R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems Application to Fluid Dynamics

R. Duvigneau

INRIA Sophia Antipolis-Méditerranée, OPALE Project-Team

Introduction

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Some examples and illustrations ...

- Global optimization of the wing shape of a business aircraft
- Local optimization of the shape of an airfoil
- Identification of optimal parameters for flow control

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

- Gradient evaluation
- Surrogate models
- Conclusion

Problem description (Piaggio-Aero P180)

- Drag minimization
- Lift constraint
- Global variables : span, root/tip chord ratio, sweep, twist and incidence angles
- Local variables : airfoil section (10 variables)
- Cruise regime $M_{\infty} = 0.83$
- Euler solver (Finite-Volume)
- Mesh 56,512 nodes 311,820 cells

Wing design

Wing design

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

\rightarrow Convergence in about 80 iterations \sim 960 simulations

Wing design

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Comparison of initial (red) and final (blue) wing shapes

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Comparison of initial (top) and final (bottom) pressure fields

Wing design

Wing design

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Comparison of initial (top) and final (bottom) planforms

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Airfoil modification

Problem description

- Navier-Stokes, $k \omega$ turbulence modeling
- Reynolds number $Re = 19 \ 10^6$, Mach number 0.68
- Drag reduction

Airfoil modification

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

\rightarrow Convergence in about 30 iterations \sim 150 simulations

Airfoil modification

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

R. Duvigneau

Optimization algorithms

- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Problem description

- Navier-Stokes modeling (laminar flow)
- Reynolds number Re = 200
- Oscillatory rotating cylinder
- Objective : reduce the time-averaged drag
- Two control parameters : amplitude and frequency

Flow control

Flow control

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Comparison of vorticity fields without (top) and with control (bottom)

Flow control

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

\rightarrow Convergence in about 5 iterations \sim 35 simulations

Flow control

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Surrogate model of drag coefficient

Introduction

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

How to carry out such an optimization process ?

- What are the tools involved ?
- How are they organized ?

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Optimization Algorithm

KIT German - French Summer School, September 2010

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

R. Duvigneau

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

- Optimization algorithms
- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

- Optimization algorithms
- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

- Optimization algorithms
- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

- Optimization algorithms
- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

Presentation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Definition of an optimization problem

Minimize Subject to

nize	f(x)	$x \in \mathbb{R}^n$
ct to	$g_i(x) = 0$	$i=1,\cdots,I$
	$h_i(x) \ge 0$	$j=1,\cdots,m$

cost function equality constraints inequality constraints

Presentation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Definition of an optimization problem

Minimize	f(x)
Subject to	$g_i(x) =$
	h(x)

	f(x)	$x \in \mathbb{R}^n$
5	$g_i(x) = 0$	$i=1,\cdots,I$
	$h_i(x) \ge 0$	$j=1,\cdots,m$

cost function equality constraints inequality constraints

Role of the optimizer

Provide a candidate design vector $x \in \mathbb{R}^n$

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Definition of an optimization problem

Minimize	f(x)	$x \in \mathbb{R}^n$
Subject to	$g_i(x) = 0$	$i = 1, \cdots$
	$h_j(x) \geqslant 0$	$j=1,\cdots$

cost function equality constraints inequality constraints

Presentation

Role of the optimizer

Provide a candidate design vector $x \in \mathbb{R}^n$

Some approaches

 Descent methods : suitable for smooth convex functions steepest descent, conjugate gradient, quasi-Newton, Newton methods

. *m*

- Pattern search methods : suitable for noisy convex functions Nelder-Mead simplex, Torczon's multidirectional search algorithms
- Evolutionary methods : suitable for multimodal functions genetic algorithms, evolution strategies, particle swarm optimization, ant colony methods, simulated annealing

Steepest descent

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Algorithm

For each iteration k.

- Estimation of gradient $\nabla f(x_k)$
- Define search direction $d_k = -\nabla f(x_k)$
- Line search : find the step length ρ such as :
 - $f(x_k + \rho d_k) < f(x_k) + \alpha \nabla f(x_k) \cdot \rho d_k$ (Armijo rule) $f(x_k + \rho d_k) > f(x_k) + \beta \nabla f(x_k) \cdot \rho d_k$ (Goldstein rule)

Steepest descent

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

- Gradient evaluation
- Surrogate models
- Conclusion

Summary

Properties of steepest descent method:

- Proof of convergence to a local optimum
- Linear convergence rate :

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = a > 0$$

In practice:

- Unable to take into account function curvature
- Oscillatory optimization path

Quasi-Newton methods

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Algorithm

Improvement of the search direction:

Definition according to the function curvature:

$$\widetilde{H}_k d_k = -\nabla f(x_k),$$

with \tilde{H} approximation of the Hessian matrix (second-order derivative) **Iterative** construction of the Hessian matrix (BFGS formula) :

$$\begin{split} \widetilde{H}_0 &= Id \\ \widetilde{H}_{k+1} &= \widetilde{H}_k - \frac{1}{s_k^T \widetilde{H}_k s_k} \widetilde{H}_k s_k s_k^T \widetilde{H}_k^T + \frac{1}{y_k^T s_k} y_k y_k^T, \end{split}$$
with $s_k = x_{k+1} - x_k$ and $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$

Quasi-Newton methods

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Summary

Properties of quasi-Newton methods:

Take into account the curvature of the past iteration:

$$\widetilde{H}_{k+1}(x_{k+1}-x_k) =
abla f(x_{k+1}) -
abla f(x_k)$$

- H_k positive definite (if line search efficient enough)
- Proof of convergence to local optimum
- Super-linear convergence rate :

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

In practice:

- Very efficient algorithm for convex problems (close to Newton method)
- Gradient should be available

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

- Gradient evaluation
- Surrogate models

Conclusion

(λ, μ) -Evolution Strategy

Algorithm

For each iteration k, according to \bar{x}_k and $\bar{\sigma}_k$:

- Generate a set of λ perturbation lengths $\sigma_i = \bar{\sigma}_k e^{\tau N(0,1)}$
- Generate a sample of λ individuals $x_i = \bar{x}_k + \sigma_i N(0, Id)$ (mutation) where N(0, Id) multivariate normal distribution with 0 mean and Id covariance matrix
- Evaluate the performance of λ individuals
- Choose the best μ parents among λ individuals (selection)
- Update distribution properties (crossover and self-adaption) :

$$ar{\mathbf{x}}_{k+1} = rac{1}{\mu} \sum_{i=1}^{\mu} \mathbf{x}^i \qquad ar{\sigma}_{k+1} = rac{1}{\mu} \sum_{i=1}^{\mu} \sigma^i$$

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

(λ, μ) -Evolution Strategy

Summary

Properties of evolution strategies:

Proof of convergence to the global optimum in a statistical sense

e.g. $\forall \epsilon > 0$ $\lim_{k \to \infty} P(|f(x_k) - f(x^*)| \leq \epsilon) = 1$

linear convergence rate

In practice:

- Able to avoid local optima
- Curse of dimensionality
- Low local convergence rate due to isotropic search

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Covariance Matrix Adaption (CMA-ES)

Algorithm

Improvement by using an anisotropic distribution:

• Use of a covariance matrix C_k to generate the population:

$$\mathbf{x}_i = \bar{\mathbf{x}}_k + \bar{\sigma}_k \ \mathbf{N}(0, C_k)$$

 $= \bar{\mathbf{x}}_k + \bar{\sigma}_k \ \mathbf{B}_k \mathbf{D}_k \mathbf{N}(0, Id)$

with B_k matrix of eigenvectors of $C_k^{1/2}$ and D_k diagonal matrix of eigenvalues

Iterative construction of the covariance matrix :

 $C_0 = Id$

$$C_{k+1} = \underbrace{(1-c)C_k}_{\text{previous estimate}} + \underbrace{\frac{c}{m}p_kp_k^T}_{\text{1D update}} + \underbrace{c(1-\frac{1}{m})\sum_{i=1}^{\mu}\omega^i(y^i)(y^i)^T}_{\text{update}}$$

covariance of parents

with :

p_k evolution path (moves performed during last iterations)
 yⁱ = (*xⁱ* − *x̄_k*)/*σ_k*

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

- Gradient evaluation
- Surrogate models
- Conclusion

Covariance Matrix Adaption (CMA-ES)

Summary

Properties:

• C_k is an approximation of the inverse of the Hessian matrix

- Several invariance properties:
 - Invariance under order-preserving transformations of the function
 - Invariance under scaling of the search space
 - Invariance under rotation of the search space

In practice:

- Outperforms most evolutionary methods
- Only a few parameters defined by the user

Analytical example

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Rosenbrock function

- Non-convex function "Banana valley"
- Dimension n = 16

Numerical Algorithms for Optimization and Control of PDE's Systems R. Duvigneau

quasi-Newton

36 35

R. Duvigneau

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

- Gradient evaluation
- Surrogate models
- Conclusion

Camel back function

- Dimension n = 2
- Six local optima
- Two global optima

camel back : f(x,y)=(4-2.1x^2+x^4/3)x^2 +xy + 4(-1+y^2)y^2+1.0317

solution point 🛛 🕷

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Optimization path

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

- Gradient evaluation
- Surrogate models
- Conclusion

Optimization path

R. Duvigneau

Optimization algorithms

- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Optimization path

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

Presentation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Role of the parameterization tool

- Describe the system with a few variables
- Transform a given design vector to a new engineering system

Presentation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Role of the parameterization tool

- Describe the system with a few variables
- Transform a given design vector to a new engineering system

A particular case: shape parameterization

- Discrete shape : set of moving nodes
- Parametric surface : Bézier, B-Splines, NURBS with control points
- Composite approach : set of baseline components with parameters
- Free-form deformation : deform a lattice that embeds the system

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Discrete shape representation

Principle

- Shape described by a surface grid
- Each node can be moved independently

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Discrete shape representation

Principle

- Shape described by a surface grid
- Each node can be moved independently

Advantages

- No strong assumption concerning the search space
- No need for CAD software (CAD-free)

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Shape described by a surface grid
- Each node can be moved independently

Advantages

- No strong assumption concerning the search space
- No need for CAD software (CAD-free)

Drawbacks

- Smoothing required at each optimization step
- Very large number of design variables (\sim 10,000)
- Optimized shape = surface grid

Discrete shape representation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Shape described by a parametric surface: $x(\xi) = \sum_{i=0}^{n} N_i(\xi) X_i$

Choice of basis functions N_i:

Principle

- Bézier : global influence, C^{∞}
- B-Spline : compact support, C^{k-2} (k order)
- NURBS : conic surfaces possible

Parametric shape representation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

Shape described by a parametric surface: $x(\xi) = \sum_{i=0}^{n} N_i(\xi) X_i$

- Choice of basis functions N_i:
 - Bézier : global influence, C^{∞}
 - B-Spline : compact support, C^{k-2} (k order)
 - NURBS : conic surfaces possible

Advantages

- Low number of design variables (\sim 10)
- Optimal shape is parametric and smooth
- Hierarchical representation

Parametric shape representation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

Shape described by a parametric surface: $x(\xi) = \sum_{i=0}^{n} N_i(\xi) X_i$

- Choice of basis functions N_i:
 - Bézier : global influence, C^{∞}
 - B-Spline : compact support, C^{k-2} (k order)
 - NURBS : conic surfaces possible

Advantages

- Low number of design variables (\sim 10)
- Optimal shape is parametric and smooth
- Hierarchical representation

Drawbacks

Mild assumption concerning the design space

Parametric shape representation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Composite shape representation

Principle

 Use a set of baseline components (edges, circles, etc) with parameters (lengths, angles, positions)

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

 Use a set of baseline components (edges, circles, etc) with parameters (lengths, angles, positions)

Advantages

- Optimal shape obtained from baseline components (manufacturing constraint)
- Low number of design variables
- Variables chosen according to engineering experience

Composite shape representation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

 Use a set of baseline components (edges, circles, etc) with parameters (lengths, angles, positions)

Advantages

- Optimal shape obtained from baseline components (manufacturing constraint)
- Low number of design variables
- Variables chosen according to engineering experience

Drawbacks

Strong assumption concerning the design space

Composite shape representation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Represent deformation instead of the shape
- Embed the the system in a lattice, described as parametric volume

Free-Form Deformation (FFD)

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Represent deformation instead of the shape
- Embed the the system in a lattice, described as parametric volume

Free-Form Deformation (FFD)

Advantages

Low number of design variables, whatever the system complexity

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Represent deformation instead of the shape
- Embed the the system in a lattice, described as parametric volume

Advantages

Low number of design variables, whatever the system complexity

Drawbacks

- Not easy to handle
- No representation of the optimal shape

Free-Form Deformation (FFD)

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Role of the grid generation tool

- Generate a grid in accordance with the parameterized geometry
- Requirement: suitable for computations

Presentation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Role of the grid generation tool

- Generate a grid in accordance with the parameterized geometry
- Requirement: suitable for computations

Difficulties

- Automated task
- Need for robustness (large variations of geometry)
- Need for accuracy (mesh quality maintained)

Presentation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Role of the grid generation tool

- Generate a grid in accordance with the parameterized geometry
- Requirement: suitable for computations

Difficulties

- Automated task
- Need for robustness (large variations of geometry)
- Need for accuracy (mesh quality maintained)

Possible Approaches

- Generate completely a new grid
- Deform an existing reference grid

Presentation

Complete mesh generation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Store all the steps of the mesh construction (usually in a script) with some parameters as input (geometry)
- Run the grid generation software automatically for each new geometry

Complete mesh generation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Store all the steps of the mesh construction (usually in a script) with some parameters as input (geometry)
- Run the grid generation software automatically for each new geometry

Advantages

Very large geometry changes are possible

Complete mesh generation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Store all the steps of the mesh construction (usually in a script) with some parameters as input (geometry)
- Run the grid generation software automatically for each new geometry

Advantages

Very large geometry changes are possible

Drawbacks

- Regularity of the mesh w.r.t. geometry change ?
- treatment of boundary layers tedious

Illustration

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Illustration

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Reference mesh deformation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Construct a reference mesh (initial geometry)
- Move the nodes according to geometry change (same topology)
- Need to solve an extra problem for the displacement field (e.g. structural analogy)

Reference mesh deformation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Construct a reference mesh (initial geometry)
- Move the nodes according to geometry change (same topology)
- Need to solve an extra problem for the displacement field (e.g. structural analogy)

Advantages

- Control of the grid quality
- Smoothness of the deformation

Reference mesh deformation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

- Construct a reference mesh (initial geometry)
- Move the nodes according to geometry change (same topology)
- Need to solve an extra problem for the displacement field (e.g. structural analogy)

Advantages

- Control of the grid quality
- Smoothness of the deformation

Drawbacks

Moderate geometry change

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Example: discrete mechanical analogy

Method

- Consider all edges as lineal springs and all angles as torsional springs
- Solve a linear system representing the mechanical equilibrium:

$$(K_{lin} + K_{tors} | Id) q = \begin{pmatrix} 0 \\ \overline{q} \end{pmatrix}$$

with: *K* stiffness matrices *q* displacement

 \overline{q} imposed boundary displacement

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Example: discrete mechanical analogy

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Example: use of Free-Form Deformation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

Presentation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Role of sensitivity analysis

• Compute the gradient of the cost function (e.g. drag) with respect to design variables

Presentation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Role of sensitivity analysis

• Compute the gradient of the cost function (e.g. drag) with respect to design variables

Possible Approaches

- Finite-difference approximation
- Complex estimation
- Adjoint approach

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Finite-difference approximation of the gradient

Method

Perform n + 1 or 2n simulations for perturbed design variable values x ± ee_i
 Compute approximated gradient:

$$|\nabla f(x)|_i \simeq rac{f(x+\epsilon e_i)-f(x)}{\epsilon}$$
 $|\nabla f(x)|_i \simeq rac{f(x+\epsilon e_i)-f(x-\epsilon e_i)}{2\epsilon}$

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Finite-difference approximation of the gradient

Method

Perform n + 1 or 2n simulations for perturbed design variable values x ± ee_i
 Compute approximated gradient:

$$|\nabla f(x)|_i \simeq rac{f(x+\epsilon e_i)-f(x)}{\epsilon} \qquad |\nabla f(x)|_i \simeq rac{f(x+\epsilon e_i)-f(x-\epsilon e_i)}{2\epsilon}$$

Drawbacks

- Choice of perturbation coefficient ϵ
- \blacksquare Low accuracy \rightarrow noisy cost function
- Very expensive for large n

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Finite-difference approximation of the gradient

Method

Perform n + 1 or 2n simulations for perturbed design variable values x ± ee_i
 Compute approximated gradient:

$$|
abla f(x)|_i \simeq rac{f(x+\epsilon e_i)-f(x)}{\epsilon} \qquad
abla f(x)|_i \simeq rac{f(x+\epsilon e_i)-f(x-\epsilon e_i)}{2\epsilon}$$

Drawbacks

- Choice of perturbation coefficient ϵ
- Low accuracy \rightarrow noisy cost function
- Very expensive for large n

Advantages

Non-intrusive approach

Complex estimation

Numerical Algorithms for Optimization and Control of PDE's Systems

Method

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

• Move all real variables x of the code to complex variables: z = x + iy

- The cost function (output) is also complex: f = u + iv
- The Cauchy-Riemann condition : $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \simeq \frac{v(x+i(y+h))-v(x+iy)}{h}$
- But values are real : y = 0 v(x) = 0 and u = f
- Then, the following approximation can be used:

$$abla f(x) \simeq rac{Im[f(x+ih)]}{h}$$

Propagate imaginary part of input variable to estimate gradient

Complex estimation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Move all real variables x of the code to complex variables: z = x + iy

- The cost function (output) is also complex: f = u + iv
- The Cauchy-Riemann condition : $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \simeq \frac{v(x+i(y+h))-v(x+iy)}{h}$
- But values are real : y = 0 v(x) = 0 and u = f
- Then, the following approximation can be used:

$$abla f(x) \simeq rac{Im[f(x+ih)]}{h}$$

Propagate imaginary part of input variable to estimate gradient

Advantages

Method

Accurate gradient estimation (no difference)

Complex estimation

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

• Move all real variables x of the code to complex variables: z = x + iy

- The cost function (output) is also complex: f = u + iv
- The Cauchy-Riemann condition : $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \simeq \frac{v(x+i(y+h))-v(x+iy)}{h}$
- But values are real : y = 0 v(x) = 0 and u = f
- Then, the following approximation can be used:

$$\nabla f(x) \simeq rac{Im[f(x+ih)]}{h}$$

Propagate imaginary part of input variable to estimate gradient

Advantages

Method

Accurate gradient estimation (no difference)

Drawbacks

- Move CFD code to complex !
- n simulations required

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Method

Let consider the cost function as a constrained functional:

$$f: x \mapsto f(x) = F(x, W) \in \mathbb{R}$$

with $W = W(x) \in \mathbb{R}^N$ is the solution of the state equation:

$$\Psi(x,W)=0$$

Apply chain rule:

$$\frac{df}{dx_i} = \frac{\partial F}{\partial x_i} + \frac{\partial F}{\partial W} \frac{dW}{dx_i}$$
$$\frac{\partial \Psi}{\partial x_i} + \frac{\partial \Psi}{\partial W} \frac{dW}{dx_i} = 0$$

by combining equations:

$$\frac{df}{dx_i} = \frac{\partial F}{\partial x_i} - \frac{\partial F}{\partial W} \left(\frac{\partial \Psi}{\partial W}\right)^{-1} \frac{\partial \Psi}{\partial x_i}$$

Numerical Algorithms for Optimization and Control of PDE's Systems

Method

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Finally, gradient can be computed by solving the (linear) system first:

$$\left(\frac{\partial \Psi}{\partial W}\right)^T \Pi = \left(\frac{\partial F}{\partial W}\right)^T$$

where Π are the adjoint variables, and then by computing:

$$\left(\frac{df}{dx}\right)^T = \left(\frac{\partial F}{\partial x}\right)^T - \left(\frac{\partial \Psi}{\partial x}\right)^T \Pi$$

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Finally, gradient can be computed by solving the (linear) system first:

$$\left(\frac{\partial \Psi}{\partial W}\right)^T \Pi = \left(\frac{\partial F}{\partial W}\right)^T$$

where Π are the adjoint variables, and then by computing:

$$\left(\frac{df}{dx}\right)^T = \left(\frac{\partial F}{\partial x}\right)^T - \left(\frac{\partial \Psi}{\partial x}\right)^T \Pi$$

Advantages

Method

- Adjoint system do not depend on x
- Cost rather independent from the size of x

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Method

Finally, gradient can be computed by solving the (linear) system first:

$$\left(\frac{\partial\Psi}{\partial W}\right)^{T}\Pi = \left(\frac{\partial F}{\partial W}\right)^{T}$$

where Π are the adjoint variables, and then by computing:

$$\left(\frac{df}{dx}\right)^{T} = \left(\frac{\partial F}{\partial x}\right)^{T} - \left(\frac{\partial \Psi}{\partial x}\right)^{T} \Pi$$

Advantages

- Adjoint system do not depend on x
- Cost rather independent from the size of x

Drawbacks

The adjoint system has to be constructed (intrusive approach)

Inversion of adjoint system difficult (badly conditionned)

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Some reasons to use surrogate models

- Cost function evaluations are very expensive
- Some results are just discarded (in particular with ES)
- Weak use of past results (iterative process without history)

Presentation

R. Duvigneau

- Optimization algorithms
- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Some reasons to use surrogate models

- Cost function evaluations are very expensive
- Some results are just discarded (in particular with ES)
- Weak use of past results (iterative process without history)

Principles

- Store all cost function values into a database
- Use the database to build a surrogate model
- Use the surrogate model as cheap and approximate evaluation

Presentation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Some reasons to use surrogate models

- Cost function evaluations are very expensive
- Some results are just discarded (in particular with ES)
- Weak use of past results (iterative process without history)

Principles

- Store all cost function values into a database
- Use the database to build a surrogate model
- Use the surrogate model as cheap and approximate evaluation

Some possible surrogate models

- Radial basis functions (RBFs)
- Artificial Neural Networks (ANNs)
- Gaussian processes (kriging)

Presentation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Radial Basis Functions (RBF)

Evaluation

Approximation of the function $\mathcal{J}(\mathbf{x})$, $\mathbf{x} \in \Re^n$ of the form:

$$f(\mathbf{x}) = \sum_{j=1}^{N_c} \omega_j \ \phi_j(\mathbf{x}) \tag{1}$$

where ϕ_i are radial functions:

$$\phi_j(\mathbf{x}) = \Phi(\|\mathbf{x} - \mathbf{x}_j\|) \quad \Phi(r) = e^{-\frac{r^2}{s^2}}$$
(2)

 $(\mathbf{x}_j)_{j=1,...,N_c}$ s $(\omega_j)_{j=1,...,N_c}$ points stored in the database attenuation factor weights adjusted to fit the data

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Radial Basis Functions (RBF)

Training

 $(\omega_i)_{i=1,\ldots,N_c}$ are determined from interpolation conditions:

$$f(\mathbf{x}_i) = \sum_{j=1}^{N_c} \omega_j \phi_j(\mathbf{x}_i) \quad i = 1, \dots, N_c$$
(3)

 $(\omega_i)_{i=1,\ldots,N_c}$ is the solution of the linear system:

$$\begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \dots & \phi_{N_{c}}(\mathbf{x}_{1}) \\ \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{N_{c}}(\mathbf{x}_{2}) \\ \dots & \dots & \dots & \dots \\ \phi_{1}(\mathbf{x}_{N_{c}}) & \dots & \phi_{N_{c}}(\mathbf{x}_{N_{c}}) \end{pmatrix} \begin{pmatrix} \omega_{1} \\ \omega_{2} \\ \dots \\ \omega_{N_{c}} \end{pmatrix} = \begin{pmatrix} \mathcal{J}(\mathbf{x}_{1}) \\ \mathcal{J}(\mathbf{x}_{2}) \\ \dots \\ \mathcal{J}(\mathbf{x}_{N_{c}}) \end{pmatrix}$$
(4)

s set by the user or optimized by internal algorithm

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Principle

• The vector of known function values F_N is assumed to be one realization of a Gaussian process:

$$p(F_N) = \frac{\exp\left(-\frac{1}{2}F_N^\top C_N^{-1}F_N\right)}{\sqrt{(2\pi)^N \det(C_N)}}$$

with a given covariance matrix $C_{mn} = c(x_m, x_n)$.

It can be shown that (conditional probabilities):

$$p(f_{N+1}|F_N) \propto \exp\left[-rac{(f_{N+1} - \hat{f}_{N+1})^2}{2\sigma_{f_{N+1}}^2}
ight]$$

where:

$$\hat{f}_{N+1} = k^\top C_N^{-1} F_N, \qquad \sigma_{f_{N+1}}^2 = \kappa - k^\top C_N^{-1} k$$

Gaussian processes (Kriging)

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Illustration for 1D problem

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Gaussian Processes (Kriging)

Choice of the covariance function

Distance dependent correlation, scaling, offset

$$c(x,y) = heta_1 \exp\left[-rac{1}{2}\sum_{i=1}^d rac{(x_i-y_i)^2}{r_i^2}
ight] + heta_2,$$

Parameters to be optimized $\Theta = (\theta_1, \theta_2, r_1, r_2, \dots, r_d)$

Choice of the parameters (training phase)

- Choose Θ to maximize the likelihood of the known function values
- Internal optimization

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Application to Inexact Pre-Evaluation (IPE)

Principle

- For evolutionary optimizers several evaluations are just not used
- Use surrogate models as pre-screening criterion for CFD evaluation

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Application to Inexact Pre-Evaluation (IPE)

Principle

- For evolutionary optimizers several evaluations are just not used
- Use surrogate models as pre-screening criterion for CFD evaluation

Expected benefits

- Avoid useless evaluations for evolutionary optimizers
- Reduce drastically the cost of evolutionary optmizers
- Low coupling between optimizer and metamodel

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Inexact Pre-Evaluation (IPE) approach

- **1** Set n = 0
- 2 If $n \leq N_e$ compute cost function $f(x_k^n), k = 1, ..., K$ using the exact model, else using metamodel $\tilde{f}(x_k^n), k = 1, ..., K$.
- **3** If $n > N_e$, then select a subset of points S^n for exact evaluation.
- Update the optimizer parameters (mean, standard deviation) using only the exactly evaluated cost functions
- 5 Store exactly evaluated function values into a database
- **6** If $n < N_{\text{max}}$, then n = n + 1 and go to step (iii), else STOP.

Illustration for business jet

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

 CFD evaluations for the 10% best points or points with predicted improvement

- 500 iterations
- RBF model with local database (40 pts)

Number of exact evaluations

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Number of exact evaluations

Illustration for business jet

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Application to Efficient Global Optimization (EGO)

Main ideas

- Use a metamodel to drive the search
- Use a Gaussian Process model to take into account the probability of obtaining a better design

R. Duvigneau

Optimization algorithms

- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models

Conclusion

Application to Efficient Global Optimization (EGO)

Main ideas

- Use a metamodel to drive the search
- Use a Gaussian Process model to take into account the probability of obtaining a better design

Expected benefits

- Global optimization (proof of convergence)
- Deterministic approach
- Measure of the probability of improvement

EGO algorithm

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Basics

- Build iteratively a database and corresponding Gaussian process
- Enrichement chosen in order to:
 - Minimize the current Gaussian process model
 - Explore where the probability of improvement is high

EGO algorithm

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Basics

- Build iteratively a database and corresponding Gaussian process
- Enrichement chosen in order to:
 - Minimize the current Gaussian process model
 - Explore where the probability of improvement is high

Algorithm

- Build an a priori database (Latin Hypercube Sampling)
- Construct a global Gaussian process
- **3** Find the points x_i^* that minimize / maximize a merit function :
 - Statistical lower bound
 - Probability of improvement
 - Expected improvement
- **4** Evaluate the p points $(x_i^{\star})_{i=1,\ldots,p}$ and add them in the database
- 5 Return to step 2 until convergence

Illustration for business jet

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

EGO algorithm with three merit functions

- 150 iterations
- Initial database size : 60 points

Cost function

Comparison IPE - EGO

Numerical Algorithms for Optimization and Control of PDE's Systems R. Duvigneau Cost function Optimization algorithms 16 Parameterization G−O PSO G−E IPE-LB Automated grid ↔ GMO-LB generation 0.9 Gradient evaluation Surrogate models 8.0 unction Conclusion

0.6

0.5 L

1000

2000

3000

Number of CFD

4000

5000

6000

7000

Use of surrogate models

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Main ideas

- Use all evaluations already performed
- Use expensive simulation only if required

Use of surrogate models

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Main ideas

- Use all evaluations already performed
- Use expensive simulation only if required

Advantages

- Drastic reduction of CPU cost
- Interesting for post-processing / interactive study

Use of surrogate models

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

Main ideas

- Use all evaluations already performed
- Use expensive simulation only if required

Advantages

- Drastic reduction of CPU cost
- Interesting for post-processing / interactive study

Drawbacks

- More sophisticated approach
- Restricted to problems of low dimension
Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

Parameterization

Automated grid generation

Gradient evaluation

Surrogate models

Conclusion

1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion

Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

Optimization algorithms

- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models

Conclusion

Optimization and control in CFD:

- A multi-disciplinary field:
 - Applied mathematics
 - Numerical methods
 - Physical phenomena
 - Geometry
 - Computer sciences
- Efficiency of methods are strongly problem dependent
- Efficiency depends strongly of the global coherency of the loop

Conclusion

Numerical Algorithms for Optimization and Control of PDE's Systems

R. Duvigneau

- Optimization algorithms
- Parameterization
- Automated grid generation
- Gradient evaluation
- Surrogate models
- Conclusion

Several topics have not been discussed:

- Multi-objective optimization: How to minimise several criteria ?
- Multi-disciplinary optimization: How to couple several disciplines ?
- Constrained optimization: How to take into account constraints ?
- Robust optimization: How to take into account uncertainties ?
- Hierarchical optimization: How to develop multi-level strategies ?
- Distributed optimization: How to use parallel computing ?
- Automatic differentiation: How to use AD softwares ?
- ...