Mobile robot algebraic localizability

Hugues Sert, Wilfrid Perruquetti, Jorge Palos and Annemarie Kökösy

Non-A Inria Lille - Nord Europe, Parc Scientifique de la Haute Borne 40, avenue Halley Bât.A, Park Plaza 59650 Villeneuve d'Ascq e-mail : wilfrid.perruquetti@Inria.fr

22 june 2012

∢ ロ ≯ → イ印

1 [Introduction and related works](#page-2-0)

2 [Setup and assumptions for localization of unicycle](#page-9-0)

3 [Localizability](#page-14-0)

- 4 [Simulation and experimental result](#page-41-0)
- **[Conclusion](#page-48-0)**

1 [Introduction and related works](#page-2-0)

[Setup and assumptions for localization of unicycle](#page-9-0)

[Localizability](#page-14-0)

- [Simulation and experimental result](#page-41-0)
- **[Conclusion](#page-48-0)**

Challenge for autonomous navigation: "Where am I?"

☞ real-time localization problem:

Real time estimation of the robot's pose (or posture $=$ position $+$ orientation) using noisy measurements

4 ロト 4 何 ト 4

- \sqrt{a} landmarks = features with known coordinates (relative measure).
- ☞ "human made" can be passive or active (ex. radio signal).
	- active landmarks as in [\[14\]](#page-53-0) (wifi infrastructure) and [\[15\]](#page-53-1) (bluetooth protocol): lack of accuracy.
	- [\[16\]](#page-53-2) uses magnetic patterns (active landmarks): needs environment modifications to work (drawback).
- $\sqrt{�}$ Avoid to modify the environment \Rightarrow natural landmarks: laser scanners, ultrasound sensors (distance) or cameras (distance, angle).

⊀ ロ ⊁ (d) → (音) → ()

☞ Trends for AGV: move to optically guided systems since the above mentioned solutions (GPS, active landmarks and wire-guided solutions) have important drawbacks.

☞ Our goal: design and analyze landmark based solution for a unicycle mobile robot equipped with a monocular camera (with one or two landmarks).

☞ Monocular camera (extract natural landmarks): corner points ([\[17,](#page-54-0) [18\]](#page-54-1)) $+$ other algorithms SIFT [\[19\]](#page-54-2) or SURF [\[20\]](#page-54-3).

☞ Single landmark based solution can be used also in the multi-landmarks case by fusing the data in order to improve the localization algorithm. $ISEN$ $Inia$

■ Step 1: Vision sensors \Rightarrow information,

■ Localization problem \sim observation problem [\[26\]](#page-56-0):

- Step 2: localizability is related to the observability problem (see [\[27,](#page-56-1) [28,](#page-56-2) [29\]](#page-56-3)).
- Step 3 observer/estimator design.

☞ Here in our algebraic approach Step 2 and 3 and merged.

Step 2:Localizability/observability:

- Linearized approximations: NO ([\[27\]](#page-56-1)),
- NL observability Hermann and Krener [\[30,](#page-57-0) [31\]](#page-57-1): YES ([\[28\]](#page-56-2)).

Step 3: Observer design [\[26\]](#page-56-0):

- [\[28\]](#page-56-2): nonlinear Luenberger-like observer combined with the projection of stationary landmarks,
- [\[27\]](#page-56-1): extended Kalman filter (EKF) in leader-follower context and observability can be tested through the Extended Output Jacobian matrix.
- [\[28,](#page-56-2) [29\]](#page-56-3) (extension to the SLAM problem): CNS (observable) = two landmarks, estimation error is minimized using some optimal control methods/

すロト (個) (変) (変

 \sqrt{a} EKF cons.: needs the inputs knowledge + noise,

 \sqrt{a} Our solution based on differential algebraic setting $+$ efficient numerical derivation of noisy signals $=$ good real-time localization (estimation of pose and velocities) using bearing only measurements.

[Introduction and related works](#page-2-0)

2 [Setup and assumptions for localization of unicycle](#page-9-0)

[Localizability](#page-14-0)

- [Simulation and experimental result](#page-41-0)
- **[Conclusion](#page-48-0)**

Setup and assumptions for localization of unicycle

Localization $=$ pose estimation w.r.t fixed frame. Setup:

- mobile robot with its kinematic model,
- **•** sensors with its measurement model

Camera + IMU

The robot - An image of the camera $ln 2$

4 D F

The landmark

WP (Inria) **[Algebraic localizability](#page-0-0)** 122-06-12 11 / 63

Fig. 1. Robot and landmark notation for the localization Robot and landmark notation for the localization

∢ ロ ▶ ∢ 伊

 Ω

 $□$ POI + image processing = angles:

$$
\alpha_{\ell} = \arctan\left(\frac{y_{r,\ell}}{x_{r,\ell}}\right) - \theta, \tag{1}
$$
\n
$$
\beta_{\ell} = \arctan\left(\frac{z_{A_{\ell}}}{\sqrt{(x_{r,\ell})^2 + (y_{r,\ell})^2}}\right). \tag{2}
$$

Measured output:

$$
\mathbf{y}_m = \mathbf{y} + \varpi,\tag{3}
$$

∢ ロ ▶ 《 何

ISEN **Communica**

Any other practical sensor setup could be consider as soon as we arrive at one of the following fives cases given in table:

Measurement assumptions: α_{ℓ} and β_{ℓ} are given by [\(1\)](#page-12-1), [\(2\)](#page-12-2) together Notations.

Table of Contents

[Introduction and related works](#page-2-0)

[Setup and assumptions for localization of unicycle](#page-9-0)

[Localizability](#page-14-0)

- [Observability vs. Localizability](#page-17-0)
- [Algebraic localizability](#page-26-0)
- [Localization as a numerical differentiation problem](#page-31-0)

[Simulation and experimental result](#page-41-0)

 $ISEN$ $Inia$

K ロ ト K 伊 ト K

 \sqrt{w} Unicycle robot: localizability = observability.

¤® Car (see [\[8,](#page-51-0) [38\]](#page-59-0)), the state vector is $(x,y,\theta,\varphi)^T$ and its kinematic model is:

$$
\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\varphi} \end{pmatrix} = \begin{pmatrix} L\cos(\theta)\sin(\varphi) & 0 \\ -L\sin(\theta)\sin(\varphi) & 0 \\ \cos(\varphi) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}.
$$
 (4)

pose is a sub-vector of the state vector.

■ observability \Rightarrow localizability (reverse is false).

ISEN **En Cria**

← ロ ▶ → 何

☞ Similarity between localizability/observability was already mentioned in [\[27,](#page-56-1) [28,](#page-56-2) [29\]](#page-56-3).

☞ linearized approximations can be non observable [\[27\]](#page-56-1), thus localization is not possible using such approximations.

☞ differential nonlinear systems theory proves the feasibility to reconstruct the state, thus the localization problem is solvable (see [\[28\]](#page-56-2) and [\[29\]](#page-56-3)).

☞ Usually, real-time localization solutions relies on non linear observer design.

Hermann and Krener in [\[30\]](#page-57-0) obtained sufficient conditions local observability rank condition from which we can deduce:

Theorem

A unicycle type mobile robot is **localizable** at a point x_0 if the co-distribution of observability is of the form $d\mathcal{O}_{\mathbf{x}_0}(\mathbf{h}) = \mathcal{O}(\mathbf{x}_0) (dx, dy, d\theta)^T$ with $rank(\mathcal{O}(\mathbf{x}_0)) = 3$.

Measures: $y = h(x)$ State: x. Here for ([??](#page-0-1)), we have $x = p$. Pose: $\mathbf{p} = (x, y, \theta)$.

ISEN **Communica**

← ロ ▶ → イ 同

Example (Trivial case: the position is measured)

জে Measured output: $\mathbf{y} = \mathbf{h}(\mathbf{x}) = (x,y)^T$.

 $\mathbb{R} \mathbb{R} d\mathcal{O}_{\mathbf{x}_0}(\mathbf{h}) = \text{span}\{dx, dy, d(u\cos(\theta)), d(u\sin(\theta))\} = \text{span}\{dx, dy, d\theta\}.$

 \mathbb{R} dim $d\mathcal{O}_{\mathbf{x}_0}(\mathbf{h}) = 3 \Rightarrow$ localizable.

Example (Case 1: the bearing angles are measured for one landmark (MA1))

േ One landmark A_1 + measurement $\mathbf{h}(\mathbf{p}) = (\alpha_1, \beta_1)^T$,

☞ There is no closed form for $dL_{\mathbf{f}}^{\ell-1}\mathbf{h}(\mathbf{x})$.

 \mathbf{F} Lengthly computation of $d\mathcal{O}_{\mathbf{x}_0}(\mathbf{h})$ prove that the rank is 2: the unicycle mobile robot is not localizable with only one landmark.

 $ISEN$ $Inia$

☞ local observability rank condition is concerned with the successive output time derivatives.

☞ For an introduction to Diff. Alegbra (for more details see [\[39,](#page-59-1) [40,](#page-59-2) [41,](#page-59-3) [34,](#page-58-0) [42,](#page-59-4) [43\]](#page-60-0)).

Some hints about the algebraic concepts and tools:

- Ring (or Field) \rightarrow differential Ring (Field) (as soon as derivation is defined Leibniz rule),
- **o** differential ideal.
- differential extension (L/F : one is bigger than the other $F \subset L$),
- \bullet notion of basis (generator and freeness), dimension of the basis is the differential transcendence degree,
- \bullet etc \ldots

I will not give details but will give a down to earth vision.

K ロ ト K 伊 ト K

Observability review: differential algebraic framework

☞ suitable for all real processes: exp, log trigonometric functions and so on satisfy ODE.

$$
x_1\ddot{x}_1 + x_1^2\dot{x}_1 + x_1^2 + \exp(x_1) = 0 \quad \Leftrightarrow \quad x_1\ddot{x}_1 + x_1^2\dot{x}_1 + x_1^2 + x_2 = 0, \n\dot{x}_2 - x_2\dot{x}_1 = 0.
$$

 Ω Ω

ISEN Komman *Craig*

4 D.K.

Observability review: differential algebraic framework Practical guide to differential Algebraic framework

$$
\dot{\mathbf{p}} = \mathbf{f}(\mathbf{p}, \mathbf{u}) = \begin{pmatrix} v \cos(\theta) \\ v \sin(\theta) \\ \omega \end{pmatrix}, \tag{5}
$$

Fit this framework (trigonometric functions) using:

$$
\begin{cases}\n z = x + iy \\
\Theta = \exp(i\theta)\n\end{cases}
$$
\n(6)

[\(5\)](#page-23-0) can be rewritten as:

$$
\dot{z} = \Theta v, \tag{7}
$$
\n
$$
\dot{\Theta} = i\Theta \omega. \tag{8}
$$

≮ロ ▶ (伊)

ISEN Caría

Observability review: differential algebraic framework

Properties: invertibility, flatness, ...

Simple characterization of the intrinsic properties of a system: invertibility, flatness (closed to controllability) [\[45,](#page-60-1) [46,](#page-60-2) [47,](#page-61-0) [48,](#page-61-1) [38\]](#page-59-0), ... sENISSEN Crain

∢ □ ▶ ⊣ n □ ▶

 Ω

Observability review: differential algebraic framework

Observability: (see [\[39\]](#page-59-1) and [\[40\]](#page-59-2))

Definition

 $\zeta \in \mathbf{F}$ is observable w.r.t. $\mathbf{z} := \{z_{\ell} : \ell \in I\} \subset \mathbf{F}$ if it is algebraic over $\mathbf{k}\langle \mathbf{z} \rangle$.

 $\sqrt{•}$ ζ = algebraic function of the components of z and a finite number of their derivatives.

Theorem

A non linear system is observable if, and only if, any state variable is a function of the input and the output variables and their derivatives up to some finite order.

> $\dot{x}_1 = x_2 + f_1(x_1),$ $\dot{x}_2 = f_2(x_1, x_2),$ $y = x_1$

 $ISEN$ $lnia$

 Ω

メロト メタト メミトメ

Theorem

A mobile robot is **localizable** with respect to u , y if, and only if, there is a non-zero irreducible differential polynomial linking the pose to the measured output y, the input u and a finite number of their time derivatives.

Example (Position is measured)

$$
\dot{z} = \Theta v,\tag{9}
$$

$$
\dot{\Theta} = i\Theta\omega. \tag{10}
$$

メロト メ都 トメ ヨ トメ

Output $y = z = x + iy$ (two sensors). Observable: $\mathbf{p_a} = \left(\mathbf{y}, \Theta = \frac{\mathbf{\dot{y}}}{v}\right)$ $\bigg)$ ^T.

 Ω

Example (MA1: bearing angles for one landmark)

$$
\dot{\mathbf{y}} = -v - i\omega \mathbf{y}.\tag{11}
$$

∢ ロ ▶ 《 何

ISEN **FOR CRZ**

 Θ cannot be obtained as an algebraic relation in terms of y, $v, ω$ and a finite number of their derivatives: robot is not localizable.

☞ localizability defect is defined using an algebraic setting and corresponds to the number of variables within the list z, Θ to be added to u, y in order to retrieve the robot localizability.

Algebraic localizability

☛ All cases MA2 to MA4 are solved (similar technics).

☛ Is there anything in between MA1 and MA2 ?

MA1-BIS: azimuth and elevation angles are measured for one landmark and one target: 4 outputs y_1, \ldots, y_4

$$
v = \frac{2z_{A_1} \dot{y}_2 y_1}{(1+y_1^2)y_2^2}
$$
(12)
\n
$$
z_{A_2} = \frac{z_{A_1} \dot{y}_2 y_1}{(1+y_1^2)y_2^2} \times \frac{(1+y_3^2)y_4^2}{\dot{y}_4 y_3}
$$
(13)
\n
$$
\omega = -i \frac{z_{A_1} y_4^2(t) (y_1(t) \dot{y}_2(t) - \dot{y}_1(t) y_2(t)) + z_{A_2} y_2^2(t) (\dot{y}_3(t) y_4(t) - y_3(t) \dot{y}_4(t))}{z_{A_1} y_1(t) y_2(t) y_4^2(t) - z_{A_2} y_2^2(t) y_3(t) y_4(t)}
$$
(14)
\n
$$
\Theta = \Theta(t_0) \frac{z_{A_1} \frac{y_1(t_0)}{y_2(t_0)} - z_{A_2} \frac{y_3(t_0)}{y_4(t_0)}}{z_{A_1} \frac{y_1(t)}{y_2(t)} - z_{A_2} \frac{y_3(t)}{y_4(t)}}
$$
(15)
\n
$$
z(t) = c_{A_1} - z_{A_1} \Theta \frac{y_1(t)}{y_2(t)}
$$
(16)
\n
$$
= \frac{z_{A_1} \frac{y_1(t)}{y_2(t)}}{y_2(t)}
$$
(16)

 Ω

Need good numerical differentiation in noisy environment

WP (Inria) **[Algebraic localizability](#page-0-0)** 1999 **Algebraic localizability** 22-06-12 30 / 63

 290

 $ISEN$ Ini_a

∋ x k

K ロ ⊁ K 倒 ⊁ K

Table: Algorithms Comparison

All we want to know is in the output signal...

Takes $x^N=0$ (Laplace) $+$ alg. annihilator \Rightarrow time domain

← ロ ▶ → イ 同

 Ω

All we want to know is in the output signal...

Real-time estimations of derivatives for noisy signals Takes $x^N=0$ (Laplace) $+$ alg. annihilator \Rightarrow time domain **∢ ロ ▶ ィ 何** つひひ

All we want to know is in the output signal...

Real-time estimations of derivatives for noisy signals Takes $x^N=0$ (Laplace) $+$ alg. annihilator \Rightarrow time domain

4 D F

つひひ

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1 x s²:
$$
s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}
$$

\nStep 2 $\frac{d^2}{ds^2}$: $2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\nStep 3 $\times \frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6}x^{(2)}(0)$
\nStep 4 Go back to the time domain:
\n $\frac{2T^5}{5!}x^{(2)}(0) = T^3 \int_0^1 (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(T\tau) d\tau$

K ロ ⊁ K 倒 ≯ K 差 ≯ K

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1 x s²:
$$
s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}
$$

\nStep 2 $\frac{d^2}{ds^2}$: $\frac{d}{ds} \left(2sX + s^2 \frac{dX}{ds}\right) = \frac{d}{ds} \left(x(0) - \frac{x^{(2)}(0)}{s^2}\right)$
\n $2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\nStep 3 x $\frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6}x^{(2)}(0)$
\nStep 4 Go back to the time domain:
\n $\frac{2T^5}{5!}x^{(2)}(0) = T^3 \int_0^1 \left(2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)\right) y(T_T)^{\text{ISIN}}_{s} \left(1 + \frac{\text{ISIN}}{s^2} + \frac{\tau}{s^2} + \frac{\tau}{s^2}\right)$

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1
$$
\times s^2
$$
: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}$
\nStep 2 $\frac{d^2}{ds^2}$: $2X + 2s \frac{dX}{ds} + 2s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\n $2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\nStep 3 $\times \frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6}x^{(2)}(0)$
\nStep 4 Go back to the time domain:
\n $\frac{2T^5}{5!}x^{(2)}(0) = T^3 \int_0^1 (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(T\tau)^{\text{ISIN}}_{s} + \frac{\text{ISIN}}{s} + \frac{\text{ISIN}}{s} = \frac{1}{s^3}$

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1
$$
\times s^2
$$
: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}$
\nStep 2 $\frac{d^2}{ds^2}$: $2X + 4s\frac{dX}{ds} + s^2\frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\nStep 3 $\times \frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2}\frac{dX}{ds} + \frac{1}{s}\frac{d^2X}{ds^2} = \frac{2}{s^6}x^{(2)}(0)$
\nStep 4 Go back to the time domain:
\n $\frac{2T^5}{5!}x^{(2)}(0) = T^3 \int_0^1 (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(T\tau) d\tau$

メロト メ都 トメ ヨ トメ

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1 x s²:
$$
s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}
$$

\nStep 2 $\frac{d^2}{ds^2}$: $2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\nStep 3 x $\frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6}x^{(2)}(0)$
\nStep 4 Go back to the time domain:
\n $\frac{2T^5}{5!}x^{(2)}(0) = T^3 \int_0^1 (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(T\tau) d\tau$

⊀ ロ ▶ ⊀ 御 ▶ ∢ 君 ▶ .

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1
$$
\times s^2
$$
: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}$
\nStep 2 $\frac{d^2}{ds^2}$: $2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3} x^{(2)}(0)$
\nStep 3 $\times \frac{1}{s^3}$: $\frac{2}{s^3} X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6} x^{(2)}(0)$
\nStep 4 Go back to the time domain:
\n $\frac{27^5}{5!} x^{(2)}(0) = T^3 \int_0^1 (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(T\tau) d\tau$

Numerical differentiation: causal Jacobi estimators

The Ball and Beam system:

 $SNR = 24.5$ dB and $T_s = 10^{-4}$

ISEN **Engine**

∢ ロ ▶ 《 何

Table of Contents

[Introduction and related works](#page-2-0)

[Setup and assumptions for localization of unicycle](#page-9-0)

[Localizability](#page-14-0)

4 [Simulation and experimental result](#page-41-0)

- [Simulation results](#page-42-0)
- [Experimental Results](#page-45-0)

Simulations: EKF knows the noise characteristic

← ロ ▶ → 伊

 Ω

Simulations: EKF does not know the noise characteristic

∢ ロ ▶ ∢ 伊

 Ω

- NON-A algorithms require less hypothesis than EKF (easier to implement),
- All results MA1-BIS, MA2 and MA3 are are better than EKF,
- MA4 and MA5 are not so usefull even if better than EKF (with the same outputs).

- Robot is equipped with an Imaging Source camera and an inertial sensor for MA2,
- Reference localization is obtained using luminous pattern hanging from the ceiling,
- The Imaging Source camera is used to get the relative angle between the robot and two points (landmark and/or target),
- This measures are process using Matlab to estimate the posture.

Table: Experimental results of NON-A algorithm

Experimental Results: MA1-BIS

[Introduction and related works](#page-2-0)

- [Setup and assumptions for localization of unicycle](#page-9-0)
- **[Localizability](#page-14-0)**
- [Simulation and experimental result](#page-41-0)
- **[Conclusion](#page-48-0)**

- Localization framework: bearing only measurement cases using optic flow information and natural landmarks.
- Localizability is defined in a differential algebraic framework (notion of localizability defect)
- Localization ⇔ numerical differentiation problem in noisy environment.
- Our solution provides pose and velocities reconstruction.

- M. Mboup, C. Join, and M. Fliess, "Numerical differentiation with annihilators in noisy environement," Numerical Algorithms, vol. 50, pp. 439–467, 2009.
- \mathbf{C} \longrightarrow , "A revised look at numerical differentiation with an application to nonlinear feedback control." Proc. 15^{th} IEEE Medit. Conf. Control Automation - IEEE MED'2007, 2007, greece.
- Î D. Liu, O. Gibaru, and W. Perruquetti, "Error analysis of jacobi derivative estimators for noisy signals," Numerical Algorithms, vol. 50, no. 4, pp. 439–467, 2011.
- From analysis for a class of numerical differentiator: application to state observation," in 48th IEEE Conf. on Decision and Control, Shanghai, China, 2009.

K ロ ト K 御 ト K 君 ト

- \mathbb{I} ---, "Differentiation by integration with jacobi polynomials," *J. Comput.* Appl. Math., vol. 235, pp. 3015–3032, 2011.
- ——, "Convergence rate of the causal jacobi derivative estimator," Lecture Notes in Computer Science, vol. 50, no. 4, pp. 439–467, 2011.
- J. Leonard and H. Durrant-Whyte, "Mobile robot localization by tracking geometric beacons," Robotics and Automation, IEEE Transactions on, vol. 7, no. 3, pp. 376–382, 1991.
- G. Campion, G. Bastin, and B. Dandrea-Novel, "Structural properties and classification of kinematic and dynamic models of wheeled mobile robots," Robotics and Automation, IEEE Transactions on, vol. 12, no. 1, pp. 47–62, 1996.
- J. Borenstein, H. Everett, and L. Feng, "Where am I? Sensors and methods for mobile robot positioning," University of Michigan, 1996.
- h T. Lau, Y. Liu, and K. Lin, "A robust state estimation method against gnss outage for unmanned miniature helicopters," in Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, pp. 1116–1122.
- J. Levinson and S. Thrun, "Robust vehicle localization in urban environments using probabilistic maps," in Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp. 4372–4378.
- K. Ohno, T. Tsubouchi, B. Shigematsu, and S. Yuta, "Differential gps and odometry-based outdoor navigation of a mobile robot," Advanced Robotics, vol. 18, no. 6, pp. 611–635, 2004.

K ロ ト K 御 ト K 君 ト

- H. Chae, S. Choi, W. Yu, J. Cho, et al., "Autonomous navigation of mobile robot based on dgps/ins sensor fusion by ekf in semi-outdoor structured environment," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 1222–1227.
- J. Biswas and M. Veloso, "Wifi localization and navigation for autonomous indoor mobile robots," in Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp. 4379–4384.
- A. Raghavan, H. Ananthapadmanaban, M. Sivamurugan, and B. Ravindran, "Accurate mobile robot localization in indoor environments using bluetooth," in Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, pp. 4391–4396.
- W. You, B. Choi, B. Kim, H. Moon, J. Koo, W. Chung, and H. Choi, "Global localization for a small mobile robot using magnetic patterns," in Robotics and Automation (ICRA), 2010 IEEE International Conference IEEE, pp. 2618–2623.

- C. Harris and M. Stephens, "A combined corner and edge detector," in Alvey vision conference, vol. 15. Manchester, UK, 1988, p. 50.
- Î J. Shi and C. Tomasi, "Good features to track," in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on. IEEE, 1993, pp. 593–600.
- ì D. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.
	- H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features," Computer Vision–ECCV 2006, pp. 404–417, 2006.
- ì G. Jang, S. Kim, J. Kim, and I. Kweon, "Metric localization using a single artificial landmark for indoor mobile robots," in IEEE International Conference on Intelligent Robots and Systems, 2005, pp. 1992 – 1997. $ISEN$ $Inia$
- T. Lemaire, S. Lacroix, and J. Sola, "A practical 3D bearing-only SLAM algorithm," in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 2449–2454.
- P. Rudol, M. Wzorek, and P. Doherty, "Vision-based pose estimation for autonomous indoor navigation of micro-scale unmanned aircraft systems," in Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp. 1913–1920.
- A. Bais, R. Sablatnig, and J. Gu, "Single landmark based self-localization of mobile robots," Computer and Robot Vision, Canadian Conference, p. 67, 2006.
- N. Dao, B. You, and S. Oh, "Visual navigation for indoor mobile robots using a single camera," in IEEE International Conference on Intelligent Robots and Systems, 2005. ISEN **Carlo**

≮ロ ▶ (伊)

- G. Besançon, *Nonlinear observers and applications*. Springer, 2007, vol. 363.
- A. Bicchi, D. Prattichizzo, A. Marigo, and A. Balestrino, "On the observability of mobile vehicles localization," in IEEE Mediterranean Conference on Control and Systems, 1998.
- ì F. Conticelli, A. Bicchi, and A. Balestrino, "Observability and nonlinear observers for mobile robot localization," in IFAC International Symposium on Robot Control, 2000.
- ì A. Martinelli and R. Siegwart, "Observability analysis for mobile robot localization," in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 1471–1476.

←ロ ▶ ← (伊)

- R. Hermann and A. Krener, "Nonlinear controllability and observability," Automatic Control, IEEE Transactions on, vol. 22, no. 5, pp. 728–740, 1977.
- A. Isidori, Nonlinear Control Systems, 2nd ed. Berlin: Springer-Verlag, 1989.
- J. Villagra, B. D'Andrea Novel, M. Fliess, and H. Mounier, "A diagnosis-based approach for tire-road forces and maximum friction estimation," Control Engineering Practice, vol. 19, no. 2, pp. 174–184, 2011. [Online]. Available: <http://hal.inria.fr/inria-00533586>

J. Villagra, B. D'Andrea Novel, S. Choi, M. Fliess, and H. Mounier, "Robust stop-and-go control strategy: an algebraic approach for nonlinear estimation and control," Int. J. Vehicle Autonomous Systems, vol. 7, no. 3/4, pp. 270–291, 2009. [Online]. Available: <http://hal.inria.fr/inria-00419445> ISEN **Common Continent**

◆ ロ → → 伊

- M. Fliess, M. Mboup, H. Mounier, and H. Sira-Ramírez, "Questioning some paradigms of signal processing via concrete examples," in *in* Algebraic Methods in Flatness, Signal Processing and State Estimation, G. S.-N. H. Sira-Ramírez, Ed. Editiorial Lagares, 2003, pp. 1–21.
- M. Defoort, A. Kokosy, T. Floquet, W. Perruquetti, and J. Palos, "Motion planning for cooperative unicycle-type mobile robots with limited sensing ranges: A distributed receding horizon approach," Robotics and Autonomous Systems, vol. 57, no. 11, pp. 1094–1106, 2009.
- M. Defoort, J. Palos, A. Kokosy, T. Floquet, and W. Perruquetti, "Performance-based reactive navigation for non-holonomic mobile robots," Robotica, vol. 27, no. 02, pp. 281–290, 2008.
- C. Canudas De Wit, G. Bastin, and B. Siciliano, Theory of robot control. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1996.

- P. Rouchon, M. Fliess, J. Levine, and P. Martin, "Flatness, Motion Planning and Trailer Systems," in Proceedings of the 32 Conference on Decision and Control, 1993.
- י
ה S. Diop and M. Fliess, "Nonlinear observability, identifiability, and persistent trajectories," in Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, December 1991.

——, "On nonlinear observability," in Proc. 1st Europ. Control Conf, 1991, pp. 152–157.

Î M. Fliess, C. Join, M. Mboup, and H. Sira-Ramírez, "Compression différentielle de transitoires bruités," C.R. Acad. Sci., vol. I(339), pp. 821–826, 2004, paris.

ì M. Fliess and H. Sira-Ramírez, "An algebraic framework for linear identification," *ESAIM Control Optim. Calc. Variat.*, vol. 9, pp. 151–168
2002 - SENIS *Latio* 2003.

- M. Fliess, "Generalized controller canonical form for linear and nonlinear dynamics," Automatic Control, IEEE Transactions on, vol. 35, no. 9, pp. 994–1001, 1990.
- G. Conte, A. Perdon, and C. Moog, "The differential field associated to a general analytic nonlinear dynamical system," Automatic Control, IEEE Transactions on, vol. 38, no. 7, pp. 1120 –1124, jul 1993.
- M. Fliess, J. Levine, P. Martin, and P. Rouchon, "Sur les systèmes non linéaires différentiellement plats," Comptes rendus de l'Académie des sciences. Série 1, Mathématique, vol. 315, no. 5, pp. 619–624.
	- ——, "Flatness and defect of non-linear systems: introductory theory and examples," International Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

- ——, "A Lie-Backlund approach to equivalence and flatness of nonlinear systems," IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 922–937, 1999. [Online]. Available: [http://ieeexplore.ieee.org/](http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=763209) [lpdocs/epic03/wrapper.htm?arnumber=763209](http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=763209)
- J. Lévine, "On Necessary and Sufficient Conditions for Differential Flatness," Arxiv preprint math0605405, pp. 47–90, 2006. [Online]. Available: <http://arxiv.org/abs/math/0605405>
- I. Khan and R. Ohba, "New finite difference formulas for numerical differentiation," J. Comput. Appl. Math., vol. 126, pp. 269–276, 2000.
- K. Rahul and S. Bhattacharyya, "One-sided finite-difference approximations suitable for use with richardson extrapolation," J. Comput. Phys., vol. 219, pp. 13–20, 2006.
- Î R. Qu, "A new approach to numerical differentiation and integration," ISEN *Chria* Math. Comput., vol. 24, no. 10, pp. 55–68, 199[6.](#page-60-3)

- A. Ramm and A. Smirnova, "On stable numerical differentiation," Math. Comput., vol. 70, pp. 1131–1153, July 2001.
- Î A. Savitzky and M. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem., vol. 36, pp. 1627–1638, 1964.
- Î P. Gorry, "General least-squares smoothing and differentiation by the convolution (savitzky-golay) method," Anal. Chem., vol. 62, pp. 570–573, 1990.
- Î P. Barak, "Smoothing and differentiation by an adaptive-degree polynomial filter," Anal. Chem., vol. 67, pp. 2758–2762, 1995.
- \mathbf{L} S. Diop, J. Grizzle, P. Moraal, and A. Stefanopoulou, "Interpolation and numerical differentiation for observer design," in Proc. Amer. Control Conf., Baltimore, 1994, pp. 1329–1333. $ISEN$ Ini_a

K ロ ト K 御 ト K 澄 ト

- X. Shao and C. Ma, "A general approach to derivative calculation using waveletnext term transform," Chemometrics and Intelligent Laboratory Systems, vol. 69, pp. 157–165, 2003.
- Î L. Nie, S. Wu, X. Lin, L. Zheng, and L. Rui, "Approximate derivative calculated by using continuous wavelet transform," J. Chem. Inf. Comput. Sci., vol. 42, pp. 274–283, 2002.
- Î X. Shao, C. Pang, and Q. Su, "A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform," Fresenius' J. Anal. Chem., vol. 367, pp. 525–529, 2000.
- ì A. Leung, F. Chau, and J. Gao, "Wavelet transform: A method for derivative calculation in analytical chemistry," Anal. Chem., vol. 70, pp. 5222–5229, 1998.
- \mathbf{r} S. Diop, J. Grizzle, and F. Chaplais, "On numerical differentiation algorithms for nonlinear estimation," in Proc. 39th IEEE ϵ_0 Oecis Control, Sidney, 2000. **≮ロ ▶ (伊)** つへへ

- C. Fu, X. Feng, and Z. Qian, "Wavelets and high order numerical differentiation," Appl. Math. Model., vol. 34, pp. 3008–3021, 2010.
- F. Dou, C. Fu, and Y. Ma, "A wavelet-galerkin method for high order numerical differentiation," Appl. Math. Comput., vol. 215, pp. 3702–3712, 2010.
- L. Y., "A perturbation method for numerical differentiation," Appl. Math. Comput., vol. 199, pp. 368–374, 2008.
- h Z. Qian, C. Fu, and X. Feng, "A modified method for high order numerical derivatives," Appl. Math. Comput., vol. 182, pp. 1191–1200, 2006.
- ì Z. Qian, C. Fu, X. Xiong, and T. Wei, "Fourier truncation method for high order numerical derivatives," Appl. Math. Comput., vol. 181, pp. 940–948, 2006.

ISEN **Entra**

- J. Kauppinen, D. Moffatt, H. Mantsch, and D. Cameron, "Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours," Anal. Chem., vol. 53, pp. 1454–1457, 1981.
- D. Hào, A. Schneider, and H. Reinhardt, "Regularization of a non-characteristic cauchy problem for a parabolic equation," Inverse Probl., vol. 11, no. 6, pp. 1247–1264, 1995.

- D. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley & Sons Inc., 1993.
- Î D. Murio, C. Mejía, and S. Zhan, "Discrete mollification and automatic numerical differentiation," Comput. Math. Appl., vol. 35, pp. 1–16, 1998.
- ì J. Cullum, "Numerical differentiation and regularization," SIAM J. Numer. Anal., vol. 8, pp. 254–265, 1971.
- Î M. Hanke and O. Scherzer, "Inverse problems light: numerical differentiation," Am. Math. Monthly, vol. 108, pp. 512–521, 2001.
- Î G. Nakamura, S. Wang, and Y. Wang, "Numerical differentiation for the second order derivatives of functions of two variables," J. Comput. Appl. Math., vol. 212, pp. 341–358, 2008.
- Î T. Wei, Y. Hon, and Y. Wang, "Reconstruction of numerical derivatives from scattered noisy data," Inverse Probl., vol. 21, pp. $65\sqrt{672}$
- Y. Wang, X. Jia, and J. Cheng, "A numerical differentiation method and its application to reconstruction of discontinuity," Inverse Probl., vol. 18, pp. 1461–1476, 2002.
- C. Lanczos, Applied Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1956.
- S. Rangarajana and S. Purushothaman, "Lanczos' generalized derivative for higher orders," J. Comput. Appl. Math., vol. 177, pp. 461–465, 2005.
- h Z. Wang and R. Wen, "Numerical differentiation for high orders by an integration method," J. Comput. Appl. Math., vol. 234, pp. 941–948, 2010.
- M. Mboup, "Parameter estimation for signals described by differential equations," Appl. Anal., vol. 88, pp. 29–52, 2009.

K ロ ▶ (n 個) ((重) (

- D. Liu, O. Gibaru, W. Perruquetti, M. Fliess, and M. Mboup, "An error analysis in the algebraic estimation of a noisy sinusoidal signal," in $16th$ Mediterranean Conf. on Control and Automation (MED'08), Ajaccio, France, 2008.
- M. Fliess, "Analyse non standard du bruit," C.R. Acad. Sci., vol. I(342), pp. 797–802, 2006, paris.

The momentum communications numériques - \mathbb{R} - $\mathbb{$ Questioning the signal to noise ratio in digital communications," in: International Conference in Honor of Claude Lobry, Revue africaine d'informatique et de Mathématiques appliquées, vol. 9, pp. 419–429, 2008.

 \mathbb{R} \longrightarrow , "Critique du rapport signal à bruit en communications numériques," ARIMA, vol. 9, pp. 419–429, 2008, paris.

 $ISEN$ Ini_a

K ロ ⊁ K 個 ≯ K 君 ⊁

- L. Schwartz, Théorie des distributions, Hermann, Ed. Hermann, 1966, hermann, Paris.
- ו M. Fliess and H. Sira-Ramírez, "Identification of continuous-time models from sampled data," chapter Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques. Advances in Industrial Control, 2008, springer.
- A. Charalampidis and G. Papavassilopoulos, "Computationally efficient kalman filtering for a class of nonlinear systems," IEEE Transactions on Automatic Control, vol. 56, pp. 483–491, 2011.
- J. UHLMANN, "Algorithms for multiple-target tracking," American Scientist, vol. 80, pp. 128–141, 1992.

≮ロ ▶ (伊)