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Finite time stability

ẋ = −dxca = −sign(x)|x|a, x ∈ R, (1)

for which the solutions are (a ∈ ]0, 1[):

φx(τ) =

{
s(τ, x) if 0 ≤ τ ≤ |x|

1−a

1−a
0 if τ > |x|1−a

1−a

, (2)

with s(τ, x) = sgn(x)
(
|x|1−a − τ(1− a)

) 1
1−a

and they reach the

origin in finite time.
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Observation:

FTS = infinite eigenvalue assignation for the closed loop
system at the origin.

∃ a function called settling time that performs the time for a
solution to reach the equilibrium. The function depends on
the initial condition of a solution.

the right hand side of the ordinary differential equation can
not be locally Lipschitz at the origin.
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Finite time stability

ODE (ordinary differential equation)

ẋ = f(x) (3)

where f is a continuous vector field or DI (differential inclusion)

ẋ ∈ F (x) (4)

where F is a set valued map (with some additional property upper
semi continuous for example).
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Finite time stability

finite-time stability (FTS): S + FA (Finite time attractivity)

These systems are assumed to possess unique solutions in forward
time
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Definition

A class K function r belongs to class KI if r ∈ CL ([0, a]) and
there exists 0 < ε < a such that:∫ ε

0

dz

r(z)
< +∞.

From now α ∈]0, 1[. Let V : V → R≥0 be a Lyapunov function and
r a class KI function, the first condition is that for all x ∈ V,

V̇ (x) ≤ −r(V (x)). (5)
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Finite time stability

The existence of such a pair (V, r) is still a necessary condition for
finite time stability of more general systems (see [2] and [3]). Here,
one will see that r can be chosen on a particular form describes as
follow.
Let V : V → R≥0 be a Lyapunov function, the second condition is
that for all x ∈ V,

V̇ (x) ≤ −a(V (x))α, a > 0, α ∈]0, 1[. (6)

(in fact Bhat T (x) continuous at the origin but in fact what is
needed is uniquness outside the origin).
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Theorem (Moulay Perruquetti 2006)

Consider the system (3) with uniqueness of solutions outside the
origin, the following properties are equivalent:

(i) the origin of the system (3) is FTS,

(ii) there is a Lyapunov function satisfying condition (6),

(iii) there is a Lyapunov function and a class KI function
satisfying condition (5).

Moreover, if V is a Lyapunov function satisfying condition (6) then

T (x) ≤ V (x)1−α

c(1− α)
.
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Homogeneity: first generation ideas

Let us recall (3)
ẋ = f(x), x ∈ Rn, (7)

In the 50-60’s (Lasalle, Han, etc . . . ):

Definition

f : Rn → Rn is homogeneous with degree k (or k–homogeneous)
iff ∀λ ∈ R : f(λx) = λkf(x).
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x(t, x0) denotes a solution. For example,

ẋ = Ax

is homogeneous of degree k = 1 and we have
x(t, x0) = exp(At)x0 thus x(t, λx0) = λx(λk−1t, x0) = λx(t, x0).

ẋ = −sign(x)

is homogeneous of degree k = 0 and we have (λ > 0)

x(t, x0) = sgn(x0) (|x0| − t)

thus x(t, λx0) = λx(λk−1t, x0) = λx
(
t
λ , x0

)
.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity



Introduction
Multi-homogeneity

Finite time stability
Homogeneity

Homogeneity: first generation ideas

if k < 0 then we will get a discontinuity at the origin,

if 0 < k < 1 then the Lipschitz condition is not satisfied
(Uniqueness of solutions),

if λ = −1 then the function is not real.

In order to avoid such situations, at these times, we add the
condition

k =
p

2r + 1
> 1,

where p and r integers.
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Example

f(x1, x2) =
x21+x

2
2

x1+x2
is 1–homogeneous but is not linear!

f(x1, x2) =
x
1/2
1 +x

1/2
2

x1+x2
is −1

2–homogeneous (not continuous at
0).
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Proposition

f : Rn → Rn is k–homogeneous iff each components are
k–homogeneous.

Proposition (Euler)

fi : Rn → R is k–homogeneous iff

n∑
i=1

xi
∂fi
∂xi

= kfi(x), ∀x ∈ Rn. (8)
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A useful property is time and state parametrization

x = λy

s = λk−1t

leads to
dy

ds
= f(y) (9)

from which we deduce φ(t, x0) = φ(t, λy0) = λφ(s, y0) (using the
following notation y0 = λ−1x0)

λφ(λk−1t, x0) = φ(t, λx0) (10)
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Theorem

If the equilibrium of (3) where f is homogeneous, is locally AS
then it is GAS.
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Properties:

1 trajectories are rays from the origin.

2 Thus it is sufficient to study what happens on the unit sphere
S:

y =
x

‖x‖
=
x

r
, r2 = xTx

2rṙ = ẋTx+ xT ẋ = r(fT (ry)y + yT f(ry))

= 2rk+1yT f(y)

ṙ = rkyT f(y)

ẏ =
d(x/r)

dt
=
ẋ

r
− xṙ

r2
=
rf(ry)− ryrkyT f(y)

r2

= rk−1
[
f(y)−

(
yT f(y)

)
y
]
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Taking a point y0 ∈ S then we have f(y0)−
(
yT0 f(y0)

)
y0 = 0 : so

for the original system in x the corresponding trajectory is a ray
passing through the origin and the point belonging to the sphere.
Along this ray we have

ṙ = ark, a = yT0 f(y0)

r(t) =
[
r1−k0 + (1− k)at

] 1
1−k

, k 6= 1

r(t) = r0 exp(at), if k = 1
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From this one obtains:

Proposition

According to (a, k)

k = 1,
a < 0 limt→∞ r(t)→ 0 AS
a > 0 limt→∞ r(t)→∞ I
a = 0 r(t) = r0 S

k > 1,
a < 0 limt→∞ r(t)→ 0 AS
a > 0 limt→∞ r(t)→∞ I (finite time blow up)
a = 0 r(t) = r0 S

k < 1,
a < 0 limt→∞ r(t)→ 0 AS : STF (finite time)
a > 0 limt→∞ r(t)→∞ I
a = 0 r(t) = r0 S
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Example

Let us consider

ẋ1 = −
(
x21 + x22
x1 + x2

)
x1 + x1x2

ẋ2 = −x21 −
(
x21 + x22
x1 + x2

)
x2

which is 2–homogeneous.
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Example

On the sphere (x21 + x22 = 1)

f(y0) =
(
yT0 f(y0)

)
y0 −

(
x21+x

2
2

x1+x2

)
x1 + x1x2 = −(x21+x22)

2

x1+x2
x1

−x21 −
(
x21+x

2
2

x1+x2

)
x2 = −(x21+x22)

2

x1+x2
x2{

− x1
x1+x2

+ x1x2 = − x1
x1+x2

−x21 − x2
x1+x2

= − x2
x1+x2
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Example

Which have two equilibriums

(−1, 1)

(1,−1)

for which a = xT f(x) = −(x21+x22)
2

x1+x2
=∞ (a =∞, k > 1: blow up)
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Example

Let us consider

ẋ1 = −
(
x21 + x22

)
x1 + x1x

2
2

ẋ2 = −x21x2 −
(
x21 + x22

)
x2

which is 3–homogeneous. On the sphere (x21 + x22 = 1)

f(y0) =
(
yT0 f(y0)

)
y0{

−1x1 + x1x
2
2 = −

(
x21 + x22

)2
x1

−x21x2 − 1x2 = −
(
x21 + x22

)2
x2
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Example

There is 4 points

(±1, 0)

(0,±1)

for which a = xT f(x) = −
(
x21 + x22

)2
= −1 (a < 0, k > 1: AS)
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An important Liapunov function characterization of GAS is

Theorem

Let f be homogeneous C1 function such that f(0) = 0 the the two
following conditions are equivalent

the origin is GAS,

there exist an homogeneous Liapunov function of class C∞

s.t. V and −V̇ are positive definite.
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Corollary

Let f i be C1 homogeneous vector fields with degree i ≥ k and let
f =

∑
i≥k f

i such that f(0) = 0. If the origin of ẋ = fk(x) is LAS
then the origin of ẋ = f(x) is GAS.
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Second generation homogeneity ideas:
Let λ > 0, ri > 0, i ∈ {1, . . . , n} called weights one can define:

the vector of weights r = (r1, . . . , rn)T ,

the dilation matrix

Λr = diag{λri}ni=1, (11)

note that Λrx = (λr1x1, . . . , λ
rixi, . . . , λ

rnxn)T .

let r denotes the finite product r1r2 . . . rn then the
r–homogeneous norm of x ∈ Rn is defined by:

nr(x) = (|x1|
r
r1 + . . .+ |xi|

r
ri + . . .+ |xn|

r
rn )

1
r . (12)
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Sufficient condition for ODE (or DI) to be finite time stable:

Lemma

Suppose there exists a Lyapunov function V (x) defined on a
neighborhood U ⊂ Rn of the origin of system (3) and some
constants τ, γ > 0 and 0 < β < 1 such that

d

dt
V (x)|(3) ≤ −τV (x)β + γV (x), ∀x ∈ U\{0}.

Then the origin of system (3) is FTS. The set

Ω =
{
x ∈ U : V (x)1−β < τ

γ

}
is contained in the domain of

attraction of the origin. The settling time satisfies

T (x) ≤ ln(1− γτ V (x)1−β)
γ(β−1) , x ∈ Ω.
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Definition

A function h : Rn → R is r–homogeneous with degree dr,h ∈ R if
for all x ∈ Rn we have (Hermes 90) :

λ−dr,hh(Λrx) = h(x). (13)

When such a property holds, we write degr(h) = dr,h.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity



Introduction
Multi-homogeneity

Finite time stability
Homogeneity

Homogeneity: second generation ideas

Such homogeneity notion can be also defined for vector fields,
ordinary differential system (3)

Definition

A vector field f : Rn → Rn is r–homogeneous with degree
dr,f ∈ R, with dr,f > −mini∈{1,...,n}(ri) if for all x ∈ Rn we have
(see Hermes 90) :

λ−dr,fΛ−1r f(Λrx) = f(x), (14)

which is equivalent to all i-th component fi being r–homogeneous
function of degree ri + dr,f . When such a property holds, we write
degr(f) = dr,f . The system (3) is r–homogeneous of degree dr,f if
the vector field f is homogeneous of degree dr,f .

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Theorem (Rosier)

For the system (3) with r–homogeneous and continuous function f
the following properties are equivalent:

the system (3) is (locally) asymptotically stable;

there exists a continuously differentiable homogeneous
Lyapunov function V : Rn → R+ such that for all x ∈ Rn,

α1(x) ≤ V (x) ≤ α2(x) (15)

DV (x)f(x) = −α(x) (16)

λ−dV (Λrx) = V (x), d ≥ 0, (17)

for some α1, α2 ∈ K∞ and α ∈ K.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Theorem

Let f be defined on Rn and be a continuous r–homogeneous
vector field with negative degree. If the origin of system (3) is
Locally AS and then it is Globally FTS.
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Multi-homogeneity: definitions

Restricting the set of admissible λ (local homogeneity):

Definition

A function h : Rn → R with h(0) = 0 is (r0, λ0, h0)–homogeneous
with degree dr0,h0 ∈ R with h0(0) = 0 if for all x ∈ Sr0 we have :

lim
λ→λ0

(
λ−dr0,h0h(Λr0x)− h0(x)

)
= 0. (18)

Remark

In the paper [1] by Andrieu et al. this definition has been
introduced for λ0 = 0 and λ0 =∞ (the function h is called
homogeneous in the bi-limit if it is simultaneously
(r0, 0, h0)–homogeneous and (r∞,∞, h∞)–homogeneous).

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Definition (to be continued)

A vector field f : Rn → Rn is with f(0) = 0 is
(r0, λ0, f0)–homogeneous with degree dr0,f0 ∈ R with f0(0) = 0
and dr0,f0 > −mini∈{1,...,n}(r0i) if for all x ∈ Sr0 we have :

lim
λ→λ0

(
λ−dr0,f0Λ−1r0 f(Λr0x)− f0(x)

)
= 0, (19)

The system (3) is (r0, λ0, f0)–homogeneous with degree
dr0,f0 ∈ R if the vector field f is (r0, λ0, f0)–homogeneous with
degree dr0,f0 ∈ R. The coefficients r0i > 0, i ∈ 1, . . . , n are called
the weights, dr0,h0 (respectively dr0,f0) is the degree of
homogeneity (it may depend on λ0) and h0 (respectively f0) is the
approximating function of h (respectively f) at λ0.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Definition (end)

A set valued map F : Rn ⇒ Rn with F (0) 3 0 is
(r0, λ0, F0)–homogeneous with degree dr0,F0 ∈ R with F0 being a
set valued map such that F0(0) = 0 if for all x ∈ Sr0 we have :

lim
λ→λ0

(
λ−dr0,F0Λ−1r0 F (Λr0x)− F0(x)

)
= 0. (20)

The system (4) is (r0, λ0, F0)–homogeneous with degree
dr0,F0 ∈ R if the set valued map F is (r0, λ0, F0)–homogeneous
with degree dr0,F0 ∈ R.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Definition

The function f (respectively the vector field f , the system (3), the
multi-valued function F , the differential inclusion (4)) is
homogeneous in the multi-limit if there exist a finite number of
triplet (ri, λi, gi (respectively fi, Fi)) for which the function
(respectively the vector field f , the system (3), the multi-valued
function F , the differential inclusion (4)) is (ri, λi, gi (respectively
fi, Fi))–locally homogeneous for each index i.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Example

Let us consider the following function

h0 : x 7→ bxe
1
3 + bxe3 , (21)

It is easy to see that in this case this function cannot be

homogeneous in the classical sense. At the origin: h0(x) = bxe
1
3 is

dominating and is homogeneous of degree dr0,h0 = 1 with weight
r0 = 3. Indeed, ∀x ∈ Sr0 we have

lim
λ→0

λ−1
⌊
λ3x

⌉ 1
3 = bxe

1
3 = h0(x) (22)

lim
λ→0

λ−1
⌊
λ3x

⌉3
= 0 (23)

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Example

At infinity: h∞(x) = bxe3 is dominating and is homogeneous of
degree dr∞,h∞ = 1 with weight r∞ = 1

3 . Indeed, ∀x ∈ Sr∞ we
have

lim
λ→+∞

λ−1
⌊
λ

1
3x
⌉ 1

3
= 0 (24)

lim
λ→+∞

λ−1
⌊
λ

1
3x
⌉3

= bxe3 = h∞(x) (25)

(26)

Finally this function h0 is (3, 0, h0)–homogeneous with degree one
and (13 ,+∞, h∞)–homogeneous with degree one. Clearly this
function is also continuous at any point in particular at x = 1.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Example

Let us consider the following function

h1 : x 7→ x5

(1 + x2)
+
bxe

1
3

(1 + x2)
, (27)

At the origin: h0(x) = bxe
1
3 is dominating and is homogeneous of

degree dr0,h0 = 1 with weight r0 = 3. Indeed, ∀x ∈ Sr0 we have

lim
λ→0

λ−1
⌊
λ3x

⌉ 1
3

(1 + λ6x2)
= bxe

1
3 = h0(x) (28)

lim
λ→0

λ−1
λ15x5

(1 + λ6x2)
= 0 (29)

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Example

At infinity: h∞(x) = bxe3 is dominating and is homogeneous of
degree dr∞,h∞ = 1 with weight r∞ = 7

5 . Indeed, ∀x ∈ Sr∞ we
have

lim
λ→+∞

λ−1

⌊
λ

7
5x
⌉ 1

3

(1 + λ6x2)
= 0 (30)

lim
λ→+∞

λ−1

⌊
λ

7
5x
⌉5

(1 + λ6x2)
= bxe3 = h∞(x) (31)

Finally this function h1 is (3, 0, h0)–homogeneous with degree one
and (75 ,+∞, h∞)–homogeneous with degree one.

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Multi-homogeneity: definitions

Obtained results:

stability (local homogeneity),

un-stability (local homogeneity),

universal formulae for constructing approximating functions,

oscillation characterization using multi-homogeneity concepts,

extension for fde,

etc . . .
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Let us consider the following

ż = f(z) +

m∑
i=1

gi(z)ui, z ∈ Ω, y = h(z), (32)

And assume that it can be transformed into the following chain of
integrator

ẋ1 = a1x1 + x2 + φ1(y, u)

ẋ2 = a2x1 + x3 + φ2(y, u)

. . . = . . .

ẋn = anx1 + φ2(y, u)

y = x1. (33)

W. Perruquetti, D. Efimov, E. Bernuau Multi-homogeneity
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Theorem (Perruquetti et al. 2006)

∃ε > 0 : ∀α ∈]1− ε, 1[, system (33) admits the following GFTO:
˙̂x1 = a1y + φ1(y, u) + x̂2 + k1dy − x̂1cα1

˙̂x2 = a2y + φ2(y, u) + x̂3 + k2dy − x̂1cα2

...
˙̂xn = a2y + φ2(y, u) + kndy − x̂1cαn

(34)

where the αi are defined by

αi = iα− (i− 1), i = 1, . . . , n, α ∈
]
1− 1

n
, 1

[
. (35)

The gains are given such that (A−KC) is Hurwitz.
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Assumptions:

System is UO (Uniformly observable) for any bounded input:

ẋ1 = x2 +
∑m

j=1 g1,j(x1)uj

ẋ2 = x3 +
∑m

j=1 g2,j(x1, x2)uj
...

ẋn−1 = xn +
∑m

j=1 gn−1,j(x1, . . . , xn−1)uj

ẋn = ϕ(x) +
∑m

j=1 gn,j(x)uj

y = x1 = Cx

(36)

(using a change of coordinate) where C = (1 0 · · · 0), ϕ and
gi,j (i = 1, . . . , n, j = 1, . . . ,m) are analytic functions with
ϕ(0) = 0, gij(0, . . . , 0) = 0.

the functions gi,j and ϕ are globally Lipschitz with constant l
and u is bounded by u0 ∈ R+, that is ‖u‖∞ ≤ u0.
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Theorem (Shen 2008)

System (36) admits a semi-global observer of the form:
˙̂x1 = x̂2 +

∑m
j=1 g1,j(x̂1)uj + k1dy − x̂1cα1

˙̂x2 = x̂3 +
∑m

j=1 g2j(x̂1, x̂2)uj + k2dy − x̂1cα2

...
˙̂xn = ϕ(x̂) +

∑m
j=1 gn,j(x̂)uj + kndy − x̂1cαn

(37)

where the αi are given by (35) and the gains are given by

K = [k1, . . . , kn]T = S−1∞ (θ)CT , (38)
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Theorem (end)

where S∞(θ) is the unique solution of the matrix equation:{
θS∞(θ) +ATS∞(θ) + S∞(θ)A− CTC = 0

S∞(θ) = ST∞(θ)
(39)

where (A)i,j = δi,j−1, 1 ≤ i, j ≤ n, and C = (1 0 . . . 0).
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Theorem (Menard et al. 2010)

For (36) with a bounded input, there exists 0 < θ∗ <∞ and ε > 0
such that for all θ > θ∗ and α ∈]1− ε, 1[, we have the following
GFTO:

˙̂x1 = x̂2 +
∑m

j=1 g1,j(x̂1)uj + k1(de1cα1 + ρe1)
˙̂x2 = x̂3 +

∑m
j=1 g2,j(x̂1, x̂2)uj + k2(de1cα2 + ρe1)

...
˙̂xn = ϕ(x̂) +

∑m
j=1 gn,j(x̂)uj + kn(de1cαn + ρe1)

where e1 = x1 − x̂1, the powers αi are defined by (35), the gains

ki by (38), and ρ =

(
n2θ

2
3 S1+1
2

)
, where
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Theorem (end)

S1 = max1≤i,j≤n|S∞(1)i,j |.|S−1∞ (1)j,1|. (40)

In addition, the settling time T (e0) (where e0 = x0 − x̂0) of the

error dynamics is bounded by
ln
(

4r2

V (e0)

)
κ(θ) +

ln
(
1− b1

b2
(4r2)

1−α)
b2(α−1) (where

all the parameters and the Lyapunov function V are given in the
proof).

Key Point is multi-homogeneity at zero and infinity.
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Theorem (Perruquetti et al. 2011)

For (36) with a bounded input u, there exists 0 < θ∗ <∞ such
that for all θ > θ∗ and α ∈ [1− 1/n, 1[, (29) is a GFTO.

Remark

When α = 1− 1
n , αi = 1− i

n , i = 1, . . . , n this is :αn = 0 thus
˙̂x1 = x̂2 +

∑m
j=1 g1,j(x̂1)uj + k1(de1c1−

1
n + ρe1)

˙̂x2 = x̂3 +
∑m

j=1 g2,j(x̂1, x̂2)uj + k2(de1c1−
2
n + ρe1)

...
˙̂xn = ϕ(x̂) +

∑m
j=1 gn,j(x̂)uj + kn(sign(e1) + ρe1)
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In the rest we will consider a perturbed chain of integrator:

ẋ1 = x2

ẋ2 = x3
...

ẋn−1 = xn

ẋn = a(x) + b(x)u

y = x1 = Cx

(41)
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Conjecture

Assume that b(x) 6= 0, then there exists 0 < θ∗ <∞ and
α ∈ [1− 1/n, 1[, such that for all θ > θ∗ and the following control:{

u = (−a(x)+v(x))
b(x)

v(x) =
∑n

i=1 ki(dxicαi + ρxi)

globally finite-time stabilize the system (41), where the powers αi
are defined by (35), the gains ki and ρ are given explicitly.
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