

Tutorial::Vision for Robotics Vision Sensors & Geometry

Peter Corke

ARC Centre of Excellence for Robotic Vision

Light is an electromagnetic wave

Human senses

Where does color come from? Red! response

illuminant

illluminance

reflectance

luminance

Where does color come from? Red! response

illumina nt

illluminance

reflectance

luminance

Sources of light

incandescent

Gluehbirne 2006 Dickbauch

Electro luminescent

RGB LED 2005 PiccoloNamek | CC A3.0.

gas discharge

Sun Halo 2013 Janice Marie Foote | CC A2.0.

Electron stimulated

laser

Blackbody radiators

Gluehbirne 2006 Dickbauch

Planck's law $E(\lambda) = \frac{2hc^2}{\lambda^5 (e^{hc/k\lambda T} - 1)} W/m^2/m$

Wien displacement law

1000

Color is related to temperature

red hot ~1000K

yellow hot ~1400K

Folklife Festival Welsh Blacksmith 2009 Mr. T. in DC | CC A2.0.

white hot ~1800K

Blacksmith at work 2010 Derek Key | CC A2.0.

Color temperature

T=2000-3000 К

Sun Halo 2013 Janice Marie Foote | CC A2.0.

Т=5000-5400 К

Gluehbirne 2006 Dickbauch

T=3000 K

T=8000-10000 K

Thermal radiation

lots of energy at longer wavelengths

Non-blackbody illuminants

Deglr6328 | CC A3.0.

Deglr6328 | CC A3.0.

Non-blackbody illuminants

By derivative work: Papa November (talk) 2008 Deglr6328 | CC A3.0.

Color change underwater

Kebes at the English language Wikipedia | CC A3.0.

illuminant

illuminance

- Specular reflection
- angle of incidence equals angle of reflection

STScl & NASA

- Lambertian reflection
- → diffuse/matte surface
- brightness invariant to observer's angle of view

Johann Heinrich Lambert

Dichromatic reflectance model

Reflectance depends on wavelength

With kind permission of **Springer Science+Business Media**. Data from ASTER, Baldridge et al. 2009.

Reflectance depends on wavelength

Figure: Rockwell, B. W, McDougal, R. R., Gent, C. A. & the United States Environmental Protection Agency

illuminant

illuminance $E(\lambda)$

reflectance $R(\lambda)$

$L(\lambda) = E(\lambda)R(\lambda)$

luminance

Unpacking reflectance and illumination

Where does color come from? Red! response luminance $(\lambda) = E(\lambda)R(\lambda)$ reflectance

illuminant

illuminance E(

Luminosity function

- At 555nm (green)
 → 1W → 683 lumens
 At 500nm (blue)
 → 1W → 220 lumens
 At 800nm (infrared)
- → $1W \rightarrow 0$ lumens

Rod cell response

- contain rhodopsin
- Iow-light vision
- motion sensitive

Cone human response

- contain photopsins
- bright-light vision
- three types of cones (we are trichromats)
- sensitive to different bands of spectrum

Typical humans (three color cone/pigment types plus rod cells). 2013 Clive "Max" Maxfield | Used with permission.

Dichromats

Evolution of visual systems: modern mammalian dichromats (blue and yellow cones- plus rod cells). 2013

Clive "Max" Maxfield | Used with permission.

Tetrachromats

Color imaging spectra

Color imaging spectra

Color imaging spectra

 $E(\lambda)R(\lambda)M(\lambda)d\lambda$

Dimension reduction

∞ dimensions

Color cube

RokerHRO | CC-BY-SA-3.0.

Color names and values

- Slate Grey Dark Slate Grey Dark Slate Grey Ligh Warm Grey Ivory Black Alizarin Crimson Brick Cadmium Red Deep Cora

 - Deep Pinl
 - English Rec
 - Firebrick
 - Geranium Lake
 - Hot Pin
 - Indian Rec
 - Light Salmor
- Madder Lake Deep

	R	G	B
У	112	128	144
k	47	79	79
t	119	136	153
у	128	128	105
k	41	36	33
n	227	38	54
k	156	102	31
С	227	23	13
ıl 👘	255	127	80
k	255	20	147
d	212	61	26
k	178	34	34
е	227	18	48
k	255	105	180
d	176	23	31
า	255	160	122
C	227	46	48

Color and brightness

100% brightness 75% brightness (175, 74, 18)(253, 124, 27)

- The eye or camera provides a tristimulus value (R,G,B)
- If lighting level changes the tristimulus is scaled
- Useful to separate color from brightness
- 3 tristimulus value \rightarrow 1 brightness value, 2 color values

50% brightness (105, 46, 13)

Chromaticity coordinates $r = \frac{R}{R+G+B}, g = \frac{G}{R+G+B}, b = \frac{B}{R+G+B}$

- All values in the range 0 to 1
- Since r+g+b=1 we only need to consider two values, eg. (r,g)

Chromaticity diagram for spectral locus

- Many spectral colours require negative amounts of red light!
- RGB cannot represent all possible colors

Chromaticity diagram for spectral locus

- Transform into xy colour space
- Based on imaginary XYZ primaries

- The set of colours that can be mixed from the 3 primary colours
- Does not include all possible colors!
- There are no 3 physically achievable primaries that can be mixed to form all colors

Other color spaces

Hue-Saturation-Value (HSV)

- Two colour dimensions represented in polar form
- Angle is hue
 - 0-360deg
- Normalised length is saturation
 - 1 is pure colour (spectral color)
 - < 1, mixed with some white (pastel color)
 - O is white

0.8

Other color spaces

xyY

L*a*b*

The silicon equivalent

silicon photosensor, or pixel

United States Patent [19] Bayer

[54] COLOR IMAGING ARRAY

[75] Inventor: Bryce E. Bayer, Rochester, N.Y.

- Assignee: Eastman Kodak Company, [73] Rochester, N.Y.
- [22] Filed: Mar. 5, 1975
- [21] Appl. No.: 555,477
- 350/317; 358/44
- Int. Cl.²..... H04N 9/24 [51]
- [58] Field of Search 358/44, 45, 46, 47, 358/48; 350/317, 162 SF; 315/169 TV

References Cited [56] UNITED STATES PATENTS

2,446,791	8/1948	Schroeder	358/44
2,508,267	5/1950	Kasperowicz	358/44
2,884,483	4/1959	Ehrenhaft et al	358/44
3,725,572	4/1973	Kurokawa et al	358/46

Primary Examiner-George H. Libman Attorney, Agent, or Firm-George E. Grosser [11]

[57]

ABSTRACT

A sensing array for color imaging includes individual luminance- and chrominance-sensitive elements that are so intermixed that each type of element (i.e., according to sensitivity characteristics) occurs in a repeated pattern with luminance elements dominating the array. Preferably, luminance elements occur at every other element position to provide a relatively high frequency sampling pattern which is uniform in two perpendicular directions (e.g., horizontal and vertical). The chrominance patterns are interlaid therewith and fill the remaining element positions to provide relatively lower frequencies of sampling.

In a presently preferred implementation, a mosaic of selectively transmissive filters is superposed in registration with a solid state imaging array having a broad range of light sensitivity, the distribution of filter types in the mosaic being in accordance with the above-described patterns.

11 Claims, 10 Drawing Figures

Tegiiin | Public domain

3,971,065 [45] **July 20, 1976**

Bayer filter pattern

46	85
78	39
40	73
70	32
48	88
83	66

153	128	206	144	192	107
110	85	109	115	129	65
79	75	120	110	184	110
78	61	107	50	116	75
78 163	61 123	107 242	50 123	116 149	75 115

Bayer filter pattern

46	85
78	39
40	73
70	32
48	88
83	66

153	128	206	144	192	107
110	85	109	115	129	65
79	75	120	110	184	110
78	61	107	50	116	75
78 163	61 123	107 242	50 123	116 149	75 115

ARC Centre of Excellence for Robotic Vision

Exposure

• Total exposure

$$H = qL\frac{T}{N^2} \,\mathrm{lx.s}$$

• Resulting pixel value

$$x = kAH$$

$$k = \frac{118}{10} \text{ISO}$$

ARC Centre of Excellence for Robotic Vision

ARC Centre of Excellence for Robotic Vision

roboticvision.org

Rolling shutter effect

Anton River: <u>https://www.youtube.com/watch?v=17PSgsRIO9Q</u>

ARC Centre of Excellence for Robotic Vision

Display non-linearity

The system is linear end-to-end

gamma decoding gamma correction

Color planes

Image file formats

header: image size, gamma, compression, pixel type...

Header: image size, gamma, comparing, pixel type ... Header: image size, gamma, compression, pixel type ... Header: image size, gamma, compression, pixel type ... Header: image size, gamma, compression, pixel type ... Header: image size, gamma Header: image size, gamma

Meta data: camera settings, location, meta data: camera settings, location, meta data: camera settings, location, meta data: camera settings, meta data: camera settings, location, and data: :

meta data

Color planes

Ideal City (1470)

Piero della Francesca (1415–1492)

Figure 28 (Jan Vredeman de Vries, 1604). Used with permission from Perspective, Dover Publications, 1964.

6

trompe l'oeil | trômp 'loi|

noun (pl. trompe l'oeils pronunc. same) visual illusion in art, esp. as used to trick the eye into perceiving a painted detail as a three-dimensional object.

Trompe L'oeil Tuscan Window Mural 2009

Kristin Plansky | Used with permission.

Forced perspective

2011 **Seongbin Im** | CC A2.0

On hands 2013 Kenzie Saunders | CC A2.0

Points in the world

Points in the world

Image plane

Image plane

The pinhole camera

Pinhole images

Camera obscura 2011

1banaan | CC A2.0

Camera obscura! 2011

half alive - soo zzzz | CC A2.0

The world's largest pinhole camera

Members of The Legacy Project Collective 2008

Jerry Keane | used with permission

Douglas McCulloh | CC-BY-SA-3.0-2.5-2.0-1.0, via Wikimedia Commons

Image plane

Simple imaging

- Similar triangles
- Image formation is the mapping of scene points (X,Y,Z) to the image plane (x,y)

Simple imaging

3D to 2D

Perspective projection

 $\frac{Y}{Z} = \frac{y}{f}$ $\frac{X}{Z} = \frac{x}{f}$

 $x = \frac{fX}{Z}, y = \frac{fY}{Z}$ $(X,Y,Z)\mapsto (x,y)$ $\mathbb{R}^3 \mapsto \mathbb{R}^2$

With kind permission of **Springer Science+Business Media**

With kind permission of **Springer Science+Business Media**

Perspective projection

Maps

- Lines \rightarrow lines
- parallel lines not necessarily parallel
- → angles are not preserved
- Conics → conics

Duk at the English language Wikipedia

No unique inverse

We cannot recover the lost dimension

Any 2D image could be generated by one of an infinite number of possible 3D worlds

Use a lens to gather more light

HOW PHOTOGRAPHS EIGHT FEET WIDE ARE TAKEN. BY STEPHEN ELTON.

George R. Lawrence 1900

Pinhole camera doesn't need focus

Pinhole camera doesn't need focus

Quick geometry recap

- Some familiar concepts from geometry: ► Euclidean plane
 - a non-curved space where the rules of Euclidean geometry apply
 - ► Cartesian coordinates
 - distances to a point with respect to the origin and measured along orthogonal axes

Homogeneous coordinates

Cartesian homogeneous \rightarrow

$$P = (x, y) \qquad \tilde{P} = (x, y, 1)$$
$$P \in \mathbb{R}^2 \qquad \tilde{P} \in \mathbb{P}^2$$

■ homogeneous → Cartesian

$$\tilde{\boldsymbol{P}} = (\tilde{x}, \tilde{y}, \tilde{z}) \qquad \boldsymbol{P} =$$

$$x = \frac{\tilde{x}}{\tilde{z}}, \ y = \frac{\tilde{y}}{\tilde{z}}$$

(x,y)

 \mathbb{P}^2

contrast to

such that $\rightarrow \tilde{\ell}^T \tilde{p} = 0$ $\ell_1 \tilde{x} + \ell_2 \tilde{y} + \ell_3 \tilde{z} = 0$

y = mx + c

Line joining points

$\tilde{\boldsymbol{p}}_1 = (a, b, c)$ $\tilde{\ell} = \tilde{\boldsymbol{p}}_1 \times \tilde{\boldsymbol{p}}_2$ \tilde{a}

 $\tilde{p}_2 = (d, e, f)$

 $\tilde{\boldsymbol{p}} = \tilde{\ell}_1 \times \tilde{\ell}_2$

line equation of a point

Corke, P. | Reproduced with permission from Springer Science, & Business Media

 $\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$

camera

origin

Perspective transformation, with the pesky divide by Z, is linear in homogeneous coordinate form.

$\tilde{x} = fX, \tilde{y} = fY, \tilde{z} = Z$

$$x = \frac{\tilde{x}}{\tilde{z}}, \ y = \frac{\tilde{y}}{\tilde{z}}$$

$$\Rightarrow x = \frac{fX}{Z}, y = \frac{fY}{Z}$$

Corke, P. | Reproduced with permission from Springer Science, & Business Media

scale point from metres to pixels

shift the origin to top left corner

$$u = \frac{x}{\rho_u} + u_0$$
$$v = \frac{y}{\rho_v} + v_0$$

Corke, P. | Reproduced with permission from Springer Science, & Business Media

scale point from metres to pixels shift the origin to top left corner

$$u = \frac{x}{\rho_u} + u_0$$

$$v = \frac{y}{\rho_v} + v_0$$

$$\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} \frac{1}{\rho_u} & 0 & u_0 \\ 0 & \frac{1}{\rho_v} & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix}$$

$$p = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \tilde{u}/\tilde{w} \\ \tilde{v}/\tilde{w} \end{pmatrix}$$

Complete camera model

Camera matrix

 \mathcal{U}

Mapping points from the world to an image (pixel) coordinate is simply a matrix multiplication using homogeneous coordinates

 $\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$

$$\frac{\tilde{u}}{\tilde{w}}, v = \frac{\tilde{v}}{\tilde{w}}$$

Scale invariance

Consider an arbitrary scalar scale factor

$$\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} = \lambda \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \\ C_{31} & C_{32} \end{pmatrix}$$

• $\tilde{u}, \tilde{v}, \tilde{w}$ will all be scaled by λ

• but
$$u = \frac{\widetilde{u}}{\widetilde{w}}, v = \frac{\widetilde{v}}{\widetilde{w}}$$

so the result is unchanged

Normalized camera matrix

Since scale factor is arbitrary we can fix the value of one element, typically C(3,4) to one.

 \mathcal{U} $\overline{\widetilde{W}}^{, v}$

 $\widetilde{\mathcal{W}}$

- focal length
- pixel size
- camera position
- & orientation

Camera calibration

Process to determine intrinsic and extrinsic camera parameters

600

- Once again the scale factor is arbitrary
- 8 unique numbers in the homography matrix
- Can be estimated from 4 world points and their corresponding image points

$$\mathbf{H} = \mathbf{R} + \frac{t}{d} \mathbf{n}^T$$

natrix nd their corresponding image points

Corke, P. | Reproduced with permission from Springer Science, & Business Media

ARC Centre of Excellence for Robotic Vision

Fundamental matrix

Epipolar lines

noname

Epipolar lines intersect at the position of the other camera

Epipolar lines intersect at the position of the other camera

Essential matrix

${}^2\tilde{\boldsymbol{x}} \mathbf{E} {}^1\tilde{\boldsymbol{x}} = \mathbf{0}$

- Only 5DOF
- Is related to the relative camera pose

$$\mathbf{E} = [t]_{\times} \mathbf{R}$$

- Camera pose can be solved for
- in general two solutions
- translation only up to scale

$\mathbf{E} = \mathbf{K}^T \mathbf{F} \mathbf{K}$

ARC Centre of Excellence for Robotic Vision

Stereo disparity

h $d \propto \frac{J U}{Z}$

Stereo disparity

Fisheye lens

Fisheye coke 2006 Joel Gillman | CC A2.0

Spiratone fisheye lens 2008

Alessandro Leite | CC A2.0

Imaging by reflection

Panorama lens

Panorama long 2013 Michael Milford

Panorama round 2013 **Michael Milford**

Panorama lens

