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T =—

[z]* = —sign(z)|z|* z € R
for which the solutions are (a € ]0, 1])

e ) s(mx) if 0<71< |$|1;a
o

l—a
if T>|x|

(1)

Y

(2)
1

with s(7,x) = sgn(x) (|:v|1_“ —7(1- a))

origin in finite time

and they reach the
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Introduction Finite time stability
Multi-homogeneity Homogeneity

Finite time stability

Observation:

@ FTS = infinite eigenvalue assignation for the closed loop
system at the origin.

@ J a function called settling time that performs the time for a
solution to reach the equilibrium. The function depends on
the initial condition of a solution.

@ the right hand side of the ordinary differential equation can
not be locally Lipschitz at the origin.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity



Introduction Finite time stability
Multi-homogeneity Homogeneity

Finite time stability

ODE (ordinary differential equation)
&= f(z) (3)
where f is a continuous vector field or DI (differential inclusion)
& € F(x) (4)

where F' is a set valued map (with some additional property upper
semi continuous for example).
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time

finite-time stability (FTS): S + FA (Finite time attractivity)

These systems are assumed to possess unique solutions in forward
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there exists 0 < € < a such that:

A class K function r belongs to class KZ if r € CL ([0, a]) and

/6£<+oo
o 7(2) .

From now a €]0,1[. Let V' : V — R>( be a Lyapunov function and
r a class ICZ function, the first condition is that for all z € V,

V(x) <

—r(V(z)). (5)

«40» «F»r « =) 4 » Q>



Introduction Finite time stability
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Finite time stability

The existence of such a pair (V,r) is still a necessary condition for
finite time stability of more general systems (see [2] and [3]). Here,
one will see that r can be chosen on a particular form describes as

follow.
Let V : V — R>( be a Lyapunov function, the second condition is

that for all z € V,
V(z) < —a(V(z)*a>0,a€]0,1[. (6)

(in fact Bhat T'(x) continuous at the origin but in fact what is
needed is uniquness outside the origin).
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Finite time stability

Theorem (Moulay Perruquetti 2006)

Consider the system (3) with uniqueness of solutions outside the
origin, the following properties are equivalent:

(1) the origin of the system (3) is FTS,
(73) there is a Lyapunov function satisfying condition (6),

(¢it) there is a Lyapunov function and a class KZ function
satisfying condition (5).

Moreover, if V' is a Lyapunov function satisfying condition (6) then

174 (:E)lfa
T(z) < —a)
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Let us recall (3)

&= f(z),z € R",
In the 50-60's (Lasalle, Han, etc ...):

(7)

f :R™ — R" is homogeneous with degree k (or k—homogeneous)
iff YA € R: f(Az) = Mo f(z).

it
-
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Homogeneity: first generation ideas

x(t,xp) denotes a solution. For example,
T = Ax

is homogeneous of degree k = 1 and we have
x(t, 29) = exp(At)xg thus z(t, A\xg) = Ax( A\, 20) = Ax(t, 20).

& = —sign(z)

is homogeneous of degree £ = 0 and we have (A > 0)
x(t, wo) = sgn(xo) (|zo| — 1)

thus z(t, Azg) = Az(\""1t, o) = Az (£, z9).
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Homogeneity: first generation ideas

o if £ < 0 then we will get a discontinuity at the origin,

@ if 0 < k < 1 then the Lipschitz condition is not satisfied
(Uniqueness of solutions),

@ if A = —1 then the function is not real.

In order to avoid such situations, at these times, we add the

condition »
k= > 1,
2r+1

where p and 7 integers.
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Homogeneity

_ x% +m§

. . T
T is 1 homogeneous but is not linear!
22102 "
o f(z1,22) = =2 is —3—homogeneous (not continuous at
0).
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f:R™ —» R™ js k—homogeneous iff each components are
k—homogeneous.

fi : R™ — R is k—homogeneous iff

n

24
2 %5

=kfi(x),Vz € R".
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A useful property is time and state parametrization
x Ay
s = Ml
leads to

dy

7 =W

(9)
from which we deduce ¢(t,z9) = ¢(t, \yo) = Ao (s, yo) (using the
following notation 3o = A~ 1)

AN 20) = p(t, Axo)

(10)
«O0)>» «Fr «=» « = Q>
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If the equilibrium of (3) where f is homogeneous, is locally AS
then it is GAS.
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Homogeneity: first generation ideas

Properties:
@ trajectories are rays from the origin.

@ Thus it is sufficient to study what happens on the unit sphere

S:

y = i:§7r2:xTx

|
207 = @lwtals=r(f (ry)y+y" fry)
= 2/F T f(y)

o= Pyl f(y)

o d(z/r) @ ar _rf(ry) —ryrtyT f(y)

y dt r o r? r2

= ) - W W)yl
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Homogeneity: first generation ideas

Taking a point yp € S then we have f(yo) — (ygf(yo)) yo=10: so
for the original system in x the corresponding trajectory is a ray
passing through the origin and the point belonging to the sphere.
Along this ray we have

Po= ar’,a =y f(y)
r(t) = &{k+u—kmdﬁi k#1
r(t) = roexp(at), ifk=1
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Homogeneity: first generation ideas

From this one obtains:
Proposition
According to (a, k)
a<0 lim,oor(t)—0
e k=1, a>0 lim,or(t) = o0
a=0 r(t)=ro
a<0 limg,oor(t) =0
e k>1, a>0 lim,oor(t) = o0
a=0 r(t)=ro
a<0 limg,oor(t)—0
e k<1, a>0 lim,or(t)— o0
a=0 r(t)=ro

AS
/
S

AS

| (finite time blow up)
S

AS : STF (finite time)
/

S
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Homogeneity: first generation ideas
Let us consider
2 2
X i+
r, = — (¥> I aF Xr1X9
r1 + X2
Ty =

z2 + 12
2 1 2

xr1 + 2o
which is 2-homogeneous.
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Homogeneity

On the sphere (23 + 2% = 1)

fwo) = (¥ f(wo)) o

2, 2
_ ([ @iaEs - _
(7:1-!—:62) i = Gy =

2
(27+23)
T1+T2 il
2
_g2_ (B3, o _ (eited)
1 z1+2 2= T1+T2

@ ___m
{ agm %S T hi

2 _ T &

1~ z1+a2 T1+T2 )

W. Perruquetti, D. Efimov, E. Bernuau

[m]

=
Multi-homogeneity

N



Introduction
Multi-homogeneity

Finite time stability
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Homogeneity: first generation ideas

Which have two equilibriums

for which a = z7 f(z)

_ _(a3+a3)’
- 142

=00 (a = 00,k > 1: blow up)
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Homogeneity

Let us consider

2 2 2
T = — (a:l == :c2) T+ X125
T

—aizy — (2] + 23) 22
which is 3-homogeneous. On the sphere (2% + 23 = 1)

fo) = (W fwo)) o

{ —1lz1 + 2123 = — (2 + 23) " =1

2
200 — 1o — _( 24 2)2
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Finite time stability
Homogeneity: first generation ideas

Homogeneity

There is 4 points

(£1,0)

(0,£1)

for which a = 27 f(z) = — (% —|—x%)2 =-1(a<0,k>1: AS)

v
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Homogeneity: first generation ideas

An important Liapunov function characterization of GAS is
Theorem

Let f be homogeneous C* function such that f(0) = 0 the the two
following conditions are equivalent

@ the origin is GAS,

@ there exist an homogeneous Liapunov function of class C*°
s.t. V and —V are positive definite.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity




Let f* be C' homogeneous vector fields with degree i > k and let
f=2 sk f? such that f(0) = 0. If the origin of & = f*(z) is LAS
then the origin of & = f(x) is GAS.

it
-
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Homogeneity: second generation ideas

Second generation homogeneity ideas:
Let A > 0,r; > 0,i € {1,...,n} called weights one can define:
e the vector of weights r = (r1,...,rp)7,

@ the dilation matrix
A, = diag{A\"}7,, (11)

note that A,z = (A\"'wy, ..., Az, ..., A™a,)T.

@ let r denotes the finite product ri7s...r, then the
r—homogeneous norm of x € R™ is defined by:

1
r

ne(x) = (|| 4+ . 4 a7+ x| r. (12)
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Homogeneity: second generation ideas

Sufficient condition for ODE (or DI) to be finite time stable:
Lemma

Suppose there exists a Lyapunov function V (x) defined on a
neighborhood U C R™ of the origin of system (3) and some
constants T,y > 0 and 0 < 8 < 1 such that

d

£V($)|(3) < —TV(QJ)’B + 4V (z), VzelU\{0}.

Then the origin of system (3) is FTS. The set
0= {:): ceU:Vz)b < %} is contained in the domain of
attraction of the origin. The settling time satisfies

T(z) < B0=2VE@')

- TE
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A function h : R" — R is r—homogeneous with degree d,.;, € R if
for all x € R™ we have (Hermes 90) :

A" (Ayx) = h(z).
When such a property holds, we write deg,.(h) = d, 5.

(13)

«40» «F»r « =) 4 Q>

it
-



Introduction Finite time stability
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Homogeneity: second generation ideas

Such homogeneity notion can be also defined for vector fields,
ordinary differential system (3)

Definition

A vector field f : R™ — R"™ is r—homogeneous with degree
dry € R, with d;. ; > —min;cgy 1 (r;) if for all x € R™ we have
(see Hermes 90) :

)‘_dr’fAr_lf(Arx) = f(:L‘), (14)

which is equivalent to all i-th component f; being r—homogeneous
function of degree r; + d,. ;. When such a property holds, we write
deg,.(f) = d, . The system (3) is r—homogeneous of degree d, ¢ if
the vector field f is homogeneous of degree d,. ;.
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Homogeneity: second generation ideas

Theorem (Rosier)

For the system (3) with r—homogeneous and continuous function f
the following properties are equivalent:

e the system (3) is (locally) asymptotically stable;

@ there exists a continuously differentiable homogeneous
Lyapunov function V : R™ — R such that for all x € R",

a(@) < V(z) < asa) (15)
DV@)s(a) = @) (16)
( x) = V(z),d>0, (17)

for some a1, a9 € Koo and o € K.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity



Let f be defined on R™ and be a continuous r—homogeneous

vector field with negative degree. If the origin of system (3) is
Locally AS and then it is Globally FTS.
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Multi-homogeneity: definitions

Restricting the set of admissible A (local homogeneity):

Definition

A function h : R™ — R with h(0) = 0 is (rg, Ao, ho)—homogeneous
with degree d,, 1, € R with ho(0) = 0 if for all z € S, we have :
lim (A‘dTOthh(Amx) - ho(a:)) = 0. (18)

>\—>>\0

Remark

In the paper [1] by Andrieu et al. this definition has been
introduced for \g = 0 and Ao = oo (the function h is called
homogeneous in the bi-limit if it is simultaneously

(ro, 0, hg)—homogeneous and (1o, 00, hoo)—homogeneous).
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Multi-homogeneity: definitions

Definition (to be continued)

A vector field f: R" — R™ is with f(0) =0 is

(10, Ao, fo)—homogeneous with degree d,, s, € R with f(0) =0
and d 5o > —min;egy  ny(roi) if for all z € ;) we have :

lim (A0 AL f(Arye) = folw)) =0, (19)
A— Ao

The system (3) is (rg, Ao, fo)—-homogeneous with degree

dro,f, € R if the vector field f is (o, Ao, fo)—homogeneous with
degree d, s, € R. The coefficients ro; > 0,7 € 1,...,n are called
the weights, d,, n, (respectively d,, f,) is the degree of
homogeneity (it may depend on X\g) and hg (respectively fp) is the
approximating function of h (respectively f) at Ao.
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Multi-homogeneity: definitions

Definition (end)

A set valued map F : R" = R™ with F(0) 30 is

(70, Ao, Fo)—homogeneous with degree d,, , € R with Fy being a
set valued map such that F(0) = 0 if for all z € S,, we have :

Jim (xdvao AP (M) — Fo(a;)) —0. (20)
The system (4) is (70, Ao, Fo)—homogeneous with degree

dr,F, € R if the set valued map F' is (rg, Ao, £y)—homogeneous
with degree d,, r, € R.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Definition

The function f (respectively the vector field f, the system (3), the
multi-valued function F', the differential inclusion (4)) is
homogeneous in the multi-limit if there exist a finite number of
triplet (7, Ai, g; (respectively f;, F;)) for which the function
(respectively the vector field f, the system (3), the multi-valued
function F', the differential inclusion (4)) is (s, \i, gi (respectively
fi, F;))—locally homogeneous for each index i.
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Multi-homogeneity: definitions

Let us consider the following function

WOz 2] + [2]?, (21)

It is easy to see that in this case this function cannot be
homogeneous in the classical sense. At the origin: ho(z) = {:c]% is
dominating and is homogeneous of degree d,, r, = 1 with weight
ro = 3. Indeed, Vx € S, we have

1 1
lim A~ A32]3 = 3=p 22
AILI}) L ZL'—| |z]3 o(z) (22)
lim A1 [ A3z]® = 2
A el =0 =

v
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Multi-homogeneity: definitions

At infinity: heo(2) = |2]% is dominating and is homogeneous of

degree d,.__ .. = 1 with weight 7o, = . Indeed, Vz € S, we
have

1
. -1 1 3
Jim A pax] - 0 (24)
lim A1 L)\%x-‘g) = |2]® = hoo(2) (25)
A——+00 >

(26)

Finally this function k% is (3,0, hg)—homogeneous with degree one
and (%, +00, hoo ) —homogeneous with degree one. Clearly this
function is also continuous at any point in particular at = 1.
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Multi-homogeneity: definitions

Let us consider the following function

z° |2]3

1.
Mere ey T Aty

(27)

At the origin: ho(z) = [aﬂ% is dominating and is homogeneous of
degree d,, n, = 1 with weight ry = 3. Indeed, V2 € S, we have

1
3,13
o =l L)\ x] _ i
I A" G ey = lF =hole) (28)
)\151.5
. -1 _
MmA Ty = O (29)

V.
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Multi-homogeneity: definitions

At infinity: heo(2) = |2]® is dominating and is homogeneous of
degree d,__ ., = 1 with weight ro, = % Indeed, Vz € S, we
have

1

el
L

m A )

5

| pee]
L

m A e

= 0 (30)

= [2]° = hoo(2) (31)

Finally this function k! is (3,0, hg)—homogeneous with degree one
and (%, +00, hoo ) —homogeneous with degree one.
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Multi-homogeneity: definitions

Obtained results:
e stability (local homogeneity),
un-stability (local homogeneity),
universal formulae for constructing approximating functions,
oscillation characterization using multi-homogeneity concepts,

extension for fde,

etc ...
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Let us consider the following

= f(2)+ ) gi(2u, z€Q, y=h(z), (32)
=1

And assume that it can be transformed into the following chain of
integrator

1 = aix1+ 22+ ¢1(y,u)
Ty = ax1+ 23+ P2y, u)
Tp = ap®1+ <Z52(Z/7 u)

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Theorem (Perruquetti et al. 2006)
Jde > 0: Va €]1 — ¢, 1], system (33) admits the following GFTO:

31 = a1y + d1(y,u) + &2 + k1[y — &1

fi"2 = agy + ¢2(y,u) + T3 + kafy — 1] (38)
G = agy + ¢y, u) + kn[y — 1%

where the «; are defined by

1
a=ia—(1—1), i=1,...,n, ae}l—n,l[. (35)

The gains are given such that (A — KC) is Hurwitz.
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Assumptions:

@ System is UO (Uniformly observable) for any bounded input:

(@1 =22+ 270 g1,(21)y
dy = w3+ 250 92,5 (w1, 22)u;
(36)
i'n—l =Ty + Z;nzl gn—ld‘(ml, ey xn_l)uj
En = () + 200 Gng(T)u;
ly =21 =Cu

(using a change of coordinate) where C'=(1 0---0), ¢ and
gi; (t=1,...,n,5=1,...,m) are analytic functions with
(p(O) = O,Qij(o, . ,O) = 0.

@ the functions g; ; and ¢ are globally Lipschitz with constant |
and u is bounded by ug € R, that is ||ulo < uo.
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Theorem (Shen 2008)

System (36) admits a semi-global observer of the form:

21 =22+ 200 g15(E1)uy + ki [y — 1)
By = &3+ Y051y 925 (21, E2)uj + ko [y — £1]°2
(37)
Zn = @(&) + 2711 gng(&)us + knly — 1]
where the «; are given by (35) and the gains are given by
K = [ki,.... k)" = S (0)CT, (38)

v
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where S (6) is the unique solution of the matrix equation:

0Se0(0) + AT S0 (0) + Sec(0)A — CTC =0
(39)
Soo(0) = 5,(6)

where (A)z',j = (51',3'_1, 1 < ’i,j <n, and C = (1

0.

..0).
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Theorem (Menard et al. 2010)

For (36) with a bounded input, there exists 0 < 8* < oo and & > 0
such that for all > 0* and o €]1 — ¢, 1], we have the following
GFTO:

21 =22+ Y50 915(E1)us + ka([er]™ + per)
To =23 + 3521 92,5(21, B2)uj + ko([e1]*2 + per)

A

Bn = (&) + 21tq Gng (@15 + kn([er] + per)

where ey = x1 — &1, the powers «; are defined by (35), the gains

2
k; by (38), and p = ("293231“> where

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Theorem (end)

S1 = maxi<ij<n|Soo(1)ij]- 1S5 (1);1]- (40)

In addition, the settling time T'(eg) (where eqg = x¢ — Zg) of the
m(A2) n(1-8(a2)

error dynamics is bounded by n(:(f;)‘))) + n( bbzz(éjl)) ) (where

all the parameters and the Lyapunov function V' are given in the

proof).

Key Point is multi-homogeneity at zero and infinity.
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For (36) with a bounded input u, there exists 0 < §* < oo such

that for all > 0* and o € [1 — 1/n, 1], (29) is a GFTO

Whena—l— =1—ﬁ, 1=1,.
&

[m]

,n this is :a, = 0 thus
B+ YTy g1 (E1)uj + ka([er) "7 + pel)
Bo= a3+ Yy 925(81, E2)u; + ka([er )~ + per)
Tn = () + 2011 gn,j(@)us + kn(sign(er) + per)

=
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In the rest we will consider a perturbed chain of integrator:
( .
1 = T2

Tg = x3

Tp—1 = Tn

(41)
Ep = a(x) + b(z)u
ly=11=Cx

«0O0)>» «F»r «Z» « Q>
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Conjecture

Assume that b(x) # 0, then there exists 0 < 8* < oo and
a € [1 —1/n, 1], such that for all 8 > 6* and the following control:
_ (za(@)+v(z))
{u - b))
(@) = Xicy ki) + pxi)

globally finite-time stabilize the system (41), where the powers o;
are defined by (35), the gains k; and p are given explicitly.
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