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It is convenient to split history of 
automatic control into three most 
relevant periods: ‘deterministic’, 

‘stochastic’ and ‘adaptive’. 
 
Ya.Z.Tsypkin. Adaptation and learning in 
 automatic systems. Moscow: Nauka, 1968 
(New York: Academic Press, 1971) 
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ХXI century: ‘networked’ period 
Search over Web of Science:  number of papers with ‘control’ AND 

‘network’ is doubled every 5-6 years 
ва статей в рецензируемых журналах по данной тематике за 5-6 лет: 
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Examples of controlled networks 

Distributed factories                            Networks of mobile robots  
(production, transportation, finance networks)  
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Electric power networks 
     Pogromsky, A.Yu., A.L. Fradkov and D.J. Hill, Passivity based damping of power 
system oscillations. 35th IEEE Conf. Decision and Control, Kobe, 1996, pp.3876-3881. 
     D. J. Hill and G. Chen, “Power systems as dynamic networks,” IEEE Int. Symp. On 
Circuits and Systems, Kos, Greece, 2006, 722–725. 
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Control of complex crystalline lattices 
Aero E., Fradkov A.L., Andrievsky B., Vakulenko S. Dynamics 

and control of oscillations in a complex crystalline lattice.  
Physics Letters A., 2006, V. 353 (1), pp 24-29. 

 



Ecological networks 
Pchelkina I., Fradkov A.L. Control of oscillatory behavior of multi-species 

populations. Ecological Modelling 227 (2012) 1– 6. 

Energy/ 
entropy production function: 

Multi-species  
Lotka-Volterra 
model: 

Control goal:         W(X(t))  W* 
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COOPERATIVE CONTROL OF ROBOTS 

 Football of robots 
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What is control of network? 

ХХ century:  MIMO systems               ХХI century: networks  
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Control of network: problem statement 
Consider          interacting subsystems (agents)        
 
 
          - state vectors of agents,           - inputs (controls),  
          - measurable outputs 
Control goal:  synchronization (consensus) for outputs:  
 
 
P-controller (consensus protocol ):   
 
 
          is set of neighbors for    th agent 
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Control of network: special case 

 
 
 
 
 
 

          – Laplace matrix. 
 

Information graph  G:                     
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Networked controller 

 
•     - matrix of interactions in controller, 
•                - Laplace matrix of controller. 
• Control goal – consensus: 

 
 
 

Network control of network:                          
                                           - closed loop Laplace matrix 

B
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Laplace matrix properties: 
• Defect of L =  number of graph connected components  (λ1=0) 
• L  is symmetric  graph is undirected (λ2 is algebraic connectivity) 
• Spectrum of L  is in the closed right hand part half-plane 
• For digraph defect L =1  directed spanning tree exists 
 
 
 
 
 
Agaev-Chebotarev theorem 
(Aut.Rem.Control, 9, 2000, LAA, 2005):  
Defect of L = min. number of trees in  
spanning forest 
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Existing results 
Consensus conditions - I 

                                                               , xi   R1 
Consensus exists  directed spanning tree exists 

The states of the agents tend to the  
 average in initial conditions 

    (W. Ren and R.W. Beard, “Consensus seeking in 
multiagent systems under dynamically changing 
interaction topologies,” IEEE Trans. Automat. Contr., vol. 
50, no. 5, pp. 655–661, 2005.) 

     X=(x1, … ,xN )T ,      dX/dt = - KLX 

, , 1,...,i i i ix u y x i N= = = ∈
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Consensus conditions - II 
Consensus in the networks of 2nd order agents 
(W. Yu, G.Chen, M.Cao. On second-order consensus in multi-agent dynamical 

systems with directed topologies and time delays IEEE Conf. Dec.Contr. (CDC-
2009), Shanghai Dec.2009.) 

 
 
 
 

Consensus  Directed spanning tree exists and the inequality 
holds: 
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Consensus conditions - III 
Consensus in the networks of 2nd order agents with delay 
(W. Yu, G.Chen, M.Cao. IEEE CDC-2009, Shanghai Dec.2009) 

 
 
 
Let directed spanning tree exists 
and the following inequalities  
 hold: 
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Controlled synchronization of networks 

1,
( ) a ( ) , 1,...,

N

i i ij j i i
j j i

x f x c x x u i N
= ≠

= + Γ − + =∑

Most existing results deal with fully controlled 
agents, especially in adaptive control…  

Challenge:  
To design decentralized  

adaptive output feedback control 
ensuring synchronization 

 under conditions of uncertainty  
and incomplete control 
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Controlled network of linear agents: 
 

dxi/dt=Axi+Bui , yi =CTxi 

Output feedback (Diffusion coupling, Consensus protocol): 

( ), 1,...,
i

i j i
j N

u K y y i N
∈

= − =∑

W(s)=CT(sI-A)-1B – transfer matrix 

lim ( ) ( ) 0, , 1,...,i jx
x t x t i j N

→∞
− = =Control goal: 
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Passivity (Willems, 1972) 
dx/dt=f(x)+g(x)u , y=h(x) 

There is a function V(x) ≥ 0 (storage function): 

For linear systems storage function can be quadratic: 
 
V(x)=xTPx, P=PT>0        ( PA+A TP<0,  PB=CT  ) 

0

( ( )) ( (0)) ( ) ( )
t

TV x t V x y u dτ τ τ≤ + ∫



21 

Passification theorem 
 (Fradkov: Aut.Rem.Contr.,1974(12), Siberian Math.J. 1976, Europ. 
 J.Contr. 2003; Andrievsky, Fradkov, Aut.Rem.Contr., 2006 (11) ) 
      Let W(s)=CT(sI-A)-1B – transfer matrix of a linear 

system. The following statements are equivalent: 
A) There exist matrix P=PТ >0 and row vector K, such that 
     PAK+AK

T P<0, PB=(CGT), AK=A+BKCT 
 
B) Matrix GW(s) is hyper-minimum-phase 
(det[GW(s)] has Hurwitz numerator,  GCTB=(GCTB)T >0 ) 
 
C) There exists K such that feedback u=Ky+v renders 
the system strictly passive «from input v to output Gy » 

Institute for Problems of Mechanical Engineering of RAS 
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Theorem (Junussov, Fradkov, Aut. Rem.Contr., 2011, 8). 
A1. Network graph is balanced and has directed spanning 
tree. 
A2. gW(s) is hyper-minimum-phase for some g=(g1,…gn). 
(det[gW(s)] has Hurwitz numerator,  gCTB=(gCTB)T >0 ) 
  
Let K=µg, where  
 
Then synchronization is achieved and 
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Example. Network of double integrators, N=4. 
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Example. Network of double integrators, N=4. 

Simulation results. 

μ=1 

μ=0.7 

μ=0.5 

μ=0.3 
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Extension 1 (Adaptive control): 
 1. Network graph with a spanning tree 
 2. Adaptive controller: 

- tunable parameters 

Adaptation algorithm: 

where 



26 

Institute for Problems of Mechanical Engineering of RAS 
Control of Complex Systems Laboratory 

Extension 2 (Fradkov, Junussov, IEEE Conf. 
Dec.Contr., Orlando, Dec. 2011): 
 1. Network digraph with a directed spanning tree 
 
 
  
2. Nonlinear (Lurie) models of agent dynamics 
3. Clasterization:  trees in the spanning forest do 
not overlap. 
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Decentralized control of Lurie networks under bounded 
disturbances (Fradkov, Grigoriev,  Selivanov, IEEE Conf. 
Dec.Contr. Orlando, Dec. 2011): 

Control  
goal: 

or i=1,…N 
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Decentralized control of Lurie networks under bounded 
disturbances (Fradkov, Grigoriev,  Selivanov, IEEE Conf. 
Dec.Contr. Orlando, Dec. 2011): 

Adaptive controller: 

Lyapunov function: V(x1,…xN,t)=∑αi Qi(xi,t), 
αi  >0 – some weights  
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Decentralized control of Lurie networks with delayed 
couplings (Fradkov, Selivanov, Fridman, 18th World 
Congress on Aut. Control,  Milan, Aug. 2011): 

Control  goal: 
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Decentralized control of Lurie networks with delayed 
couplings (Fradkov, Selivanov, Fridman, 18th World 
Congress on Aut. Control,  Milan, Aug. 2011): 

Lyapunov functional: 

Adaptive controller: 



Phase and claster synchronization in a network of Landau-
Stuart oscillators 
• Selivanov A.A., Lehnert J, Dahms T., Hovel P., Fradkov A.L., Schoell E. 
•Adaptive synchronization in delay-coupled networks of Stuart-Landau 
oscillators. Phys.Rev. E 85, 016201 (2012). 
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Phase and claster synchronization in a network of  
Landau-Stuart oscillators (cont) 
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 Robot football at Math faculty of SPbSU 
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 Robot football at Math faculty 
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