Estimation

W. Perruquetti

Non-A INRIA - LNE, Parc Scientifique de la Haute Borne 40, avenue Halley Bât.A, Park Plaza 59650 Villeneuve d'Ascq e-mail : wilfrid.perruquetti@inria.fr

May 2011

イロト イ部 トイ君 トイ君 トー WP [Some estimation problems via Differential Algebraic Annihilators](#page-117-0)

 $\mathbb{C} \mathbb{R}^d$

 OQ

Þ

Table of Contents

1 [Non-A \(ex ALIEN\)](#page-11-0)

- 2 [Some introductory examples](#page-19-0)
- 3 [Preliminary remarks](#page-32-0)
- 4 [Dual core Non-A](#page-40-0)
- 5 [Non-A Technical concerns](#page-103-0)

 \equiv

 Ω

LAGIS CNRS (150 people. & 1 ME p.y.w.s)

Teams

- **4** Méthodes et Outils pour la Conception Intégrée de Systèmes (MOCIS) : Pr. Belkacem Ould Bouamama.
- 2 Systèmes Tolérants aux Fautes (STF) : Pr. Vincent Cocquempot.
- ³ Optimisation et Supervision des Systèmes Complexes. (OPTISSC) : Pr. Slim Hammadi.
- **4** Nonlinear & Delay Syst. (SyNeR) : Dr. Thierry Floquet.
- **5** Signal & Images (SI) : Pr. Emmanuel Duflos.

LAGIS CNRS (150 people. & 1 ME p.y.w.s)

Teams

- **4** Méthodes et Outils pour la Conception Intégrée de Systèmes (MOCIS) : Pr. Belkacem Ould Bouamama.
- 2 Systèmes Tolérants aux Fautes (STF) : Pr. Vincent Cocquempot.
- ³ Optimisation et Supervision des Systèmes Complexes. (OPTISSC) : Pr. Slim Hammadi.
- **4** Nonlinear & Delay Syst. (SyNeR) : Dr. Thierry Floquet.
- **•** Signal & Images (SI) : Pr. Emmanuel Duflos.

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

LAGIS CNRS (150 people. & 1 ME p.y.w.s)

Teams

- **4** Méthodes et Outils pour la Conception Intégrée de Systèmes (MOCIS) : Pr. Belkacem Ould Bouamama.
- 2 Systèmes Tolérants aux Fautes (STF) : Pr. Vincent Cocquempot.
- ³ Optimisation et Supervision des Systèmes Complexes. (OPTISSC) : Pr. Slim Hammadi.
- **4** Nonlinear & Delay Syst. (SyNeR) : Dr. Thierry Floquet.
- **•** Signal & Images (SI) : Pr. Emmanuel Duflos.

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

SyNeR

General facts over the 4 last years

- **4 6 bench-tests have been developed** (see some [videos here\)](http://syner.ec-lille.fr/~richard/manips.htm)
- ² awarded several prizes (Automatica best survey paper, 2nd hottest paper in Automatica in 2011)
- ³ 4 ex-PhD recruited as CR2: E. Moulay (CNRS, [IRCCyN](http://www.irccyn.ec-nantes.fr) 2007), F. Hamerlain (CDTA, Algeria, 2008), F. Caron (INRIA, [Bordeaux - Sud-Ouest](http://www.inria.fr/inria/organigramme/fiche_ur-bordeaux.fr.html) 2008), A. Seuret (CNRS, [gipsa-lab](http://www.gipsa-lab.inpg.fr/) 2008).
- ⁴ a CR2 CNRS, L. Hetel, and a new CR2 INRIA, G. Zheng joined the team respectively in October 2008 and October 2009 (Maybe one more in 2011).

 Ω

SyNeR

Permanent Members

- 2 Pr. (Wilfrid Perruquetti, Jean-Pierre Richard),
- 3 Ass. Pr. (Lotfi Belkoura, Annemarie Kökösy, Alexandre Kruszewski),
- 2 CR CNRS (Thierry Floquet, Laurentiu Hetel), 1 CR INRIA $(Gang Zeng)$ + may be one more soon.

Research field

The team SyNeR (<http://syner.free.fr>) is dealing with the estimation and control of dynamic systems. It leads both theoretical and applied research.

 $C_{\rm MS}$

 Ω

ZINRIA

SyNeR

Research fields (cont'd)

- **1** Time-Delay Systems. Theory: exponential performances for time-varying delays, unknown delay observers, fast delay identification, nonlinear systems with delay. Applications: networked control, spray pressure control, IC engine with EGR, aeronautics, hydraulic power plants ...
- ² NonLinear Systems. Theory: switched systems, higher order sliding mode control (SMC) and estimation, finite-time stabilization, unknown input observers, fault detection, cryptography. Applications: IC engine, stepper motor, under-actuated systems, robotics (including mobile robots), magnet bearing, AFM ...

SyNeR

[Non-A](http://www.inria.fr/recherche/equipes/Non-A.fr.html) (Non-Asymptotic, Ex ALIEN)

joint project-team with [Ecole centrale de Lille,](http://www.ec-lille.fr) [CNRS](http://www.cnrs.fr) (LAGIS), is dealing with identification and estimation.

☞ Our solutions leads to fast identification or observation algorithms that allow for real time, closed-loop applications, as well as implementable estimation of the n-th order derivatives of a noisy signal, used for the so-called "model-free control". ☞ LAGIS results include delay identification, numerical implementation aspect, estimation for hybrid or time-varying systems, multidimensional derivation, oscillating systems ... Various concrete applications have been already tested successfully. Among them, just mention for Lille: aeronautics with [ONERA\)](http://www.onera.fr), hydraulic power plants (EDF grant 2008) and AFM (atomic force microscope) improvement for nanovirology [\(ENSAM](http://www.ensam.fr) [a](#page-9-0)[nd](#page-0-0) [Lille 2](http://www.univ-lille2.fr)[\).](#page-0-0)

SyNeR

[RoboCoop](http://syner.ec-lille.fr/robocoop/)

☞ cooperative robots.

IS Sponsor: ARCIR 04-07 (Region Nord - Pas de Calais, Europe, LAGIS), two InterReg programs 04-07 (Kent University, ISEN) and SYSIASS (The Autonomous and Intelligent Healthcare System) 10-13 (Ecole Centrale de Lille, ISEN, Université de Kent, Université d'Essex, Groupe Hospitalier de l'Institut Catholique de Lille, Hôpital Universitaire de Kent, Centre de rééducation Marc Sautelet, Villenueve d'Ascq, Centre de rééducation Jacques Calvé, Berck sur Mer, Hôpital de Garches).

SyNeR

[RoboCoop](http://syner.ec-lille.fr/robocoop/)

☞ Fundamental results are: management of the communication delays between the robots; collaborative path planning (flatness-based) and tracking (integral SMC-based) for autonomous robots fleets; hybrid systems for fleet management (decision events $+$ control variables); sensors data fusion for autonomous robots. ☞ Three concrete test-beds have been realized: two fleets of mobile robots Pekee and Miabot (available) and serial Mitsubishi robots coupled with an haptic interface (operative since 2010). Within the InterReg project SYSIASS (The Autonomous and Intelligent Healthcare System) an autonomous wheeled chair is under development.

 $\mathbb{C}^{\mathbb{N}}$

つくい

MINKIA

[Non-A \(ex ALIEN\)](#page-11-0)

[Some introductory examples](#page-19-0) [Preliminary remarks](#page-32-0) [Dual core Non-A](#page-40-0) [Non-A Technical concerns](#page-103-0)

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Table of Contents

1 [Non-A \(ex ALIEN\)](#page-11-0)

• [Non-A project members and location](#page-11-0)

• [Introduction to the main ideas](#page-14-0)

[Some introductory examples](#page-19-0)

[Preliminary remarks](#page-32-0)

[Dual core Non-A](#page-40-0)

[Non-A \(ex ALIEN\)](#page-11-0)

[Some introductory examples](#page-19-0) [Preliminary remarks](#page-32-0) [Dual core Non-A](#page-40-0) [Non-A Technical concerns](#page-103-0)

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Non-A project members and location

☞ Papers can be found at http://hal.inria.fr/.

 QQ WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Alien project members and location

- Jean-Pierre Richard Pr EC Lille, LAGIS, Scientific head
- Wilfrid Perruquetti Pr EC Lille, Permanent head
- Lotfi Belkoura MC USTL, LAGIS
- **Thierry Floquet CR CNRS, LAGIS**
- Olivier Gibaru Pr ENSAM,
- **Gang Zheng CR INRIA**
- (Associate Members)
- Mamadou Mboup Prof. Univ. Reims
- Cédric Join MC Nancy 1, CRAN
- Jean-Pierre Barbot Pr ENSEA, ECS
- Samer Riachy MdC ENSEA, ECS

 $+$ n $+$ $+$ $+$ $-$

[Non-A \(ex ALIEN\)](#page-11-0)

[Some introductory examples](#page-19-0) [Preliminary remarks](#page-32-0) [Dual core Non-A](#page-40-0) [Non-A Technical concerns](#page-103-0)

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Table of Contents

1 [Non-A \(ex ALIEN\)](#page-11-0)

• [Non-A project members and location](#page-11-0)

o [Introduction to the main ideas](#page-14-0)

[Some introductory examples](#page-19-0)

[Preliminary remarks](#page-32-0)

[Dual core Non-A](#page-40-0)

[Non-A Technical concerns](#page-103-0)

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Introduction to the main ideas Parametric estimation and its applications

☞ Parametric estimation :

$$
y = F(x, \Theta) + n,\tag{1}
$$

- observed signal y, "true" signal x and Θ (parameters),
- \bullet n is a noise corrupting the observation.
- \mathbb{F} Find a "good" Θ_{\approx} (Existing results : proba. knowledge of *n*). ☞ Alien new standpoint of algebraic flavour:
	- differential algebra which plays with respect to differential equations a similar rôle to commutative algebra with respect to algebraic equations;
	- module theory (linear algebra over rings which are not necessarily commutative);
	- **O** Operational calculus which was a most classical tool among control and mechanical cens INRIA engineers. イロト イ押 トイラト イラト \equiv Ω

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Introduction to the main ideas Parametric estimation and its applications

☞ In automatic control :

- identifiability and identification of uncertain parameters in the system equations, including delays, (L or NL and even for closed loop systems);
- estimation of state variables, which are not measured (even for closed loop systems);
- fault diagnosis and isolation;
- observer-based chaotic synchronization.
- ☞ Signal, image and video processing : noise removal, i.e. estimation
	- signal modelling, demodulation, restoration, (blind) equalisation, etc,
	- Data compression, Decoding for error correcting codes

 Ω

イロメ イ何メ イヨメ イヨメ

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Introduction to the main ideas Parametric estimation and its applications

☞ In automatic control :

- identifiability and identification of uncertain parameters in the system equations, including delays, (L or NL and even for closed loop systems);
- estimation of state variables, which are not measured (even for closed loop systems);
- fault diagnosis and isolation;
- observer-based chaotic synchronization.

☞ Signal, image and video processing : noise removal, i.e. estimation

- signal modelling, demodulation, restoration, (blind) equalisation, etc,
- Data compression, Decoding for error correcting codes

 Ω

イロメ イ母メ イヨメ イヨメ

[Non-A project members and location](#page-11-0) [Introduction to the main ideas](#page-14-0)

Introduction to the main ideas Parametric estimation and its applications

☞ In automatic control :

- identifiability and identification of uncertain parameters in the system equations, including delays, (L or NL and even for closed loop systems);
- estimation of state variables, which are not measured (even for closed loop systems);
- fault diagnosis and isolation;
- observer-based chaotic synchronization.

☞ Signal, image and video processing : noise removal, i.e. estimation

- signal modelling, demodulation, restoration, (blind) equalisation, etc,
- Data compression, Decoding for error correcting codes

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

Table of Contents

1 [Non-A \(ex ALIEN\)](#page-11-0)

2 [Some introductory examples](#page-19-0) [A first simple example: parameter estimation](#page-19-0)

[Second simple example: numerical derivation](#page-23-0)

[Preliminary remarks](#page-32-0)

[Dual core Non-A](#page-40-0)

[Non-A Technical concerns](#page-103-0)

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A first simple example: parameter estimation

$$
\dot{y}(t) = ay(t) + u(t) + \gamma_0.
$$
\n(2)

where a is an unknown parameter to be identified and γ_0 is an unknown, constant perturbation.

Using operational calculus and $y_0 = y(0)$:

$$
s\widehat{y}(s) = a\widehat{y}(s) + \widehat{u}(s) + y_0 + \frac{\gamma_0}{s}.
$$

■ Eliminate the term γ_0 : use operator $D_s \times s$:

$$
\frac{d}{ds} \left[s \left\{ s\widehat{y}(s) = a\widehat{y}(s) + \widehat{u}(s) + y_0 + \frac{\gamma_0}{s} \right\} \right]
$$

\n
$$
\Rightarrow 2s\widehat{y}(s) + s^2 \widehat{y}'(s) = a \left(s\widehat{y}'(s) + \widehat{y}(s) \right) + s\widehat{u}'(s) + \widehat{u}(s) + y_0.
$$

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A first simple example: parameter estimation

¤ Estimation of parameter a : Assume $y_0 = 0$ (if not use D_s^2 to eliminate y_0), for any $\nu > 0$.

$$
s^{-\nu}\left[2s\widehat{y}(s)+s^2\widehat{y}'(s)\right]=s^{-\nu}\left[a(s\widehat{y}'(s)+\widehat{y}(s))+s\widehat{u}'(s)+\widehat{u}(s)\right].
$$

$$
a = \frac{2\int_0^T d\lambda \int_0^{\lambda} y(t)dt - \int_0^T ty(t)dt + \int_0^T d\lambda \int_0^{\lambda} tu(t)dt - \int_0^T d\lambda \int_0^{\lambda} d\sigma \int_0^{\sigma} u(t)dt}{\int_0^T d\lambda \int_0^{\lambda} d\sigma \int_0^{\sigma} y(t)dt - \int_0^T d\lambda \int_0^{\lambda} ty(t)dt}, (\nu = 3).
$$
\n(3)

- two kind of operations $-\sqrt{1}$ $-\frac{1}{x}$
- \bullet $T > 0$ can be very small \Rightarrow fast estimation.
- ν number of iterative integrals \Rightarrow filtering (mean processing) : one can also use low pass filter $s \to (1 + \tau s)$.
- including a noise (fast fluctuating signal), of zero mean $\dot{y}(t) = ay(t) + u(t) + \gamma_0 + n(t)$ (filteri[ng\)](#page-20-0)

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A first simple example: parameter estimation

This example, even simple, clearly demonstrated how ALIEN's techniques proceed:

- \bullet they are algebraic: operations on s-functions;
- they are non-asymptotic: parameter a is obtained from [\(3\)](#page-21-0) in finite time;
- they are deterministic: no knowledge of the statistical properties of the noise n is required.

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

Table of Contents

1 [Non-A \(ex ALIEN\)](#page-11-0)

2 [Some introductory examples](#page-19-0) [A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

- [Preliminary remarks](#page-32-0)
- [Dual core Non-A](#page-40-0)
- [Non-A Technical concerns](#page-103-0)

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

Let us recall

$$
\mathcal{L}^{-1}\left(\frac{1}{s^m}\frac{d^nX(s)}{ds^n}\right) = \frac{(-1)^nt^{m+n}}{(m-1)!} \int_0^1 w^{m-1,n}(\tau)x(t\tau)d\tau, \quad m \ge 1, \quad n \in \mathbb{N}
$$
\n(4)

where

$$
w^{m,n}(t) = (1-t)^m t^n \tag{5}
$$

☞ Normalized

 \mathbb{R} The noise passing through the filter is amplified by t^{m+n} $\mathbb{C} \mathbb{C}$

イロン ス何ン スランスラン・ラー

 OQ

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red) Step $1 \times s^2$: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s^2}$ s Step 2 $\frac{d^2}{dt^2}$ $rac{d^2}{ds^2}$: $2X + 4s\frac{dX}{ds} + s^2\frac{d^2X}{ds^2}$ $\frac{d^2X}{ds^2}=\frac{2}{s^3}$ $\frac{2}{s^3}x^{(2)}(0)$ d^2X Step 3 $\times\frac{1}{\sqrt{2}}$ $rac{1}{s^3} \cdot \frac{2}{s^3}$ $\frac{2}{s^3}X + \frac{4}{s^2}$ $rac{dX}{ds} + \frac{1}{s}$ $\frac{d^2X}{ds^2}=\frac{2}{s^6}$ $\frac{2}{s^6}x^{(2)}(0)$ s^2 s **Step 4** Go back to the time domain (use of $\mathcal{L}^{-1}(4)$ $\mathcal{L}^{-1}(4)$): $\frac{dt^3}{5!}x^{(2)}(0) = t^3 \int_0^1 \left(2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)\right) y(t\tau) d\tau$ イロト イタト イモト イモト

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$
\nIdeal: kill undesired terms (blue) except the one to estimate (red)

\n
$$
\text{Step 1 } \times s^2: \ s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}
$$
\n
$$
\text{Step 2 } \frac{d^2}{ds^2}: \frac{d}{ds} \left(2sX + s^2 \frac{dX}{ds}\right) = \frac{d}{ds} \left(x(0) - \frac{x^{(2)}(0)}{s^2}\right)
$$
\n
$$
2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3} x^{(2)}(0)
$$
\n
$$
\text{Step 3 } \times \frac{1}{s^3}: \frac{2}{s^3}X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6} x^{(2)}(0)
$$
\n
$$
\text{Step 4 Go back to the time domain (use of } \mathcal{L}^{-1}(4)):
$$
\n
$$
\text{Step 4 Go back to the time domain (use of } \mathcal{L}^{-1}(4)):
$$
\n
$$
\text{Step 5. } \frac{2t^5}{t^{(2)}(0) - t^3} \int_0^1 (2u^{2,0}(\tau) - 4u^{1,1}(\tau) + u \frac{d^2f(x)}{dt^2} \frac{d^2f(x)}{dt^2} + \frac{1}{t^{(2)}} \int_0^1 (2u^{2,0}(\tau) - 4u^{1,1}(\tau) + u \frac{d^2f(x)}{dt^2} \frac{d^2f(x)}{dt^2} + \frac{1}{t^{(2)}} \int_0^1 (2u^{2,0}(\tau) - 4u^{1,1}(\tau) + u \frac{d^2f(x)}{dt^2} \frac{d^2f(x)}{dt^2} + \frac{1}{t^{(2)}} \int_0^1 (2u^{2,0}(\tau) - 4u^{1,1}(\tau) + u \frac{d^2f(x)}{dt^2} \frac{d^2f(x)}{dt^2} + \frac{1}{t^{(2)}} \int_0^1 (2u
$$

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \quad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)
Step 1 × s²: s²X = sx(0) + x⁽¹⁾(0) + $\frac{x^{(2)}(0)}{s}$
Step 2 $\frac{d^2}{ds^2}$: 2X + 2s $\frac{dX}{ds}$ + 2s $\frac{dX}{ds}$ + s² $\frac{d^2X}{ds^2}$ = $\frac{2}{s^3}x^{(2)}(0)$
2X + 4s $\frac{dX}{ds}$ + s² $\frac{d^2X}{ds^2}$ = $\frac{2}{s^3}x^{(2)}(0)$
Step 3 × $\frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2}\frac{dX}{ds} + \frac{1}{s}\frac{d^2X}{ds^2}$ = $\frac{2}{s^6}x^{(2)}(0)$
Step 4 Go back to the time domain (use of $\mathcal{L}^{-1}(4)$):

 $(4))$ $(4))$: $\int_{0}^{1} (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(t\tau) d\tau$ OQ

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step $1 \times s^2$: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s^2}$ s Step 2 $\frac{d^2}{dt^2}$ $rac{d^2}{ds^2}$: $2X + 4s\frac{dX}{ds} + s^2\frac{d^2X}{ds^2}$ $\frac{d^2X}{ds^2} = \frac{2}{s^3}$ $\frac{2}{s^3}x^{(2)}(0)$ d^2X Step 3 $\times\frac{1}{\sqrt{2}}$ $rac{1}{s^3} \cdot \frac{2}{s^3}$ $\frac{2}{s^3}X + \frac{4}{s^2}$ $rac{dX}{ds} + \frac{1}{s}$ $\frac{d^2X}{ds^2}=\frac{2}{s^6}$ $\frac{2}{s^6}x^{(2)}(0)$ s^2 s **Step 4** Go back to the time domain (use of $\mathcal{L}^{-1}(4)$ $\mathcal{L}^{-1}(4)$): $\frac{dt^3}{5!}x^{(2)}(0) = t^3 \int_0^1 \left(2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)\right) y(t\tau) d\tau$ イロ トラ 河 トラ ミ ミ トラ ミ ト

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step $1 \times s^2$: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s^2}$ s Step 2 $\frac{d^2}{dt^2}$ $rac{d^2}{ds^2}$: $2X + 4s\frac{dX}{ds} + s^2\frac{d^2X}{ds^2}$ $\frac{d^2X}{ds^2} = \frac{2}{s^3}$ $\frac{2}{s^3}x^{(2)}(0)$ d^2X Step 3 $\times\frac{1}{4}$ $rac{1}{s^3}$ $rac{2}{s^3}$ $\frac{2}{s^3}X + \frac{4}{s^2}$ $\frac{dX}{ds} + \frac{1}{s}$ $\frac{d^2X}{ds^2} = \frac{2}{s^6}$ $\frac{2}{s^6}x^{(2)}(0)$ s^2 s **Step 4** Go back to the time domain (use of $\mathcal{L}^{-1}(4)$ $\mathcal{L}^{-1}(4)$): $\frac{dt^3}{5!}x^{(2)}(0) = t^3 \int_0^1 \left(2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)\right) y(t\tau) d\tau$ イロ トラ 相 トライモ トラモト

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

¤ Estimate $x^{(2)}(0)$ through the truncated series of order 2:

$$
\mathcal{R}: \qquad X = \frac{x(0)}{s} + \frac{x^{(1)}(0)}{s^2} + \frac{x^{(2)}(0)}{s^3}
$$

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1
$$
\times s^2
$$
: $s^2 X = sx(0) + x^{(1)}(0) + \frac{x^{(2)}(0)}{s}$
\nStep 2 $\frac{d^2}{ds^2}$: $2X + 4s \frac{dX}{ds} + s^2 \frac{d^2X}{ds^2} = \frac{2}{s^3}x^{(2)}(0)$
\nStep 3 $\times \frac{1}{s^3}$: $\frac{2}{s^3}X + \frac{4}{s^2} \frac{dX}{ds} + \frac{1}{s} \frac{d^2X}{ds^2} = \frac{2}{s^6}x^{(2)}(0)$
\nStep 4 Go back to the time domain (use of \mathcal{L}^{-1} (4)): $\frac{2t^5}{5!}x^{(2)}(0) = t^3 \int_0^1 (2w^{2,0}(\tau) - 4w^{1,1}(\tau) + w^{0,2}(\tau)) y(t\tau) d\tau$

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[A first simple example: parameter estimation](#page-19-0) [Second simple example: numerical derivation](#page-23-0)

A simple example

Let us mention that finally we have applied to the relation \mathcal{R} , the operator

$$
\Pi = \frac{1}{s^3} \frac{d^2}{ds^2} s^2
$$

where

\n- \n
$$
\Pi \in \mathbb{R}(s) \left[\frac{d}{ds} \right]
$$
\n
\n- \n
$$
\Pi = \frac{1}{s} \frac{d^2}{ds^2} + \frac{4}{s^2} \frac{d}{ds} + \frac{2}{s^3}
$$
\n
\n

イロメ イ押メ イヨメ イヨメー OQ ∍ WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

Preliminary remarks

Let $f(s)$ be a polynomial in the variable s. By Leibniz's rule:

$$
\left(\frac{d}{ds}s\right)(f) = \frac{d}{ds}(sf) = f + s\frac{df}{ds} \quad \text{and} \quad \left(s\frac{d}{ds}\right)(f) = s\frac{df}{ds}
$$

So

$$
\left(\frac{d}{ds}s - s\frac{d}{ds}\right)(f) = f \Longrightarrow \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Or using the commutator notation:

$$
\left[\frac{d}{ds}, s\right] = \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Set $p := \dfrac{d}{ds}$ and $q := s \times \cdot$, therefore

$$
[p,q] = pq - qp = 1
$$

イロト イ部 トイ君 トイ君 トー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

Preliminary remarks

Let $f(s)$ be a polynomial in the variable s. By Leibniz's rule:

$$
\left(\frac{d}{ds}s\right)(f) = \frac{d}{ds}(sf) = f + s\frac{df}{ds} \quad \text{and} \quad \left(s\frac{d}{ds}\right)(f) = s\frac{df}{ds}
$$

So

$$
\left(\frac{d}{ds}s - s\frac{d}{ds}\right)(f) = f \Longrightarrow \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Or using the commutator notation:

$$
\left[\frac{d}{ds}, s\right] = \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Set $p := \dfrac{d}{ds}$ and $q := s \times \cdot$, therefore

$$
[p,q] = pq - qp = 1
$$

イロメ イ押メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

Preliminary remarks

Let $f(s)$ be a polynomial in the variable s. By Leibniz's rule:

$$
\left(\frac{d}{ds}s\right)(f) = \frac{d}{ds}(sf) = f + s\frac{df}{ds} \quad \text{and} \quad \left(s\frac{d}{ds}\right)(f) = s\frac{df}{ds}
$$

So

$$
\left(\frac{d}{ds}s - s\frac{d}{ds}\right)(f) = f \Longrightarrow \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Or using the commutator notation:

$$
\left[\frac{d}{ds}, s\right] = \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Set $p := \frac{d}{ds}$ and $q := s \times \cdot$, therefore
 $[p, q] = pq - qp = 1$

イロメ イ押メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 OQ

э

Preliminary remarks

Let $f(s)$ be a polynomial in the variable s. By Leibniz's rule:

$$
\left(\frac{d}{ds}s\right)(f) = \frac{d}{ds}(sf) = f + s\frac{df}{ds} \quad \text{and} \quad \left(s\frac{d}{ds}\right)(f) = s\frac{df}{ds}
$$

So

$$
\left(\frac{d}{ds}s - s\frac{d}{ds}\right)(f) = f \Longrightarrow \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Or using the commutator notation:

$$
\left[\frac{d}{ds}, s\right] = \frac{d}{ds}s - s\frac{d}{ds} = 1
$$

Set $p:=\displaystyle{\frac{d}{ds}}$ and $q:=s\times\cdot$, therefore $[p, q] = pq - qp = 1$

> イロメ イ押メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)
Preliminary remarks Back to the first example

In the first example we have used

$$
\Pi = \frac{1}{s^3} \frac{d^2}{ds^2} s^2
$$

Here we look at $p^2q^2.$ Since $pq=qp+1$ we have

$$
p^{2}q^{2} = p(qp + 1)q = pqpq + pq = (qp + 1)(qp + 1) + (qp + 1)
$$

= $qpqp + 3qp + 2 = q(qp + 1)p + 3qp + 2 = q^{2}p^{2} + 4qp + 2$

Thus we find again, since $p:=\dfrac{d}{ds},\;q:=s\times\cdot:$

$$
\Pi = \frac{1}{s} \frac{d^2}{ds^2} + \frac{4}{s^2} \frac{d}{ds} + \frac{2}{s^3}
$$

Preliminary remarks Back to the first example

Now let us note that
$$
\frac{d}{ds} s^2 \frac{d}{ds} s
$$
 reads as
\n
$$
pq^2pq = q^3p^2 + 4q^2p + 2q
$$
\nwhich means that these two operators $\frac{1}{s^3} \frac{d^2}{ds^2} s^2$ and $\frac{1}{s^3} \frac{d}{ds} s^2 \frac{d}{ds} s$ are the same, they can be written as

$$
\frac{1}{s}\frac{d^2}{ds^2} + \frac{4}{s^2}\frac{d}{ds} + \frac{2}{s^3}
$$

☞ Use a "canonical form"

Preliminary remarks Weyl Algebra

 $\mathbb{R}^{\mathbb{S}}$ Let us note that $\mathsf{A} := \mathbb{R}[s] \left[\frac{d}{ds} \right]$ has a Weyl Algebra structure (non commutative since $\left[\frac{d}{ds}, s\right] = 1$)

$$
\text{ as } \mathsf{Thus} \text{ a canonical basis of } A \text{ is } \left\{ s^i \frac{d^j}{ds^j} \middle| (i,j) \in \mathbb{N} \right\}
$$

 $□$ Any $F ∈ A$ can be rewritten into its *canonical form*

$$
F = \sum_{i,j} \lambda_{ij} s^i \frac{d^j}{ds^j}, \ \lambda_{ij} \in \mathbb{R} \tag{6}
$$

イロン イ押ン イヨン イヨン WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

A preliminary remark Weyl Algebra

☞ One can associate to the Weyl Algebra A an algebra B defined as the differential operators on $\frac{d}{ds}$ with coefficients in $\mathbb{R}(s)$

$$
\mathsf{B}:=\mathbb{R}(s)\left[\frac{d}{ds}\right]
$$

 \sqrt{w} Any $F \in B$ can be rewritten into its *canonical form*

$$
F = \sum_{i,j} \lambda_{ij} g_i(s) \frac{d^j}{ds^j}, \quad \text{with} \quad g_i(s) \in \mathbb{R}(s) \tag{7}
$$

イロメ イ押メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Table of Contents

[Non-A \(ex ALIEN\)](#page-11-0)

- 2 [Some introductory examples](#page-19-0)
- **[Preliminary remarks](#page-32-0)**

4 [Dual core Non-A](#page-40-0)

- [Once upon a time... ALIEN numerical differentiation](#page-40-0)
- **[Parameter estimation for sinusoidal biased signal](#page-50-0)**
- [A time delay example](#page-70-0)
- • [Switching signal estimation](#page-78-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

 $\mathbb{R} \mathbb{R}$ x(t) a smooth signal on an interval $I \subset \mathbb{R}_+$,

$$
x(t) = \sum_{k \ge 0} x^{(k)}(0) \frac{t^k}{k!}
$$

Taylor series at $t = 0$

 \mathbb{F} $y(t)$ signal observation with noise $\varpi(t)$,

$$
y(t) = x(t) + \varpi(t)
$$

¤® Goal: To estimate $x^{(n)}(0)$ from $y(t)$

イロト イ押 トイラト イラトー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

$$
x_N(t) = \sum_{k=0}^N x^{(k)}(0) \frac{t^k}{k!} \quad \text{truncated Taylor series } (N \ge n)
$$

⇓ Laplace transform

$$
X_N(s) = \sum_{i=0}^N \frac{x^{(i)}(0)}{s^{i+1}}
$$
 the operational analog of $x_N(t)$ on I

イロメ イ押メ イヨメ イヨメー

 \equiv

 OQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

 \mathbb{F} Unknown parameters $\Theta = {\theta_1, \ldots, \theta_m}$ (here the derivatives $x^{(i)}(0)$) are divided into $\Theta_{\sf est}=\{x^{(n)}(0)\}$ and $\Theta_{\sf est}=\Theta\setminus\Theta_{\sf est}$ (here the other derivatives)

 \sqrt{w} numerical differentiation = Parameter estimation $\frac{11}{11}$ = find a good approximation of $\Theta_{\sf est} = \{x^{(n)}(0)\}$ using

$$
y = x(\Theta) + \varpi,\tag{8}
$$

where y is the real measured noisy signal, x (the "true" signal) depends implicitly on the parameters Θ and ϖ is the additive noise CON

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

■ Algebraic extensions $\mathbb{R}_{\Theta}:=\mathbb{R}(\Theta)$, $\mathbb{R}_{\Theta_{\mathsf{est}}}:=\mathbb{R}(\Theta_{\mathsf{est}})$ and $\mathbb{R}_{\Theta_{\mathsf{est}}}:=\mathbb{R}(\Theta_{\mathsf{est}})$

☞ Then

$$
X_N(s) = \sum_{i=0}^{N} \frac{x^{(i)}(0)}{s^{i+1}}
$$

reads as

 $\mathcal{R}(s, X(s), \Theta_{\text{est}}, \Theta_{\overline{\text{est}}}) : P(X(s)) + Q + \overline{Q} = 0$ (9) where $P\in \mathbb{R}_{\Theta_{\mathsf{est}}}[s]\left[\frac{d}{ds}\right]$, $Q\in \mathbb{R}_{\Theta_{\mathsf{est}}}[s]$ and $\overline{Q}\in \mathbb{R}_{\Theta_{\mathsf{est}}}[s]$, $P=s^{N+1},Q=-s^{N-n}x^{(n)}(0),\overline{Q}=-\sum_{\alpha} \overline{Q_{\alpha}^{(n)}(0)},\overline{Q_{\alpha}}$ N $\exists i \neq n$ \iff $i \equiv r$ \iff \equiv $\land q \land$ $s^{N-i}x^{(i)}(0)$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

☞ It might not be obvious to built an annihilator in this form since

$$
Q = -s^{N-n}x^{(n)}(0), \overline{Q} = -\sum_{i \neq n}^{N} s^{N-i}x^{(i)}(0)
$$

■ Yes we can (!!) : a minimal annihilator is of order N

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

Example $N = n = 2$

Using the notation $\mathcal{R}: P(X(s)) + Q + Q$:

• if
$$
P = 1
$$
, $Q = -\frac{x^{(2)}(0)}{s^3}$, $\bar{Q} = -\frac{x(0)}{s} - \frac{x'(0)}{s^2}$, we obtain

$$
\Pi = \frac{2}{s^3} + \frac{4}{s^2} \frac{d}{ds} + \frac{1}{s} \frac{d^2}{ds^2}
$$

if $P = s^3$, $Q = -x^{(2)}(0)$, $\bar{Q} = -s^2x(0) - sx'(0)$, we obtain for example

$$
\Pi = \frac{2}{s^6} - \frac{2}{s^5} \frac{d}{ds} + \frac{1}{s^4} \frac{d^2}{ds^2}
$$

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

イロン イ押ン イヨン イヨン

AINRIA

э

 $C_{\rm MS}$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

Example $N = n = 2$

Indeed for a general

$$
\Pi = g_0(s) + g_1(s)\frac{d}{ds} + g_2(s)\frac{d^2}{ds^2} \text{ with } g_k(s) = \sum_i \frac{a_{ki}}{s^i}, \ k = 0, 1, 2,
$$

we have $\Pi(\bar{Q}) = 0$ giving some algebraic relations on the a_{ki} . For instance we can find $g_0 = \frac{2}{s^6}$ $\frac{2}{s^6}$, $g_1 = -\frac{2}{s^5}$ $\frac{2}{s^5}$ and $g_2=\frac{1}{s^4}$ $\frac{1}{s^4}$, so $\Pi(P(X(s))+\bar{Q}+Q)=0$ with $P=s^3, \ Q=-x^{(2)}(0),$ $\bar{Q} = -s^2 x(0) - x'(0)$ gives

$$
\Pi = \frac{2}{s^6} - \frac{2}{s^5} \frac{d}{ds} + \frac{1}{s^4} \frac{d^2}{ds^2}
$$

dens

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

Example $N = n = 2$

Moreover with this annihilator

$$
\Pi(s^3 X) = \left(\frac{2}{s^3} - \frac{2}{s^5} \frac{d}{ds} s^3 + \frac{1}{s^4} \frac{d^2}{ds^2} s^3\right) (X)
$$

$$
= \left(\frac{2}{s^3} + \frac{4}{s^2} \frac{d}{ds} + \frac{1}{s} \frac{d^2}{ds^2}\right) (X) = \Pi_{P=1}(X)
$$

イロト イ部 トイ君 トイ君 トー Þ OQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Once upon a time... ALIEN numerical differentiation

Lemma

For all $\Pi \in \mathbb{R}(s)$ $\left[\frac{d}{ds}\right]$ with $g_0 = 0$, $P \in \mathbb{R}[s]$ $\left[\frac{d}{ds}\right]$ and any X we have

$$
\Pi(PX) = \Pi(P)X + P\Pi(X)
$$

Thus $\Pi(s^3X) = \Pi(s^3)X + s^3\Pi(X)$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Table of Contents

[Non-A \(ex ALIEN\)](#page-11-0)

- 2 [Some introductory examples](#page-19-0)
- **[Preliminary remarks](#page-32-0)**

4 [Dual core Non-A](#page-40-0)

- [Once upon a time... ALIEN numerical differentiation](#page-40-0)
- [Parameter estimation for sinusoidal biased signal](#page-50-0)
- [A time delay example](#page-70-0)
- • [Switching signal estimation](#page-78-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

For a sinusoidal biased noisy signal, to estimate the triplet (amplitude, phase, frequency) is of practical importance for most engineers:

- signal demodulation in communication,
- voltage control of boost converter in power electronics,
- circadian rhythm in biology,
- \bullet . . .
- modal identification for a flexible beam which plays a central role in AFM : the amplitude of the observed signal is influenced by the interaction forces between the atoms and the 'pointe' (leading to an image of the observed atoms)

イロン イ部ン イミン イミン

GENS

 Ω

 \equiv

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

This generic problem consists in estimating the parameters α , ϕ and $\omega > 0$ for the signal

$$
x = \alpha \sin(\omega t + \phi) + \beta \tag{10}
$$

using a biased noisy measure (from sensor):

$$
y = \alpha \sin(\omega t + \phi) + \beta + \varpi, \tag{11}
$$

where β is an unknown constant bias and ϖ is the noise.

イロン イ何 メ イヨン イヨン WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

Some other technics:

- Least Square method,
- EKF,
- non linear adaptive observers

 \bullet . . .

None of these technics give the triplet within a sufficiently small time window (fraction of the signal period) and in a robust manner using noisy measures. The only quite satisfactory solutions were provided by Hebert and Dayan (unbiased case). ☞ Here using some knowledge about minimal annihilators, we'll obtain a less noise sensitive solution...

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

 \mathbb{F} Unknown parameters $\Theta = {\theta_1, \ldots, \theta_m}$ classified into $\Theta_{\sf est}$ and $\Theta_{\overline{\text{est}}} = \Theta \setminus \Theta_{\text{est}}$ (here the biais)

 \mathbb{F} Parameter estimation = find a good approximation of Θ_{est} using 1

$$
y = x(\Theta) + \varpi,\tag{12}
$$

where y is the real measured noisy signal, x (the "true" signal) depends implicitly on the parameters Θ and ϖ is the additive noise

 $^1y=\varpi_1x+\varpi_2$, where ϖ_1 (respec. $\varpi_2)$ is multiplicative noise de with $\widehat{\mathcal{C}(\mathfrak{g})}$ unitary mean (resp. additive noise) is encompassed in our setting noticing that $\varpi = (\varpi_1 - 1)x + \varpi_2$ have the same mean as ϖ_2 . \iff $\varpi \iff$ \iff \iff OQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

 $\mathfrak{g}\in x(\Theta)$ is supposed to be the output (generated) by a LTI EDO $\sum_{i=0}^n a_i x^{(i)} = 0$, which in the operational domain reads as

$$
\sum_{i=0}^{n} a_i s^i X(s) + \sum_{i=0}^{n} a_i \left(\sum_{j=0}^{i-1} s^{i-1-j} x^{(j)}(0) \right) = 0.
$$
 (13)

where s is the Laplace variable, $X(s)$ is the Laplace transform of the signal x .

☞ Mikusinski point of view is more general and it encompass in a same setting Distribution and Laplace transform.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

☞ Algebraic extension $\mathbb{R}_{\Theta} := \mathbb{R}(\Theta)$, $\mathbb{R}_{\Theta_{\textsf{est}}} := \mathbb{R}(\Theta_{\textsf{est}})$ and $\mathbb{R}_{\Theta_{\textsf{est}}} := \mathbb{R}(\Theta_{\textsf{est}})$.

☞ Then [\(13\)](#page-55-0) reads as

 $\mathcal{R}(s, X(s), \Theta_{\text{est}}, \Theta_{\text{est}}): P(X(s)) + Q + \overline{Q} = 0$ (14) where $P\in \mathbb{R}_{\Theta_{\mathsf{est}}}[s] \left[\frac{d}{ds} \right]$, $Q\in \mathbb{R}_{\Theta_{\mathsf{est}}}[s]$ and $\overline{Q}\in \mathbb{R}_{\Theta_{\mathsf{est}}}[s]$

> イロメ イ母メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

$$
\text{ as Since } A_{\Theta} := \mathbb{R}_{\Theta}[s] \left[\frac{d}{ds} \right] \text{ has a Weyl Algebra structure} \Rightarrow \text{Basis!}
$$

$$
\mathbb{E} \mathbb{E} F \in \mathsf{B}_{\Theta} := \mathbb{R}_{\Theta}(s) \left[\frac{d}{ds} \right] \text{ can be rewritten into its canonical form}
$$
\n
$$
F = \sum_{i,j} \lambda_{i,j} g_i(s) \frac{d^j}{ds^j}, \text{ with } g_i(s) \in \mathbb{R}_{\Theta}(s) \tag{15}
$$

イロト イ部 トイ君 トイ君 トー Þ OQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation for sinusoidal biased signal

Let M_S be the B-torsion module generated by $S = \{x_i \mid i \in \mathcal{I}\}$. $\forall i \in \mathcal{I}, x_i$ is torsion, i.e. $\mathrm{Ann}_{\mathsf{B}}(x_i) := \{ F \in \mathsf{B} \mid F \cdot x_i = 0 \} \neq 0.$

 \sqrt{w} Ann_B(M_S) is a left principal ideal of B (thus generated by a unique element see proposition [??](#page-0-1)).

 \mathbb{F} Any π ∈ $\text{Ann}_B(M_S)$ ⊂ B is called an *S–annihilator*.

■ Ann_B(M_S) contains a proper annihilator which can be chose in finite-integral form. Ω

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

☞ Using such setting it is clear that a parameter estimation problem : find a family $\{\Pi_i\}_{i=1}^r$ of annihilators $\Pi_i\in\mathrm{Ann}_{\mathsf{B}}(M_{\overline{Q}})$ so that:

this family of S-annihilators applied to \mathcal{R} [\(14\)](#page-56-0) gives a set equations in the Θ_{est} (with proper elements to be able to come back into the time domain).

 $\operatorname{\mathsf{I}}\nolimits^{\mathsf{op}}$ Note that $\Pi_i\in\operatorname{Ann}_{\mathsf B}(M_{\overline{Q}})$ means $\Pi_i(\overline{Q})=0$: we kill the effect of \overline{O} .

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

☞ Look at [\(4\)](#page-24-0) (inverse Laplace formula): find annihilator in finite-integral form.

☞ These annihilator should be with minimal degree in $\frac{d}{ds}$ (minimal order) in order to reduce the noise effect.

☞ The obtained system should be well balanced.

 $\mathcal{A} \subseteq \mathcal{A} \text{ and } \mathcal{A} \subseteq \mathcal{A} \text{ and } \mathcal{A} \subseteq \mathcal{A} \text{ and } \mathcal{A} \subseteq \mathcal{A}$ WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

☞ signal [\(10\)](#page-52-0) satisfies the following ODE

$$
\ddot{x} + \omega^2 (x - \beta) = 0 \tag{16}
$$

$$
\begin{aligned} &\exp \Theta_{\text{est}} = \{ \theta_1 := \omega^2, \theta_2 := -\alpha \sin(\phi) = -x(0) + \beta, \theta_3 := \\ &- \alpha \omega \cos(\phi) = -\dot{x}(0) \} \end{aligned}
$$

$$
\text{ for } \Theta_{\overline{\text{est}}} = \{\theta_4 := -\beta\}.
$$

イロト イ押ト イミト イ WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 \equiv \rightarrow

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

☞ Equation [\(16\)](#page-61-0) in the operational domain can be rewritten into [\(14\)](#page-56-0)

 $\mathcal{R}(s, X(s), \Theta_{\text{est}}, \Theta_{\text{est}}): P(X(s)) + Q + \overline{Q} = 0$ (17)

with
$$
P = s(s^2 + \theta_1)
$$
, $Q = s^2\theta_2 + s\theta_3$, $\overline{Q} = (s^2 + \theta_1)\theta_4$

 $\text{d} \mathbb{R} \subset \text{d}$ Thus we are looking for annihilators $\Pi \in \mathbb{R}(s)$ $\left[\frac{d}{ds}\right]$ such that $\Pi\left(\overline{Q}\right)=0$

☞ Annihilators ¹ s 4 d 3 ds³ , 1 $\frac{1}{s^5} \frac{d^4}{ds^4} s$ and many others work

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

☞ We consider annihilator of the form

$$
\Pi = \sum_{i=0}^{m} \frac{a_{3,i}}{s^i} \frac{d^3}{ds^3} + \sum_{i=0}^{m} \frac{a_{2,i}}{s^i} \frac{d^2}{ds^2} + \sum_{i=0}^{m} \frac{a_{1,i}}{s^i} \frac{d}{ds} + \sum_{i=0}^{m} \frac{a_{0,i}}{s^i}.
$$

■ Since $deg(\overline{Q}) = 2$ the minimal annihilator is of degree 2 w.r.t $\frac{d}{ds}$ (we say of order 2); we get

$$
\Pi_{\min}=\sum_{i=1}^m\frac{a_i}{s^i}\left(s\frac{d^2}{ds^2}-\frac{d}{ds}\right)
$$

leading the a family of algebraically depende[nt](#page-62-0) [re](#page-64-0)[la](#page-62-0)[ti](#page-63-0)[o](#page-64-0)[ns](#page-49-0)[.](#page-50-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

In order to linearly identify the two parameters θ_1, θ_3 we need a 3 order annihilator of the form

$$
\Pi = \sum_{i=0}^{m} \frac{b_i}{s^i} \frac{d^3}{ds^3} + \sum_{i=1}^{m} \frac{a_i}{s^i} \left(s \frac{d^2}{ds^2} - \frac{d}{ds} \right),
$$

leading to the following linear system

$$
B = (A_1 A_2) \left(\begin{array}{c} \theta_1 \\ \theta_3 \end{array} \right), \tag{18}
$$

イロト イ押ト イミト イ WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

Where

$$
A_1 = \sum_{i=1}^{m} \frac{1}{s^i} (b_i \mathcal{O}_3 + a_i \mathcal{O}_1), A_2 = -\sum_{i=1}^{m} \frac{a_i}{s^i}
$$

$$
B=\sum_{i=1}^m\frac{1}{s^i}\left(b_i\mathcal{O}_4+a_i\mathcal{O}_2\right),\,
$$

$$
\mathcal{O}_1 = s^2 \frac{d^2 X(s)}{ds^2} + s \frac{dX(s)}{ds} - X(s),\tag{19}
$$

$$
\mathcal{O}_2 = s^4 \frac{d^2 X(s)}{ds^2} + 5s^3 \frac{dX(s)}{ds} + 3s^2 X(s),\tag{20}
$$

$$
\mathcal{O}_3 = s \frac{d^3 X(s)}{ds^3} + 3 \frac{d^2 X(s)}{ds^2},\tag{21}
$$

$$
\mathcal{O}_4 = s^3 \frac{d^3 X(s)}{ds^3} + 9s^2 \frac{d^2 X(s)}{ds^2} + 18s \frac{dX(s)}{ds} + 6X(s)
$$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

Using a good choice of a_i, b_i leads to a well balanced system

$$
\begin{pmatrix}\n\frac{1}{s^5}\mathcal{O}_1 & -\frac{1}{s^5} \\
\frac{1}{s^4}\mathcal{O}_3 & 0\n\end{pmatrix}\n\begin{pmatrix}\n\theta_1 \\
\theta_3\n\end{pmatrix} = \begin{pmatrix}\n\frac{1}{s^5}\mathcal{O}_2 \\
\frac{1}{s^4}\mathcal{O}_4\n\end{pmatrix}
$$

Using [\(4\)](#page-24-0)

$$
\theta_{1} = \frac{1}{t^{2}} \frac{\int_{0}^{1} (-w^{0,3}(\tau) + 9w^{1,2}(\tau) - \frac{1}{2}w^{2,1}(\tau) + w^{3,0}(\tau))x(t\tau)d\tau}{\int_{0}^{1} (\frac{-1}{2}w^{2,3}(\tau) + \frac{1}{2}w^{3,2}(\tau))x(t\tau)d\tau},
$$
\n(23)\n
$$
\theta_{3} = \frac{5!}{t^{3}} \left(\int_{0}^{1} (w^{0,2}(\tau) - 5w^{1,1}(\tau) + \frac{3}{2}w^{2,0}(\tau))x(t\tau)d\tau - \theta_{1} \int_{0}^{1} (\frac{1}{2}w^{2,2}(\tau) - w^{3,1}(\tau) - \frac{1}{4!}w^{4,0}(\tau))x(t\tau)d\tau \right)
$$
\n(24)\n
$$
\theta_{3} = \frac{5!}{4!} \left(\int_{0}^{1} (w^{0,2}(\tau) - 5w^{1,1}(\tau) + \frac{3}{2}w^{2,0}(\tau))x(t\tau)d\tau \right)
$$
\n(24)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

Using the annihilator
$$
(\theta_1
$$
 is already known)
\n
$$
\Pi_3 = -\frac{1}{2} \left(\frac{1}{s^4} + \frac{\theta_1}{s^6} \right) \frac{d}{ds} + \frac{1}{s^5}
$$
 gives θ_2 :

$$
\theta_2 = \frac{1}{10} \frac{1}{t^2 \theta_1} \left(20\theta_3 t - t^3 \theta_1 \theta_3 + \int_0^1 \left(-t^4 \theta_1^2 (w^{5,0} + 5w^{4,1}) + 40t^2 \theta_1 (3w^{2,1} - w^{3,0}) - 120(w^{1,0} - w^{0,1}) \right) x(t\tau) d\tau \right)
$$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

ten.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Dual core Non-A Parameter estimation of a triplet for sinusoidal biased signal

Estimation de w : variance et borne de Cramer-Rao

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Table of Contents

[Non-A \(ex ALIEN\)](#page-11-0)

2 [Some introductory examples](#page-19-0)

[Preliminary remarks](#page-32-0)

4 [Dual core Non-A](#page-40-0)

- [Once upon a time... ALIEN numerical differentiation](#page-40-0)
- **[Parameter estimation for sinusoidal biased signal](#page-50-0)**

• [A time delay example](#page-70-0)

• [Switching signal estimation](#page-78-0)

イロメ イ押メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

A time delay example

☞ Identification (ODE) : a lot of contributions ☞ Few results for FDE (delay FDE for example): least-square, adaptive, or high-gain algorithms implies low convergence (about 100 times the delay) ☞ But for control we need to know the delay (observer, state feedback, . . .)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Introduction to the main ideas A second simple example, with delay

$$
\dot{y}(t) + ay(t) = y(0)\delta + \gamma_0 H + bu(t - \tau).
$$
 (25)

where a, b are known, γ_0 is a constant perturbation and τ is the parameter to be identified. Consider also a step input $u = u_0H$. Distributional-like notation (δ Dirac)

$$
\ddot{y} + a\dot{y} = \varphi_0 + \gamma_0 \,\delta + b\,u_0 \,\delta_\tau,\tag{26}
$$

where δ_{τ} : delayed Dirac and $\varphi_0 = \left(\dot{y}(0) + ay(0) \right) \delta + y(0) \, \delta^{(1)}$ (initial conditions).

> イロメ イ母メ イヨメ イヨメー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

A time delay example

Schwartz theorem, multiplication by $^2\ \alpha(t)=t^3-\tau\, t^2$:

$$
t^3 [\ddot{y} + a\dot{y}] = \tau t^2 [\ddot{y} + a\dot{y}],
$$

$$
bu_0 t^3 \delta_\tau = bu_0 \tau t^2 \delta_\tau.
$$

 τ available from $k \geq 1$ successive integrations (operator H):

$$
\tau = \frac{H^k(w_0 + a w_3)}{H^k(w_1 + a w_2)}, \qquad t > \tau,
$$
\n(27)

where the w_i are defined, using the notation $z_i=t^i\,y$, by:

$$
w_0 = -t^3 y^{(2)} = -6 z_1 + 6 z_2^{(1)} - z_3^{(2)},
$$

\n
$$
w_1 = -t^2 y^{(2)} = -2 z_0 + 4 z_1^{(1)} - z_2^{(2)},
$$

\n
$$
w_2 = -t^2 y^{(1)} = 2 z_1 - z_2^{(1)},
$$

\n
$$
w_3 = -t^3 y^{(1)} = 3 z_2 - z_3^{(1)}.
$$

$$
^2\alpha(0) = \alpha'(0) = \alpha(\tau) = 0
$$

[Non-A \(ex ALIEN\)](#page-11-0) [Some introductory examples](#page-19-0) [Preliminary remarks](#page-32-0) [Dual core Non-A](#page-40-0)

[Non-A Technical concerns](#page-103-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

A time delay example

Delay τ identification from algorithm [\(27\)](#page-73-0)

Numerical simulation with $k = 2$ integrations and $a = 2$, $b = 1$, $\tau=0.6$, $y(0)=0.3$, $\gamma_0=2$, $u_0=1$. Due to the non identifiability over $(0, \tau)$, the $\widehat{\mathcal{O}}$ or delay τ is set to zero until the numerator or denominator in the right hand side of [\(27\)](#page-73-0) reaches a significant $\kappa_{\mu A}$ イロト イ部 トイモト イモト OQ 舌 nonzero value.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

A time delay example

It relies on the measurement of y and on the knowledge of a. If α is also unknown, the same approach can be utilized for a simultaneous identification of a and τ .

$$
\tau(H^k w_1) + a \tau(H^k w_2) - a (H^k w_3) = H^k w_0, \tag{28}
$$

and a linear system with unknown parameters $(\tau, a\tau, a)$ is obtained by using different integration orders:

$$
\begin{pmatrix} H^2 w_1 & H^2 w_2 & H^2 w_3 \ H^3 w_1 & H^3 w_2 & H^3 w_3 \ H^4 w_1 & H^4 w_2 & H^4 w_3 \end{pmatrix} \begin{pmatrix} \hat{\tau} \\ \hat{a}\hat{\tau} \\ -\hat{a} \end{pmatrix} = \begin{pmatrix} H^2 w_0 \\ H^3 w_0 \\ H^4 w_0 \end{pmatrix}.
$$

イロン イ押ン イヨン イヨン WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

A time delay example

For identifiability reasons, the obtained linear system may be not consistent for $t < \tau$.

 \mathbb{R}

 \mathcal{A} . \equiv \mathbf{b} Ξ

K ロ ▶ | K 伊 ▶ | K ヨ

 $\widehat{\mathrm{CMB}}$

 OQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

A time delay example

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Table of Contents

[Non-A \(ex ALIEN\)](#page-11-0)

2 [Some introductory examples](#page-19-0)

[Preliminary remarks](#page-32-0)

4 [Dual core Non-A](#page-40-0)

- [Once upon a time... ALIEN numerical differentiation](#page-40-0)
- **[Parameter estimation for sinusoidal biased signal](#page-50-0)**
- [A time delay example](#page-70-0)
- [Switching signal estimation](#page-78-0)

 Ω

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Estimation: Switching signal estimation **Overview**

☞ Assume from now on that all the subsystems models are known and that any pair is strongly distinguishable.

☞ Let us consider a switching system defined by a finite collection of input/output behaviors driven by LODE satisfying the above given assumptions. As soon as the system is not at rest, for the given control, the measured output can be used to determine which subsystem is active.

☞ From now we want to obtain effective real-time algorithm to determine the current "i".

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Estimation: Switching signal estimation **Overview**

☞ If one is able to construct in real time the following quantities

$$
r_i(t) = \mathfrak{a}_i\left(\frac{d}{dt}\right)y_i - \mathfrak{b}_i\left(\frac{d}{dt}\right)u,
$$

it is clear that the current "i" is such that $r_i(t) = 0$ on a sub-set of $\mathbb R$ with non zero measure.

☞ The problem is thus reduced to the real-time computation of time derivative of the output and input despite the noise.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Problem formulation: examples and remarks All we want to know is in the output signal...

☞ Our point of view

イロト イ伊 トイラト イラ \sim Ξ Ω

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Problem formulation: examples and remarks All we want to know is in the output signal...

☞ Our point of view

Obtained model relies on real-time estimations of derivatives for $INRIA$ noisy signals イロト イ押ト イヨト イヨ \sim 舌 Ω

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

☞ On line:

- **4** using Alien technics (see before) compute $y, \dot{y}, \ldots, y^{(ky_{\text{max}})}; u, \dot{u}, \ldots, u^{(ku_{\text{max}})},$
- **2** check if $r_i(t)$ is zero for some time interval then the corresponding active subsystem is the " i -th".
- **3** deduce the continuous state estimate using 1.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example

Let us consider the following switching system $\dot{x}=A_ix+B_iu, y=C_ix$ where $i = 1 : \dot{y} + y = u;$ $\int \dot{x}_1 = -x_1 + u$ $y = x_1$ $i = 2 : \ddot{y} + \dot{y} + y = \dot{u} + u;$ $\sqrt{ }$ \int \mathcal{L} $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1 - x_2 + u$ $y = x_1 + x_2$ $i = 3 : 2\dot{y} + y = 2u$ $\int \dot{x}_1 = -\frac{1}{2}$ $rac{1}{2}x_1 + u$ $y = x_1$ $i = 4 : \ddot{y} + \dot{y} + 2y = \dot{u} + u;$ $\sqrt{ }$ \int \mathcal{L} $\dot{x}_1 = x_2$ $\dot{x}_2 = -2x_1 - x_2 + u$ $y = x_1 + x_2$ $y = x_1 + x_2$

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example

■ For the first order systems, in that follows, x_2 **is enforced to** zero. Moreover, the output continuity is ensured between two systems whereas initial condition of derivative output is randomly chosen in $[-0.5, +0.5]$. Residuals associated to previous systems are

$$
i = 1 : r_i = [\dot{y}]_e + [y]_e - u
$$

\n
$$
i = 2 : r_i = [\ddot{y}]_e + [\dot{y}]_e + [y]_e - [\dot{u}]_e - u
$$

\n
$$
i = 3 : r_i = 2[\dot{y}]_e + [y]_e - 2u
$$

\n
$$
i = 4 : r_i = [\ddot{y}]_e + [\dot{y}]_e + 2[y]_e - [\dot{u}]_e - u
$$

where $[\bullet]_e$ is the estimation of \bullet and to $[y]_e$ corresponds the y denoised signal.

¤ Without noise, output derivatives are estimated according t $\mathcal{C}(\mathbb{R})$ the well known Euler's method. イロン イ押ン イヨン イヨン Ω

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Free noise results: constant input

Systems 1 and 2 are indistinguishable for $y_0 = u_0 = 1$, i.e. $r_1 = r_2 = 0.$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Free noise results: constant input

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 $2Q$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Free noise results: constant input

 $\widehat{\mathbb{C}\mathbb{C}\mathbb{C}}$ **NEW**
NUNRIA Figu[r](#page-89-0)e: Residuals : $|r_1|$ $|r_1|$ (-)[;](#page-88-0) $|r_2|$ [\(](#page-78-0)[-](#page-102-0)-[\)](#page-39-0); $|r_3|$ $|r_3|$ $|r_3|$ ([.](#page-89-0)..); $|r_4|$ $|r_4|$ $|r_4|$ (-.) QQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example

In the next figure, system distinguishability is easy and ensures a very good state estimation.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Free noise results: sinusoidal input

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

Þ

 $2Q$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Free noise results: sinusoidal input

Ć Figu[r](#page-92-0)e: Residuals : $|r_1|$ $|r_1|$ (-)[;](#page-91-0) $|r_2|$ [\(](#page-78-0)[-](#page-102-0)-[\)](#page-39-0); $|r_3|$ $|r_3|$ $|r_3|$ ([.](#page-92-0)..); $|r_4|$ $|r_4|$ $|r_4|$ (-..) $\overline{I_{INRIA}}$ QQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Free noise results: sinusoidal input

Figur[e](#page-93-0): State : x_1 x_1 (–[\);](#page-93-0) x_2 x_2 [\(](#page-77-0)– –[\)](#page-103-0); $[x_1]_e$ (_{, –}); $[x_2]_e$ (– $\,$) QQ

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example

■In noisy case (additive output noise $N(0, 0.01)$), Euler's method is not available.

☞apply recent results on derivative estimation (see [?]) in order to evaluate residuals. They are approximatively null when the associated system is active and becomes non zero in other case. However, to take the decision, that is to say to know what is the active system, is not easy (see figure $??-(c)$ $??-(c)$). Here, the mean of each residual is calculated along a sliding window. Thus at the smallest mean of residual is associated the active system. According to this logic, states are estimated.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 $2Q$

∍

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

Þ

 $2Q$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0) **8 10 12 14 16 18 20**

Example Noised results: sinusoidal input

(c) Residuals : [|]r1[|] (–); [|]r2[|] (- -); [|]r3[|] (. .); [|]r4[|] (- .) Figure: Residuals : |r1| (–); |r2| (- -); |r3| ([.](#page-97-0) [.\);](#page-95-0) |r4| [\(-](#page-102-0) [.\)](#page-103-0) *(d)* State : x¹ (–); x² (- -); [x1] $\overline{I_{INRIA}}$ QQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input

Figur[e](#page-98-0): State : x_1 x_1 (–[\);](#page-98-0) x_2 x_2 [\(](#page-77-0)– –[\)](#page-103-0); $[x_1]_e$ (_{, –}); $[x_2]_e$ (– $\,$) QQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example

In the previous figures, rather than to estimate output derivative in real time, a small constant and known delay is allowed for estimations (see [?] for more details). In this case, in exactly the same simulation context than previously, decision according to residuals is easier.

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input and delayed estimations

Figu[r](#page-100-0)e: Residuals : $|r_1|$ $|r_1|$ (-)[;](#page-99-0) $|r_2|$ [\(](#page-78-0)[-](#page-102-0)-[\)](#page-39-0); $|r_3|$ $|r_3|$ $|r_3|$ ([.](#page-100-0)..); $|r_4|$ $|r_4|$ $|r_4|$ (-..) $INRIA$ OQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input and delayed estimations

Figur[e](#page-101-0): State : x_1 x_1 (–[\);](#page-101-0) x_2 x_2 [\(](#page-77-0)– –[\)](#page-103-0); $[x_1]_e$ (_{, –}); $[x_2]_e$ (– $\,$) QQ

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input and filtered estimations

(a) Residuals : [|]r1[|] (–); [|]r2[|] (- -); [|]r3[|] (. .); [|]r4[|] (- .) Figure: Residuals : |r1| (–); |r2| (- -); |r3| (. .); |r4| (- .) $\overline{\mathbb{C}}$ State $\overline{\mathbb{C}}$ $\overline{I_{INRIA}}$

[Once upon a time... ALIEN numerical differentiation](#page-40-0) [Parameter estimation for sinusoidal biased signal](#page-50-0) [A time delay example](#page-70-0) [Switching signal estimation](#page-78-0)

Example Noised results: sinusoidal input and filtered estimations

Figur[e](#page-103-0): State : x_1 x_1 (–[\);](#page-103-0) x_2 x_2 [\(](#page-77-0)– –[\)](#page-103-0); $[x_1]_e$ (_{, –}); $[x_2]_e$ (– $\,$) OQ

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Table of Contents

- [Non-A \(ex ALIEN\)](#page-11-0)
- 2 [Some introductory examples](#page-19-0)
- **[Preliminary remarks](#page-32-0)**
- [Dual core Non-A](#page-40-0)

5 [Non-A Technical concerns](#page-103-0)

- [Control applications tackled using ALIEN technics](#page-103-0)
- [Applications to signal, image and video processing](#page-114-0)

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in control

• Collaborative robotics: The cooperating devices (fleet of drones, mobile robots or UAV) have to fulfill a common objective, subject to environment perturbations and using a limited number of sensors.

Video

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in control

Video

イロト イ部 トイ君 トイ君 トー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 $\mathbb{C}\mathbb{D}$

 $2Q$

Þ

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in control

Video

イロト イ部 トイ君 トイ君 トー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 $\mathbb{C}\mathbb{D}$

 $2Q$

Þ

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in control

Magnetic levitation (eliminating Coulomb friction): magnetic shaft benchmark for identification, state reconstruction and output feedback

bearing benchmark (micro-[m](#page-106-0)[et](#page-108-0)[er](#page-106-0)[\).](#page-107-0)

 QQ
[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

• Friction: two benchmarks linear drive actuating a cart-pendulum, and a stepper motor.

Video

 OQ

Ξ

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in control

Video

イロト イ部 トイ君 トイ君 トー WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

 $\mathbb{C}\mathbb{D}$

 $2Q$

Þ

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields

...in control

- Multi-cell chopper (switching component, hybrid system): observer-based control algorithm
- *Machine tools* (cooperation with ENSAM Lille): high-speed CNC machines PDE flatness-based control combine with closed-loop identification.

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields

...in control

• *Process engineering*: (chemical engineering, food industry...) can be approached efficiently by a simple linear model with input delay the objective is to design control and parameter closed-loop identification.

WP [Some estimation problems via Differential Algebraic Annihilators](#page-0-0)

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in control

• Aeronautics (cooperation with Flight Analysis laboratory of the DCSD of ONERA in Lille): delay-based description was introduced so to represent the effects of the penetration of the aircraft through the gust. Combining this description with a fast identification algorithm constitutes a track for the aerodynamic coefficients identification.

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields

...in control

• Networked control: Communication networks (ethernet, wifi, internet, CAN...) have a huge impact on the flexibility and integration of control systems (remote control, wireless sensors, collaborative systems, embedded systems...). However, a network unavoidably introduces time delays in the control loops, which may put the stability and safety performances at risk. Benchmark with computer clock synchronized by GPS is available in Lille.

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Table of Contents

- 1 [Non-A \(ex ALIEN\)](#page-11-0)
- 2 [Some introductory examples](#page-19-0)
- **[Preliminary remarks](#page-32-0)**
- [Dual core Non-A](#page-40-0)

5 [Non-A Technical concerns](#page-103-0)

- **[Control applications tackled using ALIEN technics](#page-103-0)**
- [Applications to signal, image and video processing](#page-114-0)

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields Applications to signal, image and video processing

- compression of audio signals,
- demodulation and its theoretical background,
- compression, edge and motion detection of image and video signals.

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in Signal, image, and video processing

- Multi-user detection In the direct-sequence code-division multiple access (DS-CDMA) system: several users with its own signature use 1 channel (usually algorithm complexity grows with the number of users which seems not be the case with our technics).
- *Direction-of-arrival estimation* The problem of estimating the direction-of-arrival of multiple sources incident on a uniform array is equivalent to the estimation of some delays.
- Turbo-codes error control code, turbo-equalization: It seems that turbo-decoding might benefit from our new understanding of estimation.

[Control applications tackled using ALIEN technics](#page-103-0) [Applications to signal, image and video processing](#page-114-0)

Applicative fields ...in Signal, image, and video processing

- *Watermarking* a type of cryptography where a hidden message has to be inserted in an image or a video. Our approach to image and video processing has already given promising preliminary results in this field.
- Cryptography Pecora and Carroll (1991): synchronized two identical chaotic systems) Nijmeijer and Mareels (1997): the chaotic system synchronization problem has been intimately related to the design of a nonlinear state observer for the chaotic encoding system. Our technics should also be useful in new encryption algorithms that require fast estimation of the state variables and the masked message.