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N Internet Memory in brief
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* Internet Memory Fundation (formerly European
Archive)

— A non-profit institution devoted to the
preservation (archives) a Web collections

* Internet Memory Research,

— a spin-off which provides services on Big datasets
(crawls, analysis, classification, annotations)
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v What are we doing, and why?

 We collect and store collections of Web resources/
documents
— A Big Data Warehouse made from Web documents

— We chose the Hadoop suite for scalable storage (HDFS),
data modeling (HBase) and distributed computation
(MapReduce)

 We support navigation in archived collections

 We produce structured content extracted (from
single documents) and aggregated (from groups)




Overview of Mignify
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e Talk Outline

* Crawler (brief); document repository (brief)
* Design of Mignify

— How we build an ETL platform on top of Hadoop
* Open issues

— What we could probably do better
— What we don’t do at all (for the moment)

Questions at any time !




wne  Web-scale crawling issues (1)

 For each found URL, we need to check that it
has not already been found.

— Known as the « frontier » problem

* We implemented a dedicated data structure

— Relies on a bunch of efficient techniques:
sequential scans, signatures, Bloom filters

(+) Sustains a throughput of ~100 docs/s

(-) Huge latency.
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wwe  Web-scale crawling issues (2)
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n Our collections
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* Periodic (monthly) crawls of the Web graph

— Ex: we can collect 1 Billion resources during a 3-
weeks campaign, with a 10-servers cluster

* No complex operations at crawl time

— A « collection » is a set of unfiltered Web docs =
mostly garbage!

* We store and post-process collections
— Size? Hundreds of TBs.




e The document repository

Built on the three main components of Hadoop

 Hadoop Distributed File System (HDFS)

* A FS specialized in large, append-only files, with
replication and fault-tolerance

 HBase, a distributed document store

* More to come soon

* MapReduce = distributed computing
* Very basic, but designed for robustness




n HBase values have a structure
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structure: *
e Each value has a timestamp
 Values are grouped in
families

* And a row consists of
several families.

The "column
A row has a three-levels  family" map /Q t 1
url

NB: timestamps might be
different from one value to the
other in a same row.




ﬂ BTW, why do we have families?
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Because families are stored ContentCF MetaCF Baseline CF Feeds CF
indepently from one another (they just k1 k1 Kj kj
share the key) e ko

o The content CF is the largest Ky kn

one.
o The Meta CF is smaller
because values are smaller.
o The feeds is much smaller kp
because of small values AND less
rows represented

The smaller the CF = the more
efficient any processing
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H Some HBase internals
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HBase sorts resources by key. Root region

A set of resources in a given
range constitutes a region,

regions are assigned to region ( [km'floc][klp'locl) ) ( )
| i \
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e Hadoop essentials

FOUNDATION

Hadoop brings
Linear scalability
Data locality

* All computations are « pushed » near the data

Fault tolerance

 The computation eventually finishes, even if a
components fails,

..and it happens very often
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Mignify, a Web-scale
Extraction Platform
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e Extraction: Typical scenarios

 Full text indexers

— Collect documents, prepare for indexing

* Wrapper extraction
— Get structured information from web sites

* Entity annotation
— Annotate documents with entity references (eg, Yago)

e Classification

— Aggregate subsets (e.g., domains); find relevant topics
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N Extraction Platform
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" A framework for specifying data extraction from
very large datasets

" Easy integration and application of new extractors

* High level of genericity in terms of (i) data sources,
(ii) extractors, and (iii) data sinks

= An extraction process « specification » combines these
elements in so-called views and subscriptions.

" [currently] A single extractor engine

= Based on the specification, data extraction is processed by
a single, generic IVIapReduce jOb
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ﬂ What is an Extractor

MEMORY

A software component which
* Takes a resource as input
* Produces a set of features as output
* Does so very efficiently

Some examples

e MIME type of a document
* Title and Plain text from HTML or PDF
* Title, author, date from RSS feeds




M Eyiractors: Typical performance

MEMORY

Individual CPU cost (on an 2.5ghz i3)

Time per

Doc(ms) Docs per s
Mime Type Extractor 0,52 1923,08
HTML Text Extractor 7,50 133,33
PDF Text Extractor 75,70 13,21
Content Shingle 9,90 101,01
Structure Shingle 9,23 108,34
Feed Extractor 1,2 833,33

NB: 1,000 res/s => 11 days of processing for
1 Billion docs (one server)
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The Extraction Pipeline

MEMORY

Given a resource as input, we , annotated
| ﬁ It g filter A extractor A reSSOUrce
a a filter and an
pply — o5
extractor O_} . . 2
=
Each extractor produces L oF¢%
i Resource | | >
features which annotate the —
resource. filter B extractor B
: m oFx
The annotated resource is 5
. . —>> —> —
given as input to the next oF°
o >

pair (filter, extractor)
features B

And we iterate.




Y™ Aggregation / Classification

MEMORY

A software component which

* Takes a group of features (produced by
extractors)

e Computes some aggregated value from this group
* A classifier is a special kind of aggregator
An example
* Group resources by domain
 Compute features with an extractor

* For each group, apply a SPAM classifier
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What do we call « view »

MEMORY

Extractions are specified as « views »
 The input (HBase, files, data flows, other...) and
output (idem)
* The list of extractors to apply at resource level
* The list of aggregators to apply at group level
(opt.)
We attach views to collection, store and maintain
the view results (materialized views).

Initially we compute the views with a generic




e Evaluation: a generic MapReduce
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Lessons learned: could we do better, ... and
what we don’t do at all
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Revisiting our approach

MEMORY

= We started from the bottom
= Storage, replication fault-tolerance: essential

= Asingle primitive for computation. Robust but slow and
very limited

= We added an « abstract » layer (data model, kind of
declarative extraction queries)

" |n the wake other attempts (Pig, Hive); tailored to our
needs

= And we wrote an engine that evaluates the queries with the
primitive
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ﬂ We need to be more expressive

MEMORY

" For the moment:

" kind a multi-GROUP BY queries

" Based on asingle data source
* What if we want to combine multiple sources ?

" QOur annotations, and the ontology their refer to
= We need some syntactic extension (not essential)

" And we need a way to evaluate that: very painful
with Hadoop!




g We needa more powerful
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= Basis of MapReduce

" Two primitives which take user-defined functions
(UDF, black boxes) as input

* Designed for easy parallelisation (independence)
and fault-tolerance (materialization)

= Can we extend the primitives to other second-order
functions (eg, joins)

= Yes, with additional constaints on the UDF

= Work in progress with TU Berlin, Stratosphere




ﬂ Views and indexes
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" We produce materialized views

= Stored independently

" Much more compact than original data
" Could be used for

" Query answering (that’s the goal)

" And as access paths to raw documents

Example: « give me all Blobs in French devoted to
Syrian civil war ».




ﬂ Conclusion

MEMORY

" Mignify = a big Data Warehouse with
" Completely unstructed raw data (initially)
" Targets Petabytes of data

" Many problems typical of DWHs
= Extraction (ETL), aggregation, views...

" Need to be (partially) revisited in the context of very
heterogenous data and large-scale distribution




