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Topics

« Object Instance Detection/Recognition

Dalal and Triggs, CVPR 2005
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And so are these!

N
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We need to, extract:Seme “invariant”, i.e. what is common to all these images
all images of an office)

@ truly invariant (photometric and geometric) representations do not exist

they are



Challenges: viewpoint variation

Michelangelo 1475-1564 [ Fg= Sl ei-Fei, Fergus & Torralba



Challenges: illumination

image credit: J. Koenderink



Challenges: scale

i-Fei, Fergus & Torralba



Challenges: deformation

Xu, Beihong 1943

slide credit: Fei-Fei, Fergus & Torralba



Challenges: occlu:s

Magritte, 195 slide credit: Fei-Fei, Fergus & Torralba



BUMMER! THIS IS IMPOSSIBLE!

- THM: [Weiss, 1991]: There exists NO generic
viewpoint invariant!

- THM: [Chen et al., 2003]: There exists NO
photometric invariant!

. So, how do we (primates) solve the problem?



Improved Invariance Handling

... In here

Want to find
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SIFT Features

« Invariances: Yes
- Scaling Yes
- Rotation Yes
- Illumination Not really
- Deformation
« Provides
- Good localization Yes

Distinctive image features from scale-invariant
keypoints. David G. Lowe, International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110.
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Invariant Local Features

« Image content is transformed into local feature coordinates
that are invariant to translation, rotation, scale, and other
Imaging parameters

SIFT Features



Advantages of invariant local features

Locality: features are local, so robust to occlusion and
clutter (no prior segmentation)

Distinctiveness: individual features can be matched to a
large database of objects

Quantity: many features can be generated for even small
objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide range of
differing feature types, with each adding robustness
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Key point localization

In D. Lowe’ s paper image is decomposed to
octaves (consecutively sub-sampled versions
of the same image)

Instead of convolving with large kernels
within an octave kernels are kept the same

Detect maxima and minima of difference-of-
Gaussian in scale space

Look for 3x3 neighbourhood in scale
and space

7’ s L L LSS
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Example of keypoint detection
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(a) 233x189 image
(b) 832 DOG extrema
(c) 729 above threshold
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Select canonical orientation

« Create histogram of local gradient
directions computed at selected
scale

« Assign canonical orientation at
peak of smoothed histogram

. Each key specifies stable 2D
coordinates (X, y, scale,
orientation)
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SIFT vector formation

« Thresholded image gradients are sampled over 16x16 array of
locations in scale space

« Create array of orientation histograms

« 8 orientations x 4x4 histogram array = 128 dimensions

A
Y

Image gradients Keypoint descriptor
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Nearest-neighbor matching to feature
database

Hypotheses are generated by approximate nearest neighbor
matching of each feature to vectors in the database

- SIFT use best-bin-first (Beis & Lowe, 97)
modification to k-d tree algorithm

- Use heap data structure to identify bins in order by
their distance from query point

Result: Can give speedup by factor of 1000 while finding
nearest neighbor (of interest) 95% of the time
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3D Object Recognition

. Extract outlines with
background
subtraction




3D Object Recognition

« Only 3 keys are needed for
recognition, so extra keys
provide robustness

 Affine model is no longer as
accurate
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Recognition under occlusion
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Test of illumination invariance

« Same image under differing illumination

2773 keys verified in final match
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Examples of view interpolation
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Location recognition




Image alignment: Challenges

Small degree of overlap
Intensity changes

Occlusion,
clutter




Invariant Local Features

Model verification

For each set of features matched to object O —
verify whether they are geometrically consistent

Examine all clusters with at least 3 features
Perform least-squares affine fit to model.

Discard outliers and perform top-down check for
additional features.

Evaluate probability that match 1s correct



Solution for affine parameters
o Affine transform of [x,y] to [u,v]:
U ~ - i,
v Y Ly

« Rewrite to solve for transform parameters:
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2D transformation models

. Similarity

(translation,
scale, rotation) N '-b. N _}’

. Affine - - ’

. Projective
(homography) B = .



Let’ s start with affine transformations

. Simple fitting procedure (linear least squares)

. Approximates viewpoint changes for roughly planar objects
and roughly orthographic cameras

. Can be used to initialize fitting for more complex models




SOFTWARE for Matlab (at UCLA, Oxford)
www.VLFeat.org

File Edit View Go Bookmarks Tools Help
G- -5 ©9) |01 nttp:/ivision ucla edu/~vedaldi/code/sifysift htmi [+] ©co (G
£ Release Notes 3 Fedora Project | | Fedora Weekly News | )Community Support | )Fedora Core 6 MRed Hat Magazine
AndreaVedaldiUCLAVisionLab £
e SIFT
Publications An open implementation of SIFT
Code
Anaview
Autorights
Bag of features
MDoc
Misc
MSER
SIFT
SIFT++
VLUtil
VLPov
Personal
il Thisis a MATLAB/C implementation of SIFT detector and descriptor. It is fairily customizable
and features a decomposition of the algorithm in several reusable M and MEX files. This
Feedback implementation produces interest points and descriptors which are very similar to David
Lowe's implementation.
Postiread Comments (3). Remark. This code is well suited to study, understand and modify SIFT, but it is not particularly
Vedaldi: This is a test fast. If you need to compute lots of features, you might be interested in this lightweight C++
Vedaldi: Thanks for noticing the version, which does not require MATLAB and comes with a flexible command line interface. =

Done (]



un
sift_compile
sift_demo?2

Insert  Tools

File Edit ¥iew Desktop Window Help

File Edit ¥iew Insert Tools Desktop Window Help
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SIFT On-A-Slide

Enforce invariance to scale: Compute Gaussian difference max, for many
different scales; non-maximum suppression, find local maxima: keypoint
candidates

Localizable corner: For each maximum fit quadratic function. Compute
center with sub-pixel accuracy by setting first derivative to zero.

Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which
this ratio is larger than a threshold.

Enforce invariance to orientation: Compute orientation, to achieve rotation
invariance, by finding the strongest second derivative direction in the
smoothed image (possibly multiple orientations). Rotate patch so that
orientation points up.

Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Do this for 4x4 regions of that size.
Orient so that largest gradient points up (possibly multiple solutions).
Result: feature vector with 128 values (15 fields, 8 gradients).

Enforce invariance to illumination change and camera saturation: Normalize
to unit length to increase invariance to illumination. Then threshold all
gradients, to become invariant to casmera saturation.



Nearest-neighbor matching to feature
database

Hypotheses are generated by approximate nearest neighbor
matching of each feature to vectors in the database

- SIFT use best-bin-first (Beis & Lowe, 97)
modification to k-d tree algorithm

- Use heap data structure to identify bins in order by
their distance from query point

Result: Can give speedup by factor of 1000 while finding
nearest neighbor (of interest) 95% of the time
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Adding, Querying and
Removing Images at full speed




Training and Addition are Separatce

Common Approach Our approach




1. Feature extraction

IJ

. ~
Compute
SIFT Normalize
descriptor patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, ‘03]

Slide credit: Josef Sivic



1. Feature extraction




2. Learning the visual vocabulary




2. Learning the visual vocabulary
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Slide credit: Josef Sivic



2. Learning the visual vocabulary

N - - N A Visual vocabulary
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Slide credit: Josef Sivic



K-means clustering

Want to minimize sum of squared Euclidean
distances between points x; and their
nearest cluster centers m,

DX, M)="Y ¥ (x,-m)’

cluster £ pomtiin
cluster k

« Algorithm:

Randomly initialize K cluster centers
terate until convergence:

- Assign each data point to the nearest center

- Recompute each cluster center as the mean of
all points assigned to it



From clustering to vector quantization

. Clustering is a common method for learning
a visual vocabulary or codebook

- Unsupervised learning process

- Each cluster center produced by k-means
becomes a codevector

- Codebook can be learned on separate training
set

- Provided the training set is sufficiently
representative, the codebook will be “universal”

. The codebook is used for quantizing features

- A vector quantizer takes a feature vector and

maps it to the index of the nearest codevector in
a codehnnk



Example visual vocabulary
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Image patch examples of visual words

F‘ﬁﬂl
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Sivic et al. 2005




Visual vocabularies: Issues

How to choose vocabulary size?

- Too small: visual words not representative of all
patches

- Too large: quantization artif
Generative or discriminatsi

Computational efficiency

- Vocabulary trees
(Nister & Stewenius, 2000)




Hierarchical k-means

We have many, many of these features

100000 images ~1000 features per image

If we can get repeatable, discriminative features,
then recognition can scale to very large databases

using the vocabulary tree and indexing approach

Quantize the feature descriptor space + efficient search
Flat k-means , Approximate Nearest Neightbour Methods
Hierarchical k-means - Nister&Stewenius [CVPR 2006]

Visual vocabulary trees

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree
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Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06
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Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Trees

Easy to add/remove images from the database
Suitable for incremental approach

Suitable for creating single generic vocabulary

« Approach
Extract descriptors from many/many images
Acquire enough statistics about the descriptor distribution
Run k-means hierarchically k- is the branching factor of the tree

« E.g. Branching factor of 10 and 6 levels — million leaves

Slides from Nister & Stewenius 06



Vocabulary Trees

Training phase — add images to the database

Extract descriptors — drop it down the tree
Each node has an inverted file index

Index to that image is added to all inverted files

When we want to query image

Pass each descriptor down the tree

Accumulate scores for each image in the database

k kL
k- DE*
« Ateachleveldo dot products total of dot products
« For leafs and integer descriptors we need bytes for 1M leaf

Slides from Nister & Stewenius 06
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Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06
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Slides from Nister & Stewenius 06



TF-IDF scoring

TF-IDF term frequency — inverse document frequency
Used in the information retrieval and text mining

To evaluate how important is a word to document

Importance depends on how many times the word appears in
document — offset by number of occurrence of that word in the whole
document corpus



TF-IDF scoring

TF-IDF term frequency — inverse document frequency

Number of occurrences of a word in a document / number of
occurrences of all words in the document

tfi,j — /»J ‘d U € d‘

Number of documents / number of documents where term appears
D D]
{d:t; € d}

High weight of a word/term is when it has high frequency and low
term document frequency

idfi,j — lOg

tﬁdfi’j — tfi,j X ldfz



Size Matters Improves

Performance improves with the Retrieval
Size of the database

Improves
80 - Speed
Q
3 70
C
®©
=
ke 60
O
al
5O1Ok 100k 1M 10M

Nr of Leaf Nodes

Here the results of particular object instance retrieval, database

Of ~ 40,000 objects, real-time performance
Slides from Nister & Stewenius 06



Implicit shape models

Combining the edge based GHT style voting with
appearance codebooks

Visual codebook is used to index votes for object position

visual codeword with
displacement vectors

training image annotated with object localization info

B. Leibe, A. Leonardis, and B. Schiele,

ECCV Workshop on Statistical Learning in Computer Vision 2004



Implicit shape models

. Visual codebook is used to index votes for object position

test image



Idea Implicit Shape Model

« Faces rectangular templates — detection windows
« Does not generalize to more complex object with different
shapes

« How to combine patch based — appearance based
representations to incorporate notion of shape

« Combined Object Categorization and Segmentation with an
Implicit Shape Model. Bastian Leibe, Ales Leonardis, and

Original Image . Matched Codebook Probabilistic
Interest Points . .
\ Entries Voting
- T, ,-u; ‘ - N S
g - ‘ "‘-3 l— ---""
= : 8 ° o ° ° o
° @" o &
Voting Space

Segmentation ﬂ ua:‘_ - -.;B,, . G
'\ M &Y -ﬁsd— e -

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

(continuous)




« Object Category Detection



Face detection

. Basic idea: slide a window across image and
evaluate a face model at every location




Face detection

Behold a state-of-the-art face detector!
(Courtesy )



Challenges of face detection

. Sliding window detector must evaluate tens of
thousands of location/scale combinations

. Faces are rare: 0-10 per image

- For computational efficiency, we should try to spend
as little time as possible on the non-face windows

- A megapixel image has ~10° pixels and a
comparable number of candidate face locations

- To avoid having a false positive in every image
image, our false positive rate has to be less than
10



The Viola/Jones Face Detector

. A seminal approach to real-time object detection
. Training is slow, but detection is very fast
Key ideas
- Integral images for fast feature evaluation

- Boosting for feature selection
- Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones.
CVPR
2001.

P. Viola and M. Jones. IJCV 57(2), 2004.



Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results




Window-based models
Generating and scoring candidates

i ICar/non-car Classifiej




Window-based object detection: recap

Training:

. Obtain training data
.. Define features

.. Define classifier

Given new image:
. Slide window : -
.. Score by classifier Training examples

Ll

Car/no car
classifier

Feature
extraction



Discriminative classifier construction

Nearest neighbor

106 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

Support Vector Machines

Guyon, Vapnik
Heisele, Serre, Poggio, 2001,...

C3:1. maps 16@10x10
S4: 1. maps 16@5xS
5

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Boosting

Lo.’oo

.
°
° e [c°c° @
- ® 0 %Dcu
e P o°
. .0 ©
o €
.. o 'Jo
e o O
e o o
| @

Viola, Jones 2001, Torralba et al.
2004, Opelt et al. 2006,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar,
Hebert 2003

Slide adapted from Antonio Torralba




Viola-Jones Face Detector: Results




Viola-Jones detector: features

= gl |
e |ILA) 11T
N N

L

(il

-

Considering all possible
filter parameters:
position, scale, and

type:
180,000+ possible
features associated

with each 24 x 24
window

Which subset of these features should we
use to determine if a window has a face?

Use AdaBoost both to select the informative
features and to form the classifier

Kristen Grauman



Boosting for face detection

« Define weak learners based on rectangle
features

value of rectangle feature

/
1 if p.f,(x) > .
h,(x) = - . RN
/ O Otherwweparity threshold

window

. For each round of boosting:
Evaluate each rectangle filter on each example
Select best filter/threshold combination based on weighted
training error reweight examples



Boosting for face detection

. Define weak learners based on rectangle
features

. For each round of boosting:

- Evaluate each rectangle filter on each example
- Select best threshold for each filter

- Select best filter/threshold combination

- Reweight examples

. Computational complexity of learning:
O(MNK)

- Mrounds, N examples, K features



Viola-Jones detector: AdaBoost

* Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-faces)
training examples, in terms of weighted error.

I : 0, : 0, Resulting weak classifier:

© T 00 66066 06— h.(x) = ,
() -1 otherwise

l -
| R {+1 if £(x)> 0,

b e oo o006 o
W]
: : . For next round, reweight the
s LX) examples according to errors,
choose another filter/threshold
combo.

Outputs of a possible rectangle feature

on faces and non-faces.
Kristen Grauman



e Given example images (z1,y1),...,(&n,yn) Where
y; = (0,1 for negative and positive examples respec-
tively.

e Initialize weights w;; = 5—, 7 for y; = 0,1 respec-

tively, where m and [ are the number of negatives and
positives respectively.

e Fort=1,....1":

. Normalize the weights,

Wi i

Z.I;:l Wt

so that w; 1s a probability distribution.

wy ; <

|8

. For each feature, j, train a classifier 4; which
is restricted to using a single feature. The
error 1s evaluated with respect to wy, ¢; =
> wilhy (i) = yil.

3. Choose the classifier, /¢, with the lowest error ¢; .

4. Update the weights:
w — . ;L €
Wiy 1,; = Wi /9

where e¢; = 0 if example x; is classified cor-

rectly, e; = 1 otherwise, and 3; = .

e The final strong classifier is:

T , T

otherwise
where oy = log —3
Mt

AdaBoost Algorithm

Start with

« uniform weights o °
on training .3___—._-——’-
examples oo ®
For T rounds
{X ;e X }

. Evaluate weighted
error for each feature,
pick best.

Re-weight the examples:
Incorrectly classified -> more weight
Correctly classified -> less weight

Final classifier is combination of the
weak ones, weighted according to
error they had.

<4—



« Even if the filters are fast to compute, each new
image has a lot of possible windows to search.

« How to make the detection more efficient?



Solving other “Face” Tasks

T U T e
¥ ] p - itis e, -

LSS

e

M +3.042

234 Bl ‘ ™
Demographic T e ey | e EI 1
Analysis B TAwmh i

91 Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce



Face Localization Features

. Learned features reflect the task

Slide credit: Frank Dellaert, Paul Viola, Forsyth&Ponce




Face Profile Detection

93 Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce



Face Profile Features




Finding Cars (DARPA Urban Challenge)

« Hand-labeled images of generic car rear-ends
 Training time: ~5 hours, offline

Credit: Hendrik Dahlkamp
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Generating even more examples

« Generic classifier finds all cars in recorded video.
« Compute offline and store in database

28700 images

Credit: Hendrik Dahlkamp
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Results - Video
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Pedestrian Detection: HOG Feature

» Positive data — 1208 positive window examples

» Negative data — 1218 negative window examples (initially)

Slides from Andrew Zisserman



Pedestrian Detection: HOG Feature

HOG: Histogram of Gradients

_ dominant
image direction HOG

» tile window into 8 x 8 pixel cells

» each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024

Dalal & Triggs, CVPR 2005 Slides from Andrew Zisserman



Pedestrian Detection: HOG Feature

'\ |
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Slides from Andrew Zisserman



Pedestrian Detection: HOG Feature

Averaged examples
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Slides from Andrew Zisserman



Algorithm

Training (Learning)

* Represent each example window by a HOG feature vector

x; € R%, with d = 1024

r 2
"|I|l‘

* Train a SVM classifier

Testing (Detection)

« Sliding window classifier
flz)=w'x+1b

Slides from Andrew Zisserman



Model training using SVM

« Given {Xi = Rd,yi = {0,1}}

f(X)=W'X+b
« Find

mmHWH +CZerr0r (y.f(x)

« 10 minimize error(z) = maX(O,l - 2)



Result

Dalal and Triggs, CVPR 2005



Learned model
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Slides from Deva Ramanan



Meaning of negative weights

WX>-b
(W,-w_)x>-b
W, X-W_X>-b

s +.4

edestrian
ackground
model

pedestrianj'

model
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Complete model should compete pedestrian/pillar/doorway

Slides from Deva Ramanan



Context
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Hoiem, Efros, Herbert, 2006



More difficult cases




More sliding window detection:
Discriminative part-based models

Many slides based on



Challenge: Generic object detection

personlenTine = .

cELetiruns

dreleftiin:




Discriminative part-based models

Root Part Deformation
filter filters  weights

AN

# |
S
% 4
=
.
= i
+ 4
X
f 3

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan,

, PAMI

32(9), 2010



Object hypothesis

Multiscale model: the resolution of part
filters is twice the resolution of the root

L ool
T Zz(pO,---,pn)
- *-!a Po: location of root
tH P1,..., Pn - location of parts
-
|14
- Score 1s sum of filter
;Ei: scores minus
— deformation costs
Image pyramid HOG feature pyramid

Score of the filter : inner products between the filter and features
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Part-based representation

« Objects are decomposed into parts and spatial
relations among parts

« E.g. Face model by Fischler and Elschlager 73

MOUTH



Detection

Define the score of each root filter location as the score
given the best part placements:

score(p,) = max score(p,,..., P, )
D1 9'"apn
Efficient computation: generalized distance transforms

- For each “default” part location, find the best-scoring
displacement

R (x,y) =max(F,- H(x+dx, y +dv) - D,(dx,dy,dx*,dy*))

dx,dy




Detection

feature map at twice the resolution

model

response of root filter

color encoding of filter
response values

| combined score of
root locations



Training

Training data consists of images with labeled bounding




Training

. The classifier has the form

f(x)=max_w-H(x,z)

w are model parameters (filters and deformation parameters,
Z are latent hypotheses)

. X Is detection window, z are features and filter placements

Latent SVM training:

- Initialize w and iterate:
. Fix w and find the best z for each training example (detection)
. Fix z and solve for w (standard SVM training)

Issue: too many negative examples
- Do “data mining” to find “hard” negatives



Car model

Component 1
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Car detections

high scoring true positives high scoring false positives

0
% "




Person model
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Person detections

high scoring false positives
(not enough overlap)

high scoring true positives




Cat model
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Cat detections

high scoring false positives
(not enough overlap)

high scoring true positives




Bottle model




bottle

More detections
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Background Selective Search

van de Sande et al ICCV 2011
(ILSVRC 2011)



State of the art

« Previous approaches
Hand Designed Features (SIFT, HOG, GIST ...)

What is next ? Better Features ? More Training data ? Better
classifiers ?

Main factor compared to humans is better features (Parikh &
Zitnick’10) — study look at little patches and recognize

0.3
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Mid-Level Representations

Mid-level cues

— N\ | T

Continuation Parallelism Junctions Corners

“Tokens” from Vision by D.Marr: ;; \ ..':’_3'_,..'., o X2 ‘

Difficult to engineer, What about learning them?

Object parts:




Traditional Recognition Approach

Hand-
designed Trainable

Feature Classifier
Extraction




Motivation

« Features are key to recent progress in recognition

« Multitude of hand-designed features currently in use
- SIFT, HOG, LBP, MSER, Color-SIFT.............

Where next? Better classifiers? Or keep building more feature:

i :t ‘,‘ Acsignment
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» Dense sampling and interest point detector; \i!ﬂlﬂﬂ&§|

» Low level features: SIFT and its variants, LBP, HOG.

» Represented as Bags of Words; | 5 canping desier vocabry |

....................................




Existing Methods

« Histogram of Gradient (HOG)
features extracted at multiple
scales

« Series of templates for model
“partsu

ensure geometric consistency

| « Springs between them to



What about learning the features?

« Learn a feature hierarchy all the way from pixels to
classifier

« Each layer extracts features from the output of
previous layer

 Train all layers jointly

Image/

Video ——» Layer1 —> Layer2 [——> Layer3 r—) Simple

Pixels Classifier




“Shallow” vs. “deep” architectures

Traditional recognition: “Shallow” architecture

Image/ Obiect
Video —)> Jec
Pixels Class
Deep learning: “Deep” architecture
Image/

Simple — Object
Class

Video T Laier1 —> LaierN :>
Pixels




Convolutional Neural Networks (CNN, Convnet

* Neural network with specialized
connectivity structure

« Stack multiple stages of feature
extractors

* Higher stages compute more
global, more invariant features

« Classification layer at the end

blny

]

3
3
-1

3
KN

. L L
2 m

oL ) b!!:r:}ﬂ!:!n‘“uﬁ!

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
3030 6@28x28

S2: f. maps
6@14x14

I | FuIIcoml»ection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proceedings of the IEEE




Convolutional Neural Networks (CNN, Convnet]

 Feed-forward feature extraction:
1. Convolve input with learned filters

2. Non-linearity

3. Spatial pooling
4. Normalization
« Supervised training of convolutional
filters by back-propagating
classification error

17

[ Feature maps }

-

[ Normalization 1

-

[ Spatial pooling }

-

[ Non-linearity

-

(Learned)

{}

[ Input Image

]
{ Convolution J
1




Deep Convolutional Neural Networks
for Image Classification

image size 224

filter size 7

¢stride 2

stride 2

;\3‘55

Input Image

Layer 3

13

13
‘1'1 384

13

\2‘56

3x3 max

Layer 4

pool
stride 2

6

Layer 5

4096

256

units

4096
units

class
softmax

Layer6 Layer7 Output

Many slides from Rob Fergus (NYU and Facebook)




Example Feature Learning Architectures

Pixels / [>
Features

Not an
exact
separation

Filter with
Dictionary

(patchltiled/
convolutional) f

Local Contrast
Normalization

_ (Subtractive &
Sparsity | Softmax Divisive)

+ Non-linearity

Normalization (Group)
between /
feature responses

Spatial/Feature

(Sum or Max)




SIFT Descriptor

Apply
Gabor filters

Spatial pool (

(Sum)

Normalize to
unit length




Application to ImageNet

'-\ — | i peacsumes §
“ 1
\ |
Y
\
v B

~14 million labeled images, 20k classes

IMJGE

Images gathered from Internet

Human labels via Amazon Turk

ImageNet Classification with Deep Convolutional
Neural Networks [NIPS 2012]

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca



Krizhevsky et al. [NIPS2012]

ImageNet Challenge 2012

« Similar framework to LeCun’98 but:
» Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
« More data (108 vs. 103 images)
* GPU implementation (50x speedup over CPU)
» Trained on two GPUs for a week
» Better regularization for training (DropOut)

\ [ o 158 2048 Joag \dense
; 48 ; 128 "‘,».': E _ - -
! 5 27 A (- "‘Z'_:.‘
13 \
N 3
.. 43 Y . >
. J 7 3| | Tl 13 dense dense|
| s 3. A 1000
|\ 192 192 128 Max L L
. 2048 2048
224\liStrid Max 128 Max pooling
Uof 4 pooling pooling
3 78

A. Krizhevsky, |. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012




ImageNet Classification 2012

« Krizhevsky et al. -- 16.4% error (top-5)
« Next best (non-convnet) — 26.2% error




Layer 1 Filters




9O Patches

Layer 1: Top-

wEN YN
WL

|
B =

EET

—
= BN
._-'I

1Y

/14
Addd

231 "mT EEE EE
S Ll TR

b |

2RI L BT

i
- HEE

—

-
AL

[~
T |
Bkl BEEE _—_ EERT -

TR

14l EEE s
-







Background, R-CNN

R-CNN: Region proposals + CNN

warped region

aeroplane? no.

person? ves.

tvmonitor? no.

localization feature extraction classification
. . d | ' . .
this paper: selective search eepcﬁlilrnmg binary linear SVM
| obJectnessf contralned Girshick siFal 2913 SVM,
alternatives: parametric min-cuts, Neural networks,
. : BoW, DPM ... . )
sliding window ... Logistic regression ...




Results summary

R-CNN: Training

1. Pre-train CNN for image classification

[

large auxiliary dataset (ImageNet)

2. Fine-tune CNN for object detection

i fine-tune CNN >| ‘ %%

small target dataset (PASCAL VOC)

3. Train linear predictor for object detection =

~2000
: CNN features
i region proposal> warped per class

. . — SVM
small target dataset (PASCAL VOC) windows/image | training labels >




R-CNNs on RGB-D

for Object Detection and Segmentation

Output
Geocentric Encoding SVM

of Depth Classifier Object Detection
F- i e I 1 I8 )

Disparity Height Angle Depth CNN
l I; Features Extraction

RGB CNN Features
Extraction

Color and Depth
Image Pair

Region Proposal
Generation

Instance Segm  Semantic Segm

Pre-trained on Image-Net using RGB images.
Fine-tuned on NYUD?2 (400 images) and synthetic data.
SVM training on pool5, fc6 and fc7.



