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Introduction

Some examples and illustrations ...

Global optimization of the wing shape of a business aircraft

Local optimization of the shape of an airfoil

Identification of optimal parameters for flow control
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Wing design

Problem description (Piaggio-Aero P180)

Drag minimization

Lift constraint

Global variables : span, root/tip
chord ratio, sweep, twist and
incidence angles

Local variables : airfoil section (10
variables)

Cruise regime M∞ = 0.83

Euler solver (Finite-Volume)

Mesh 56,512 nodes 311,820 cells
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Wing design
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→ Convergence in about 80 iterations ∼ 960 simulations
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Wing design

Comparison of initial (red) and final (blue) wing shapes
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Wing design

Comparison of initial (top) and final (bottom) pressure fields
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Wing design

Comparison of initial (top) and final (bottom) planforms
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Airfoil modification

Problem description

Navier-Stokes, k − ω turbulence modeling

Reynolds number Re = 19 106, Mach number 0.68

Drag reduction
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Definition of shape modification: four parameters
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Airfoil modification
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Annotation = Number of CFD evaluations

→ Convergence in about 30 iterations ∼ 150 simulations
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Airfoil modification

Comparison of initial (left) and final (right) pressure fields
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Comparison of initial (black) and final (red) airfoil shapes
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Flow control

Problem description

Navier-Stokes modeling (laminar flow)

Reynolds number Re = 200

Oscillatory rotating cylinder

Objective : reduce the time-averaged drag

Two control parameters : amplitude and frequency

Mesh: 70,000 nodes 330,000 cell control system
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Flow control

Comparison of vorticity fields without (top) and with control (bottom)
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Flow control
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→ Convergence in about 5 iterations ∼ 35 simulations
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Flow control

Surrogate model of drag coefficient
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Introduction

How to carry out such an optimization process ?

What are the tools involved ?

How are they organized ?
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Design loop
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1 Optimization algorithms

2 Parameterization

3 Automated grid generation

4 Gradient evaluation

5 Surrogate models

6 Conclusion
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Presentation

Definition of an optimization problem
Minimize f (x) x ∈ Rn cost function
Subject to gi (x) = 0 i = 1, · · · , l equality constraints

hj (x) > 0 j = 1, · · · ,m inequality constraints

Role of the optimizer

Provide a candidate design vector x ∈ Rn

Some approaches

Descent methods : suitable for smooth convex functions
steepest descent, conjugate gradient, quasi-Newton, Newton methods

Pattern search methods : suitable for noisy convex functions
Nelder-Mead simplex, Torczon’s multidirectional search algorithms

Evolutionary methods : suitable for multimodal functions
genetic algorithms, evolution strategies, particle swarm optimization, ant
colony methods, simulated annealing
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Steepest descent

Algorithm

For each iteration k:

Estimation of gradient ∇f (xk )

Define search direction dk = −∇f (xk )

Line search : find the step length ρ such as :
f (xk + ρdk ) < f (xk ) + α∇f (xk ) · ρdk (Armijo rule)
f (xk + ρdk ) > f (xk ) + β∇f (xk ) · ρdk (Goldstein rule)
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Steepest descent

Summary

Properties of steepest descent method:

Proof of convergence to a local optimum

Linear convergence rate :

limk→∞
‖xk+1 − x?‖
‖xk − x?‖

= a > 0

In practice:

Unable to take into account function curvature

Oscillatory optimization path
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Quasi-Newton methods

Algorithm

Improvement of the search direction:

Definition according to the function curvature:

eHk dk = −∇f (xk ),

with eH approximation of the Hessian matrix (second-order derivative)

Iterative construction of the Hessian matrix (BFGS formula) :

eH0 = Id

eHk+1 = eHk −
1

sT
k
eHk sk

eHk sk sT
k
eHT

k +
1

yT
k sk

yk yT
k ,

with sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk )
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Quasi-Newton methods

Summary

Properties of quasi-Newton methods:

Take into account the curvature of the past iteration:

eHk+1(xk+1 − xk ) = ∇f (xk+1)−∇f (xk )

eHk positive definite (if line search efficient enough)

Proof of convergence to local optimum

Super-linear convergence rate :

limk→∞
‖xk+1 − x?‖
‖xk − x?‖

= 0

In practice:

Very efficient algorithm for convex problems (close to Newton method)

Gradient should be available
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(λ, µ)−Evolution Strategy

Algorithm

For each iteration k, according to x̄k and σ̄k :

Generate a set of λ perturbation lengths σi = σ̄k eτ N(0,1)

Generate a sample of λ individuals xi = x̄k + σi N(0, Id) (mutation)
where N(0, Id) multivariate normal distribution with 0 mean and Id
covariance matrix

Evaluate the performance of λ individuals

Choose the best µ parents among λ individuals (selection)

Update distribution properties (crossover and self-adaption) :

x̄k+1 =
1

µ

µX
i=1

x i σ̄k+1 =
1

µ

µX
i=1

σi
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(λ, µ)−Evolution Strategy

Summary

Properties of evolution strategies:

Proof of convergence to the global optimum in a statistical sense

e.g. ∀ε > 0 limk→∞ P(|f (xk )− f (x?)| 6 ε) = 1

linear convergence rate

In practice:

Able to avoid local optima

Curse of dimensionality

Low local convergence rate due to isotropic search
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Covariance Matrix Adaption (CMA-ES)

Algorithm

Improvement by using an anisotropic distribution:

Use of a covariance matrix Ck to generate the population:

xi = x̄k + σ̄k N(0,Ck )

= x̄k + σ̄k Bk Dk N(0, Id)

with Bk matrix of eigenvectors of C
1/2
k

and Dk diagonal matrix of eigenvalues

Iterative construction of the covariance matrix :

C0 = Id

Ck+1 = (1− c)Ck| {z }
previous estimate

+
c

m
pk pT

k| {z }
1D update

+ c(1−
1

m
)

µX
i=1

ωi (y i )(y i )T

| {z }
covariance of parents

with :
pk evolution path (moves performed during last iterations)

y i = (x i − x̄k )/σk
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Covariance Matrix Adaption (CMA-ES)

Summary

Properties:

Ck is an approximation of the inverse of the Hessian matrix

x̄k + σ̄k N(0, Id) x̄k + σ̄k N(0,D2) x̄k + σ̄k N(0,BD2BT )

Several invariance properties:
Invariance under order-preserving transformations of the function
Invariance under scaling of the search space
Invariance under rotation of the search space

In practice:

Outperforms most evolutionary methods

Only a few parameters defined by the user
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Analytical example

Rosenbrock function

Non-convex function ”Banana valley”

Dimension n = 16
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Analytical example

steepest-descent quasi-Newton
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Analytical example

ES CMA-ES
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Analytical example

Camel back function

Dimension n = 2

Six local optima

Two global optima
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Analytical example

Quasi-Newton Optimization path
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Analytical example

ES Optimization path
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Analytical example

CMA-ES Optimization path
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Presentation

Role of the parameterization tool

Describe the system with a few variables

Transform a given design vector to a new engineering system

A particular case: shape parameterization

Discrete shape : set of moving nodes

Parametric surface : Bézier, B-Splines, NURBS with control points

Composite approach : set of baseline components with parameters

Free-form deformation : deform a lattice that embeds the system
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Discrete shape representation

Principle

Shape described by a surface grid

Each node can be moved independently

Advantages

No strong assumption concerning the search space

No need for CAD software (CAD-free)

Drawbacks

Smoothing required at each optimization step

Very large number of design variables (∼ 10,000)

Optimized shape = surface grid
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Parametric shape representation

Principle

Shape described by a parametric surface: x(ξ) =
Pn

i=0 Ni (ξ)Xi

Choice of basis functions Ni :
Bézier : global influence, C∞

B-Spline : compact support, C k−2 (k order)
NURBS : conic surfaces possible

Advantages

Low number of design variables (∼ 10)

Optimal shape is parametric and smooth

Hierarchical representation

Drawbacks

Mild assumption concerning the design space
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Composite shape representation

Principle

Use a set of baseline components (edges, circles, etc) with parameters
(lengths, angles, positions)

Advantages

Optimal shape obtained from baseline components (manufacturing
constraint)

Low number of design variables

Variables chosen according to engineering experience

Drawbacks

Strong assumption concerning the design space
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Free-Form Deformation (FFD)

Principle

Represent deformation instead of the shape

Embed the the system in a lattice, described as parametric volume

Advantages

Low number of design variables, whatever the system complexity

Drawbacks

Not easy to handle

No representation of the optimal shape
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Presentation

Role of the grid generation tool

Generate a grid in accordance with the parameterized geometry

Requirement: suitable for computations

Difficulties

Automated task

Need for robustness (large variations of geometry)

Need for accuracy (mesh quality maintained)

Possible Approaches

Generate completely a new grid

Deform an existing reference grid
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Complete mesh generation

Principle

Store all the steps of the mesh construction (usually in a script) with some
parameters as input (geometry)

Run the grid generation software automatically for each new geometry

Advantages

Very large geometry changes are possible

Drawbacks

Regularity of the mesh w.r.t. geometry change ?

treatment of boundary layers tedious
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Illustration

parameterization initial mesh
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Reference mesh deformation

Principle

Construct a reference mesh (initial geometry)

Move the nodes according to geometry change (same topology)

Need to solve an extra problem for the displacement field (e.g. structural
analogy)

Advantages

Control of the grid quality

Smoothness of the deformation

Drawbacks

Moderate geometry change
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Example: discrete mechanical analogy

Method

Consider all edges as lineal springs and all angles as torsional springs

Solve a linear system representing the mechanical equilibrium:

(Klin + Ktors |Id) q =

„
0
q

«
with:
K stiffness matrices
q displacement
q imposed boundary displacement

ikk

ijk
iC

ijk
kC

ijk
jC

jkk

ijk j

k

i
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Example: discrete mechanical analogy

Initial grid

Deformed grid
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Example: use of Free-Form Deformation

Initial grid

Deformed grid
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Presentation

Role of sensitivity analysis

Compute the gradient of the cost function (e.g. drag) with respect to
design variables

Possible Approaches

Finite-difference approximation

Complex estimation

Adjoint approach
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Finite-difference approximation of the gradient

Method

Perform n + 1 or 2n simulations for perturbed design variable values x ± εei

Compute approximated gradient:

∇f (x)|i '
f (x + εei )− f (x)

ε
∇f (x)|i '

f (x + εei )− f (x − εei )

2ε

Drawbacks

Choice of perturbation coefficient ε

Low accuracy → noisy cost function

Very expensive for large n

Advantages

Non-intrusive approach
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Complex estimation

Method

Move all real variables x of the code to complex variables: z = x + iy

The cost function (output) is also complex: f = u + iv

The Cauchy-Riemann condition : ∂u
∂x

= ∂v
∂y
' v(x+i(y+h))−v(x+iy)

h

But values are real : y = 0 v(x) = 0 and u = f

Then, the following approximation can be used:

∇f (x) '
Im[f (x + ih)]

h

Propagate imaginary part of input variable to estimate gradient

Advantages

Accurate gradient estimation (no difference)

Drawbacks

Move CFD code to complex !

n simulations required
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Adjoint approach

Method

Let consider the cost function as a constrained functional:

f : x 7→ f (x) = F (x ,W ) ∈ R

with W = W (x) ∈ RN is the solution of the state equation:

Ψ(x ,W ) = 0

Apply chain rule:
df

dxi
=
∂F

∂xi
+

∂F

∂W

dW

dxi

∂Ψ

∂xi
+
∂Ψ

∂W

dW

dxi
= 0

by combining equations:

df

dxi
=
∂F

∂xi
−

∂F

∂W

„
∂Ψ

∂W

«−1 ∂Ψ

∂xi
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Adjoint approach

Method

Finally, gradient can be computed by solving the (linear) system first:„
∂Ψ

∂W

«T

Π =

„
∂F

∂W

«T

where Π are the adjoint variables, and then by computing:„
df

dx

«T

=

„
∂F

∂x

«T

−
„
∂Ψ

∂x

«T

Π

Advantages

Adjoint system do not depend on x

Cost rather independent from the size of x

Drawbacks

The adjoint system has to be constructed (intrusive approach)

Inversion of adjoint system difficult (badly conditionned)
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Presentation

Some reasons to use surrogate models

Cost function evaluations are very expensive

Some results are just discarded (in particular with ES)

Weak use of past results (iterative process without history)

Principles

Store all cost function values into a database

Use the database to build a surrogate model

Use the surrogate model as cheap and approximate evaluation

Some possible surrogate models

Radial basis functions (RBFs)

Artificial Neural Networks (ANNs)

Gaussian processes (kriging)
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Radial Basis Functions (RBF)

Evaluation
Approximation of the function J (x), x ∈ <n of the form:

f (x) =

NcX
j=1

ωj φj (x) (1)

where φj are radial functions:

φj (x) = Φ(‖x− xj‖) Φ(r) = e
− r2

s2 (2)

(xj )j=1,...,Nc points stored in the database
s attenuation factor
(ωj )j=1,...,Nc weights adjusted to fit the data
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Radial Basis Functions (RBF)

Training

(ωj )j=1,...,Nc are determined from interpolation conditions:

f (xi) =

NcX
j=1

ωj φj (xi ) i = 1, . . . ,Nc (3)

(ωj )j=1,...,Nc is the solution of the linear system:0BB@
φ1(x1) . . . φNc (x1)
φ1(x2) . . . φNc (x2)
. . . . . . . . .

φ1(xNc ) . . . φNc (xNc )

1CCA
8>><>>:
ω1

ω2

. . .
ωNc

9>>=>>; =

8>><>>:
J (x1)
J (x2)
. . .
J (xNc )

9>>=>>; (4)

s set by the user or optimized by internal algorithm
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Gaussian processes (Kriging)

Principle

The vector of known function values FN is assumed to be one realization of
a Gaussian process:

p(FN ) =
exp

“
− 1

2
F>N C−1

N FN

”
p

(2π)N det(CN )

with a given covariance matrix Cmn = c(xm, xn).

It can be shown that (conditional probabilities):

p(fN+1|FN ) ∝ exp

"
−

(fN+1 − f̂N+1)2

2σ2
fN+1

#

where:
f̂N+1 = k>C−1

N FN , σ2
fN+1

= κ− k>C−1
N k
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Illustration for 1D problem

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−0.5

0.0

0.5

1.0

1.5

2.0

x

f

Training data
Exact
Evaluated
Lower bound
Upper bound
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Gaussian Processes (Kriging)

Choice of the covariance function

Distance dependent correlation, scaling, offset

c(x , y) = θ1 exp

"
−

1

2

dX
i=1

(xi − yi )
2

r2
i

#
+ θ2,

Parameters to be optimized Θ = (θ1, θ2, r1, r2, . . . , rd )

Choice of the parameters (training phase)

Choose Θ to maximize the likelihood of the known function values

Internal optimization
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Application to Inexact Pre-Evaluation (IPE)

Principle

For evolutionary optimizers several evaluations are just not used

Use surrogate models as pre-screening criterion for CFD evaluation

Expected benefits

Avoid useless evaluations for evolutionary optimizers

Reduce drastically the cost of evolutionary optmizers

Low coupling between optimizer and metamodel
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Inexact Pre-Evaluation (IPE) approach

1 Set n = 0

2 If n ≤ Ne compute cost function f (xn
k ), k = 1, . . . ,K using the exact

model, else using metamodel f̃ (xn
k ), k = 1, . . . ,K .

3 If n > Ne , then select a subset of points Sn for exact evaluation.

4 Update the optimizer parameters (mean, standard deviation) using only the
exactly evaluated cost functions

5 Store exactly evaluated function values into a database

6 If n < Nmax, then n = n + 1 and go to step (iii), else STOP.
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Illustration for business jet

CFD evaluations for the 10% best points or points with predicted
improvement

500 iterations

RBF model with local database (40 pts)

Number of exact evaluations
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Cost function

Final shapes
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Application to Efficient Global Optimization (EGO)

Main ideas

Use a metamodel to drive the search

Use a Gaussian Process model to take into account the probability of
obtaining a better design

Expected benefits

Global optimization (proof of convergence)

Deterministic approach

Measure of the probability of improvement
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EGO algorithm

Basics

Build iteratively a database and corresponding Gaussian process

Enrichement chosen in order to:
Minimize the current Gaussian process model
Explore where the probability of improvement is high

Algorithm

1 Build an a priori database (Latin Hypercube Sampling)

2 Construct a global Gaussian process

3 Find the points x?i that minimize / maximize a merit function :
Statistical lower bound
Probability of improvement
Expected improvement

4 Evaluate the p points (x?i )i=1,...,p and add them in the database

5 Return to step 2 until convergence
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Illustration for business jet

EGO algorithm with three merit functions

150 iterations

Initial database size : 60 points

Cost function

KIT German - French Summer School, September 2010 75/79



Numerical
Algorithms for

Optimization and
Control of PDE’s

Systems

R. Duvigneau

Optimization
algorithms

Parameterization

Automated grid
generation

Gradient evaluation

Surrogate models

Conclusion

Comparison IPE - EGO

Cost function
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Use of surrogate models

Main ideas

Use all evaluations already performed

Use expensive simulation only if required

Advantages

Drastic reduction of CPU cost

Interesting for post-processing / interactive study

Drawbacks

More sophisticated approach

Restricted to problems of low dimension
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Conclusion

Optimization and control in CFD:

A multi-disciplinary field:
Applied mathematics
Numerical methods
Physical phenomena
Geometry
Computer sciences

Efficiency of methods are strongly problem dependent

Efficiency depends strongly of the global coherency of the loop

KIT German - French Summer School, September 2010 79/79



Numerical
Algorithms for

Optimization and
Control of PDE’s

Systems

R. Duvigneau

Optimization
algorithms

Parameterization

Automated grid
generation

Gradient evaluation

Surrogate models

Conclusion

Conclusion

Several topics have not been discussed:

Multi-objective optimization: How to minimise several criteria ?

Multi-disciplinary optimization: How to couple several disciplines ?

Constrained optimization: How to take into account constraints ?

Robust optimization: How to take into account uncertainties ?

Hierarchical optimization: How to develop multi-level strategies ?

Distributed optimization: How to use parallel computing ?

Automatic differentiation: How to use AD softwares ?

...
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