria improve
- Stop, or enter a "COMPETITIVE-OPTIMIZATION" phase :
 - perform an eigen-analysis of local systems,
 - · define an appropriate split of variables, and
 - establish the corresponding Nash equilibrium between disciplines by <u>SMOOTH CONTINUATION</u>
- Multi-criterion Aerodynamic Shape-Design Optimization and Inverse Problems Using Control Theory and Nash Games, Z. Tang, J.-A. Désidéri and J. Périaux, Journal of Optimization Theory and Applications (JOTA), 135-1, 2007.
- Split of Territories in Concurrent Optimization, J.-A. Désidéri, INRIA Research Report 6108, October 2007. (http://hal.inria.fr/inria-00193944/fr/)
- Multiple-Gradient Descent Algorithm (MGDA), J.-A. Désidéri, INRIA Research Report 6953, June 2009. (http://hal.inria.fr/inria-00389811/fr/)

Jean-Antoine Désidéri

Foreword

dierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

A challenging exercis

Hierarchical territory splitt

Summary and parapartis

An n-discipline optimization strategy

General conclusion

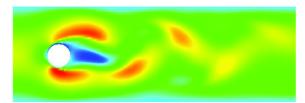
An example of application in fluid dynamics

Multiobjective optimization in hydrodynamic stability control

Channel flow (incompressible Navier-Stokes equations)

F. Strauss, JAD, R. Duvigneau, V. Heuveline (KIT+INRIA) INRIA Research Report 6608, July 2008

http://hal.inria.fr/docs/00/30/96/93/PDF/RR-6608.pdf



Control: obstacle shape

Principal criterion : Drag force subject to volume control Secondary criterion : $-\Re(\lambda)$ to improve flow stability

Jean-Antoine Désidéri

oreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Paret front approach and alternatives

Nasn games

Hierarchical territory spli

Applications

Summary and perspectives

An n-discipline optimization strategy

General conclusion

Perspectives: on-going technological applications ¹

Examples of Multi-Criterion Optimization Problems coupling Fluid Mechanics with another discipline

Aerodynamic and structural aircraft wingshape optimization

Research conducted at ONERA/DAAP (I. Ghazlane, G. Carrier, JAD)

Principal criterion : C_D subject to C_L criterion

(RANS-model; coupled aero-structural adjoint method)

Secondary criteria: mechanical stress, stiffness and mass (1. Beam model; 2. F.E. model)

Jean-Antoine Désidéri

oreword

... ...

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Pare front approach and alternatives

Nash games

Hierarchical territory splitt

Applications

Summary and perspective

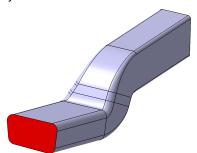
An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Perspectives: on-going technological applications ²

Automobile engine internal flow optimization Under French ANR grant (A. Zerbinati, R. Duvigneau, JAD) Duct in cooling system:



Principal criterion: Exit velocity-profile homogenization Secondary criterion: Pressure loss minimization

Jean-Antoine Désidéri

Foreword

Hierarchical principle

IX. Multi-Objective
Optimization, Concurrent

Introduction: the classical Parel front approach and alternatives

Nash games

71 Gridinoriging GAG

A . . . P . . . P

ripprioditions

Summary and perspectives

Art n-discipline optimization strategy

General conclusion

Perspectives: on-going technological applications ³

SSBJ wingshape optimization

Research conducted at ONERA/DAAP (A. Minelli, G. Carrier, JAD)

Principal criterion : C_D subject to C_L criterion

(Euler or RANS-model; coupled aero-structural adjoint method)

Secondary criteria : bang signature

goal-oriented mesh; mid-distance pressure as an input to acoustics model

Jean-Antoine Désidéri

oreword

Contout

Hierarchical principles

IX. Multi-Objective
Optimization, Concurren

Introduction: the classical Pare

Nash games

...

Hierarchical territory splitti

Applications

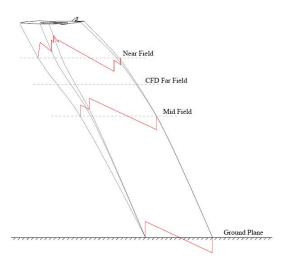
Summary and perspectives

An n-discipline optimization stra

The two-discipline case revisited

General conclusion

Sonic Boom Problem



Jean-Antoine Désidéri

oreword

Context

i nerarcincai principies

Optimization, Concurrent Engineering

front approach and alternatives

Nash games

I linearchine I tomitom and this

Applications

Summary and perspectives

An n-discipline optimization strateg

The two-discipline case revisited

General conclusion

Perspectives: on-going technological applications ⁴

Helicopter blade optimization

Research conducted at ONERA/DAAP (E. Roca, A. Le Pape, JAD)

Stationary case versus Unsteady-flow multipoint optimization