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Visual tracking

Definition
• Visual tracking is the process of locating a moving object 

(or multiple objects) over time using a camera.
• Tracking then refers to a localization problem

Tracking can be done:
• In the image plane (2D)
• In the real world (3D)

Objects
• Keypoints, geometrical features
• Image regions
• 3D objects 



Tracking:  A state estimation issue from image measurements

Using image measurements consistently estimate the state(s)       of one 
or more object(s) over the discrete time steps in a video

Measurements? state?

What is tracking ?

t-1 t t+1

Xt-1 Xt
Xt+1

xt



From image measurements to state estimation

Measurements:
• Pixel intensity (raw data), color
• Visual feature (edges, line,  keypoints, motion vectors)
• Detection process (face, car, …)



From image measurements to state estimation

Measurements:
• Pixel intensity (raw data), color
• Visual feature (edges, keypoints, motion vectors)
• Detection process (face, car, …)
State:
• Coordinates(2 DoF)
• Geometrical features (from 2 DoF to…)
• Bounding box (4-6 DoF)
• 3D rigid pose (6 DoF)
• 3D pose + deformation (6+k DoF) 
• Homography (8 DoF)
• Visual SLAM (6N + M DoF)



Formalizing tracking [Patrick Perez 2015]

Given past and current measurements

Output an estimate of current state

Deterministic tracking
• Optimization of ad-hoc objective function

Probabilistic tracking
• Computation of the filtering pdf and estimate: 

z1:t = (z1...zt)

b
xt = f(z1:t)

b
xt = argmin E(xt, bxt�1, z1:t)

b
xt = argmax p(xt | z1:t)

p(xt | z1:t)



I will not talk about… (but a few words)

vSLAM and RGB-D mapping (and then tracking)
• It is clearly in the scope of a talk on visual tracking !
• Tutorial this afternoon 13:30 – 17:30 room A1

Probabilistic tracking
• Kalman filter, EKF, Particle filter
• All the presented approaches could take advantage of probabilistic

filter
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Overview

• 2D tracking
• Fiducial markers
• Contour-based tracking
• Keypoints, KLT
• Color tracking

• Motion estimation
• Region based tracking

• 3D model-based tracking

• Application in visual servoing (see next talk)

� Track “key points” (Harris and the like),  

or random patches, as long as possible 

� Input: detected/sampled/chosen patches 

� Output: trac
klets o

f various life-spans  

 

 

 

 

 

 

 

 

 

 
 

 

Tracking (small) fragments 

[Sand and Teller CVPR 2006] 

[Rubinstein et al. BMVC12] 
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Detection vs tracking

Is tracking only a detection and matching problem ?

Detection/matching: 
-Estimate       for a given frame regardless of past frames
-Search over the whole image (may computationally be inefficient)

Tracking:
-Spatio-temporal issue maintain the estimate of       over time
-Restrict search space (may consider prediction process)
-Dynamic evolution model

Tracking may be achieved thanks to a detection/matching algorithm

xt

xt



Fiducial markers : still useful ?
White dots on black background
So simple, yet efficient,…

Just a connected component labeling

Still considered in research in visual 
servoing to test

• modeling aspects
• design of new control laws 

Ready for industrial applications 



Tracking contour-based 2D features

Local tracking of edge points
• Eg, ECM algorithm [Bouthemy PAMI 89]

• 1D search algorithm
• Convolution with oriented mask

Robust estimation of feature parameters
• Lines, circles, splines, etc.
• Least square
• IRLS (M-estimation)

Frame rate performance

Source code in ViSP [Marchand IEEE RAM05]



Tracking contour-based 2D features

Tracking a set of features
[Andreff IJRR01] 



Tracking contour-based 2D features

Tracking in catadioptric images   [Hadj-Abdelkader, LASMEA]

Contour following



Tracking points of interest: KLT       [Lucas Kanade 1981]

Point detection using Harris and Stephen detector
• Maximum of the signal autocorrelation matrix

Tracking using KLT algorithm
• Based on brightness consistency hypothesis

Xt

Xt+1

h



Tracking points of interest: KLT       [Lucas Kanade 1981]

Point detection using Harris and Stephen detector
• Maximum of the signal autocorrelation matrix

Tracking using KLT algorithm
• Based on brightness consistency hypothesis

• h is the translation motion for a given patch
• Extended to more complex motion (see later) [Shi, CVPR 1994] [Baker IJCV 

2004]

� Track “key points” (Harris and the like),  
or random patches, as long as possible 
� Input: detected/sampled/chosen patches 

� Output: tracklets of various life-spans  

 

 

 

 

 

 

 

 

 

 

 

 

Tracking (small) fragments 

[Sand and Teller CVPR 2006] [Rubinstein et al. BMVC12] 
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Color-based tracking [Comaniciu PAMI 2003]

Global description of tracked region: color histogram
• Reference histogram with B bins

Candidate histogram at current instant 

� Global description of tracked region: color histogram 

� Reference histogram with B bins 

 

 set at track initialization 

� Candidate histogram at current instant 

 

 gathered in region          of current 

 image. 

� At each instant 

 

 
� searched around      

� iterative search initialized with       : meanshift-like iteration  
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Color-based tracking 

7/29/2013 

Xt

Xt+1

� Global description of tracked region: color histogram 

� Reference histogram with B bins 

 

 set at track initialization 

� Candidate histogram at current instant 

 

 gathered in region          of current 

 image. 

� At each instant 
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� iterative search initialized with       : meanshift-like iteration  
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Color-based tracking [Comaniciu PAMI 2003]

Global description of tracked region: color histogram
• Reference histogram with B bins

Candidate histogram at current instant 

At each instant 

• iterative search: meanshift-like iteration
• Battacharyya measure
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� Reference histogram with B bins 
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Color-based tracking 
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Color-based tracking [Comaniciu PAMI 2003]

Global description of tracked region: color histogram
• Reference histogram with B bins

set at track initialization
Candidate histogram at current instant 

At each instant 

• iterative search: meanshift-like iteration
• Battacharyya measure

� Global description of tracked region: color histogram 

� Reference histogram with B bins 

 

 set at track initialization 
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Color-based tracking 
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Color-based tracking



Remark

Up to now
• Estimated state is composed of 2D information 
• Restricted number of DoF
• Need many features/tracker and further estimation to provide 3D 

displacement or 3D object position

An issue
• There does not exist a 2D transformation that can account for 3D 

object motion

Two alternatives (among others)
• Homography estimation / planar constraints
• Model-based tracking /  3D shape prior
• SLAM (later this afternoon)
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From basic image features to 3D information

A partial solution to:

“Need many features/trackers and further estimation to provide 3D 
displacement or 3D object position”

21



From basic image features to motion

• w(x,h) is a 2D motion model (warp function)
• Translation, Rt, sRt
• Affine motion model

• Homography 



Short reminder: homography

Let us assume that points/pixel belong to a plane

and

leading to 

with

Note that a homography integrates information about the camera displacement
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Homography estimation is a linear problem

For each point we have (in homogeneous coordinates) :

which is equivalent to: x2 ⇥ 2H1x1 = 0

x2 = 2H1x1
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Homography estimation is a linear problem

For each point we have (in homogeneous coordinates) :

which is equivalent to:

it can be solved using an SVD decomposition
Γ = UDVT

h is the vector of V associated with the smallest singular value of Γ
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Motion estimation from keypoints

• Harris points extracted on a selected template
• points tracked using a KLT-like method
• statistically robust method to get a coherent global motion model
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From keypoints tracking/matching
to 3D tracking

[Berger, Simon IEEE CGA02] 
[Lepetit]

A remark:
Always use robust estimation
RANSAC is perfect here

27



Appearance based tracking



Appearance based tracking

Extention of the KLT approach
• Based on brightness consistency hypothesis

• w(x,h) is a 2D motion model (warp function)

Model I0(x)

Sequence I0..t

h



Appearance based tracking

Extention of the KLT approach
• Based on brightness consistency hypothesis

• w(x,h) is a 2D motion model (warp function)
• Translation (KLT), Rt, sRt
• Affine motion model [Shi CVPR 1994,Baker IJCV 2004, Hager PAMI 1998] 

• Homography [Malis IROS 2004] (ESM minimization process)



Algorithm Overview
• Principe :

Small dispalcement between 2 successive images

• Effect:
ht-1 is close from ht.

• Algorithm: 
ht-1 is iteratively adapted to estimate ht .
Iterative processitératif:
- Initialization :
- loop:
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KLT and template tracking   [Lucas Kanade 1981, Baker IJCV 04]

For each pixel a first order Taylor extension of
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If we now consider all the pixel (vector notation)

With

In this case the linearization of c(h) is

With the Jacobian given by
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If we now consider all the pixel (vector notation)

With the Gauss-Newton method the solution consists in minimizing
where:

This minimization problem can be solved by an iterative least square 
approach and we have

34



Large patch tracking
• Homography suitable for planar object, rotating camera

Is SSD suitable for large pacth

• Mostly yes…
• But, it is not robust to illumination variations, blur (and then to fast 

motion), multi-modality

Appearance based tracking



Large patch tracking
• Suitable for planar object, rotating camera

Is SSD suitable for large pacth
• Mainly yes… but...
• No robust to illumination variations, blur (and then to fast motion), 

multi-modality

Other registration function
• ZNCC
• SCV [Richa Hager IROS 2011]

• Mutual information [Dame IEEE IP 2010]

• …

Appearance based tracking



Reference image

Current image

Localization



Generalization

Other parameterized transformation, eg,  [Malis IROS 2007]

May include light variation



Generalization

May include light variation [Silveira-Malis CVPR07]



Optimization: inverse compositional

Direct formulation

Idea: inverse current and template

Main advantage:
• Many terms are precomputed (Jacobian which is huge)
• Almost equivalent convergence properties 
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Model-based trackers

Figure 5: Edges extracted from the image of Figure 4 using the Canny edge detector. Super-
imposed on these edges are the model from its previous estimated viewpoint, nearby matching
edges, and perpendicular errors to be minimized.

a Sun 3/260, where the edges are linked into lists on the basis of local connectivity. A fairly
simple matching technique is used to identify the image edges that are closest to the current
projected contours of a 3-D model. The few best initial matches are used to perform one it-
eration of the viewpoint solution, then further matches are generated from the new viewpoint
estimate. Up to 5 iterations of this procedure are performed, with a gradually narrowing range
of image locations which are searched for potential matches (this helps to eliminate any false
outlier matches). For simple models with straight edges, all of these steps can be performed in
less than 1 second, resulting in a system that can perform robust but rather slow real-time mo-
tion tracking. We have run this system for thousands of frames at a time by holding an object
in front of the video camera and slowly moving it. Correctness of the motion tracking can be
easily judged in real time by watching a wire-frame model superimposed on the image from
the current set of parameter estimates. We are currently exploring the use of parallel architec-
tures that could greatly speed the operation of this system so that it performs at video rates for
complex object models.

17

[Lowe PAMI 91]



3D model-based tracking

Tracking is handled through pose estimation
• Small object/camera displacement between two frames

Pose computation by minimizing the error between the projection of the 
CAD model and  the image contours 

Efficient tracking
• even with occlusions 
• video rate (50Hz).
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Pose estimation: basic problem

We know (x,y) and the object model wX
We seek the pose cTw

Solution is quite simple : change frame first

Then project
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Pose estimation

This problem is known as PnP

Many solution exists
• P3P [Fishler CACM 83] (introducing RANSAC) to [Kneip CVPR11]

• PnP (Direct Linear Transform, POSIT [Dementhon IJCV 95], EPnP [Lepetit]

Most of them can be found in openCV, ViSP, openGV, etc…

A gold standard solution: non-linear minimization of the reprojection error



Pose estimation: the “gold-standard” solution

Goal
• Estimate the pose cTw of an object with respect to the camera frame

Example for point features
• Minimizing the error between the observation xi

and the projection of the model in the image

where wX are the coordinates of the same points in the object frame
• q is a minimal representation of  cTw

b
q = argmin

q

NX

i=1

(xi �⇧ c
Tw

w
Xi)

2



Pose: non linear minimization

Solving

consists in minimizing the error e(q) defined by:

with

b
q = argmin

q

NX

i=1

(xi �⇧ c
Tw

w
Xi)

2

e(q) =
�
x� x(q)

�>�
x� x(q)

�

x = (...,xi, ...)>

x(q) = (...,⇧ c
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Linearization of the non-linear system

Problem: no general method to solve e(q) = 0
There exists iterative method that linearize the problem in order to find an 

adequate solution
First order Taylor expansion around q

where       is the gradient of ei in q and where 
second order terms are neglected that the Jacobian

Computation if the Jacobian can be find in, eg, [Marchand IEEE TVCG 2016]

ei(q+ �q) = ei(q) + �q1
@ei(q)

@q1
+ . . .+ �qn

@ei(q)

@qn
+O(|�q|2)

⇡ ei(q) + J(q)�q

J(q) = (
@ei(q)

@q1
, . . . ,

@ei(q)

@qn
)>



Solving the linearized system

With the Gauss-Newton method, we do no want to determine the value of  
q that ensures e(q)=0 but the value that minimizes the cost function:

This is a linear minimization problem (solved by a least-square approach) 
and we have:

Solved by an iterative least square method

E(q+ �q) = ke(q+ �q)k ⇡ ke(q) + J(q)�qk

�q = �J(q)+e(q)

qk+1 = qk � �q = exp

�q q

q*
e(q*)

q0

e(q0)

q

e(q)

q1

e(q1)

q2

e(q2)

@e(q)

@q
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Beyond points
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Beyond points

Distance to a moving line
• xi : point extracted in the image using, eg,  the ECM algorithm
• L(q) : projection of the object model for pose r

d?(L(q),
t+1

xi)



Beyond points

Distance to a moving line
• xi : point extracted in the image using, eg,  the ECM algorithm
• L(q) : projection of the object model for pose r

d?(L(q),
t+1

xi)



Markerless tracking

Similar approach but point to contour distance

is the squared distance between the point xi and the 
projection of the contour of the model.

t+1b
q = argmin

q

X

i

d?(L(q),
t+1

xi)

d?(Li(q), t+1
xi)



Pose estimation: robustness to outliers

The residue is given by:

• where ris a robust function (M-estimation)
• Minimize 

The control law, similar to an IRLS, which minimizes x-x(q) is given by

where

Tukey’s M-estimator

e⇢(q) = ⇢
�
x� x(q)

�

e⇢(q) = D

�
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Model-based trackers

Such approach is quite efficient
It did the job pretty well
At video rate [Petit ICRA 2014]



Spatial applications

Manoeuvre Atlantis /ISS               

Rendez-vous Soyuz/ISS



Trends: vSLAM

See Tutorial on SLAM this afternoon

But the idea is to estimate both the pose (current and past) along with
scene 3D structure

This is related to the structure from motion problem

Use to be done using Kalman filter [Monoslam Davison 03] but current state of 
the art approaches rely on bundle adjustment methods using fature or 
photometric data [PTAM ISMAR 07][DTAM ICCV2011][LSD-SLAM ECCV 2014]…
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(as in Section 3.1.2). It is known as a bundle adjustment (BA)
method [134] [84] [57], which had proved to be very efficient
and accurate in off-line applications. In [127], it has been shown
that, once the "past" poses sequence has been sparsified (choosing
adequately a reduced set of keyframes), the problem becomes
tractable and BA proved to be superior to filter-based SLAM.

Thus, denoting [q]M = (q1, . . . ,qt) a sequence of t camera
positions (keyframes) and [wX]N = (wX1, . . . ,

wXN) a set of N 3D
points, the goal is, as for the PnP problem to minimize the error
between the observations and the reprojection of 3D points. The
error to be minimized is then given by:

([bq]t , [cwX]N) = (15)

arg min
([q]t ,[wX]N )

t

Â
j=1

N

Â
i=1

d
�
x ji ,P

jTw
wXi)

�2

It is obvious that the complexity of the problem increases with the
number of keyframes.

Initialization being an important issue, camera motion between
a given keyframe and the current one is estimated using e.g. [91]
and points are triangulated. [84] and [92] proposed to perform the
BA only on a sliding window (which may lead to a camera drift)
while Parallel Tracking and Mapping (PTAM) [57] considers in
parallel a local BA with a tracking method that involves only a
localization process as in 3.1.2 with points that have been already
reconstructed (see Figure 10).

Fig. 10. Parallel Tracking and Mapping (PTAM) [57] (a video is available here)

[84] [92] and [57], have clearly demonstrated the feasibility of
a deterministic SLAM system for augmented reality on a PC [57]
and on mobile devices [58]. Companies such as Metaio, 13th
Lab (now with Oculus) or Qualcomm provide industrial and cost
effective frameworks5.

Nevertheless, such SLAM based approaches lack absolute
localization and are computationally expensive in large environ-
ments. To achieve real-time requirement and to cope with scale
factor and the lack of absolute positioning issues, it has been
proposed to decouple the localization and the mapping step. Map-
ping is handled by a full scale BA or a keyframe based BA. It is
processed to fix scale factor and define the reference frame. Then,
only a tracking (PnP) is performed on-line providing an absolute
and reliable pose to the end-user. Such an approach has been
successfully used for vehicle localization [110] and augmented
reality [144] [81] [143] (see Figure 11). Another interesting
approach that merges model-based tracking (Section 3.2) with

5. Remark: It has to be noted that for post-production scenario, since
real-time constraints are not relevant, all the image of the sequence can
be considered (no sparsification of the sequence by keyframe selection is
done) within BA methods. Commercial systems such as Boujou from 2D3
(now from Vicon) or MatchMover from Realviz (now in Maya) exploit these
very efficient techniques and are widely used in the cinema industry for
special effects production. Along with camera localization and scene structure,
these softwares are also able to estimate the camera intrinsic parameters and
subsequently also handled non-calibrated image sequences.

SLAM has been proposed in [116] for piecewise planar scene
and in [19] [131] for more complex 3D models. The approach
proposed in [131] has been adopted in the Diotasoft product (see
Figure 12).

Fig. 11. AR system that considers first an off-line SLAM approach followed by an
on-line PnP [81]. The reduced computational complexity allows an implementa-
tion on a smartphone (a video is available here).

Fig. 12. Merging model-based tracking and SLAM [131] as proposed in Diotasoft
tools.

In vSLAM approaches like PTAM, only few pixels contribute
to the pose and structure estimation process. As in Section 4.2,
dense or direct approaches such as DTAM [90], [34] or [137] allow
each pixel contributing to the registration process (optimization
is performed directly over image pixel intensities). This is also
the case for LSD-SLAM [33]. This latter approach is a keyframe
method that builds a semi-dense map, which provides far more in-
formation about the scene than feature-based approaches. Another
interesting feature of LSD-SLAM is that it does not estimate a
rigid transformation between two camera positions but a similarity
transform which allows solving the scale estimation issue thanks
to a scale-drift aware image alignment process. It demonstrated
very impressive results showing that scene reconstruction and
camera localization can be achieved in real-time without GPU ac-
celeration [114]. A sequel of this work demonstrated that it could
run in real-time on a smartphone. It can also be noted that the
code has been released to the community [33]. Considering only
pixel intensities, these approaches do not need feature extraction
and matching process and provide a dense or semi-dense map of
the environment. Nevertheless, the underlying illumination model
assumes photometric consistency (mainly valid for Lambertian
surfaces) which is not always realistic in real scenes and imposes
small baselines between frames.

Over the years, EKF based vSLAM has been progressively
replaced by keyframe and BA-based methods. This was certainly
due to [84] and PTAM [57] which demonstrated that a real-
time implementation of BA was possible. Now, real-time bundle
adjustments can operate on large-scale environment [33]. For AR
applications, with respect to sparse SLAM approaches, such dense
or semi-dense map, obtained thanks to direct methods, can be
considered to build meshes of the environment and ease interaction
between real and virtual worlds.

3.4 Registration in the 3D space

So far we considered a 2D-3D registration process. With some
devices (e.g., multiple cameras systems) it is possible to get
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(as in Section 3.1.2). It is known as a bundle adjustment (BA)
method [134] [84] [57], which had proved to be very efficient
and accurate in off-line applications. In [127], it has been shown
that, once the "past" poses sequence has been sparsified (choosing
adequately a reduced set of keyframes), the problem becomes
tractable and BA proved to be superior to filter-based SLAM.
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It is obvious that the complexity of the problem increases with the
number of keyframes.

Initialization being an important issue, camera motion between
a given keyframe and the current one is estimated using e.g. [91]
and points are triangulated. [84] and [92] proposed to perform the
BA only on a sliding window (which may lead to a camera drift)
while Parallel Tracking and Mapping (PTAM) [57] considers in
parallel a local BA with a tracking method that involves only a
localization process as in 3.1.2 with points that have been already
reconstructed (see Figure 10).

Fig. 10. Parallel Tracking and Mapping (PTAM) [57] (a video is available here)

[84] [92] and [57], have clearly demonstrated the feasibility of
a deterministic SLAM system for augmented reality on a PC [57]
and on mobile devices [58]. Companies such as Metaio, 13th
Lab (now with Oculus) or Qualcomm provide industrial and cost
effective frameworks5.

Nevertheless, such SLAM based approaches lack absolute
localization and are computationally expensive in large environ-
ments. To achieve real-time requirement and to cope with scale
factor and the lack of absolute positioning issues, it has been
proposed to decouple the localization and the mapping step. Map-
ping is handled by a full scale BA or a keyframe based BA. It is
processed to fix scale factor and define the reference frame. Then,
only a tracking (PnP) is performed on-line providing an absolute
and reliable pose to the end-user. Such an approach has been
successfully used for vehicle localization [110] and augmented
reality [144] [81] [143] (see Figure 11). Another interesting
approach that merges model-based tracking (Section 3.2) with

5. Remark: It has to be noted that for post-production scenario, since
real-time constraints are not relevant, all the image of the sequence can
be considered (no sparsification of the sequence by keyframe selection is
done) within BA methods. Commercial systems such as Boujou from 2D3
(now from Vicon) or MatchMover from Realviz (now in Maya) exploit these
very efficient techniques and are widely used in the cinema industry for
special effects production. Along with camera localization and scene structure,
these softwares are also able to estimate the camera intrinsic parameters and
subsequently also handled non-calibrated image sequences.

SLAM has been proposed in [116] for piecewise planar scene
and in [19] [131] for more complex 3D models. The approach
proposed in [131] has been adopted in the Diotasoft product (see
Figure 12).

Fig. 11. AR system that considers first an off-line SLAM approach followed by an
on-line PnP [81]. The reduced computational complexity allows an implementa-
tion on a smartphone (a video is available here).

Fig. 12. Merging model-based tracking and SLAM [131] as proposed in Diotasoft
tools.

In vSLAM approaches like PTAM, only few pixels contribute
to the pose and structure estimation process. As in Section 4.2,
dense or direct approaches such as DTAM [90], [34] or [137] allow
each pixel contributing to the registration process (optimization
is performed directly over image pixel intensities). This is also
the case for LSD-SLAM [33]. This latter approach is a keyframe
method that builds a semi-dense map, which provides far more in-
formation about the scene than feature-based approaches. Another
interesting feature of LSD-SLAM is that it does not estimate a
rigid transformation between two camera positions but a similarity
transform which allows solving the scale estimation issue thanks
to a scale-drift aware image alignment process. It demonstrated
very impressive results showing that scene reconstruction and
camera localization can be achieved in real-time without GPU ac-
celeration [114]. A sequel of this work demonstrated that it could
run in real-time on a smartphone. It can also be noted that the
code has been released to the community [33]. Considering only
pixel intensities, these approaches do not need feature extraction
and matching process and provide a dense or semi-dense map of
the environment. Nevertheless, the underlying illumination model
assumes photometric consistency (mainly valid for Lambertian
surfaces) which is not always realistic in real scenes and imposes
small baselines between frames.

Over the years, EKF based vSLAM has been progressively
replaced by keyframe and BA-based methods. This was certainly
due to [84] and PTAM [57] which demonstrated that a real-
time implementation of BA was possible. Now, real-time bundle
adjustments can operate on large-scale environment [33]. For AR
applications, with respect to sparse SLAM approaches, such dense
or semi-dense map, obtained thanks to direct methods, can be
considered to build meshes of the environment and ease interaction
between real and virtual worlds.

3.4 Registration in the 3D space

So far we considered a 2D-3D registration process. With some
devices (e.g., multiple cameras systems) it is possible to get



Large vSLAM

Issue with scale and drift solved thanks to loop closure detection

[Lim ICRA 2014]



An example: LSD-Slam [Engel ECCV 2014]
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LSD Slam minimize photometric error



Trends: RGB-D tracking

Use RGD-D camera provides point cloud
Clearly related to SLAM

Registration and localization is the done in the 3D space (ICP)

Featured, eg, in Kinect Fusion (with a signed distance function error) 
[Newcombe, ISMAR 11]



Tracking with dynamics

b
xt = argmax p(xt | z1:t)



Tracking with dynamics

image measurements is used to estimate position of object, but also 
incorporate position predicted by dynamics, i.e., the expectation of 
object’s motion pattern

Use a dynamic motion model
• Constant velocity, constant acceleration….



Kalman filter VS particule filter
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Particle filtering
[Isard and Blake, ECCV 1996] [Pérez et al. ECCV’02] 

� Based on color histogram similarities 

� Bootstrap filter and data model  

29 

Color-based PF 

7/29/2013 

[Pérez et al. ECCV’02] 



Hardware abstraction Simulation Bridges Cross platform

Visual tracking core

Blob trackers, moving 
edges, model-based 

trackers, keypoint trackers, 
template tracker.

Visual servoing core

IBVS, PBVS, 2D ½ and 
many other control laws 

for eye-in-hand and 
eye-to-hand systems.

AR core Computer vision

Provides a wrapper over 
Ogre 3D engine for 
augmented reality 

applications.
Pose and homography

estimation.

Bridges with Naoqi, OpenCV
and YARP, ROS nodes for 

camera calibration 
and tracking.

Provides generic 
interfaces over robot 

drivers, framegrabbers
and display devices.

Includes wireframe and 
robot viewers, planar 
textures generator. 

Support multi OS (Fedora, 
Ubuntu, Debian, Linux 

Mint, OSX, Windows), but 
also compilers (g++, 

MinGW, msvc…) and IDE.

Control

Perception
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ViSP http://visp.inria.fr



Image manipulation Mathematics core Real-time data plotter End user tools

Read-write pgm, png, jpeg, 
tiff images, filtering, 

mathematical morphology. 

Many more features Powerful API

C/C++, 310 000 lines, 
more than 250 classes fully 
documented, 200 examples 

200 sample codes, and     
27 tutorials.

Forge Open source license

Released under the terms 
of the open source GPLv2 
license. Also available as a 

professional edition.

Operations on vectors, 
matrices, homogeneous 
transformations, pseudo-

inverse or SVD 
computation.

Display in real-time and 
record time-graphs, 

x/y-graphs or 3D curves.
Camera calibration, 

hand-eye calibration.

Hosted on GForge, under 
Subversion control. Mailing 

lists, forum, bug tackers, 
continuous integration. 

Movie reader and recorder, 
XML I/O, data transmission 

over the network, 
Kalman filter... 

v = ��L+(s� s⇤)



Conclusions

Old problem but still open

Nevertheless, efficient solutions now exists !

Open (difficult) problems
• Initialization is still an issue (especially when 6+ DoF are concerned)
• Robustness vs Efficiency
• High number of DoF

Foreseen solutions
• Learning (aspects, shape, …)
• On-line modification learning/estimation


