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Human senses
Max Dupain | Public Domain via Wikimedia Commons
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Sources  
of light

lasergas discharge

Electron stimulated

Electro luminescent

RGB LED 2005	
PiccoloNamek | CC A3.0.

incandescent

Gluehbirne 2006	
Dickbauch

Sun Halo 2013	
Janice Marie Foote | CC A2.0.
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Planck’s law

Wien displacement law

Gluehbirne 2006	
Dickbauch

Sun Halo 2013	
Janice Marie Foote | CC A2.0.
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We can plot the emission spectra for a blackbody at different temperatures. First we
define a range of wavelengths

>> lambda = [300:10:1000]*1e-9;

in this case from 300 to 1 000 nm, and then compute the blackbody spectra
>> for T=1000:1000:6000
>>   plot( lambda*1e9, blackbody(lambda, T)); hold all
>> end

as shown in Fig. 10.2a. We can see that as temperature increases the maximum amount
of power increases and the wavelength at which the peak occurs decreases. The total
amount of power radiated is the area under the blackbody curve and is given by the
Stefan-Boltzman law

and the wavelength corresponding to the peak of the blackbody curve is given by Wien’s
displacement law

The wavelength of the peak decreases with increasing temperature and in familiar terms
this is what we observe when we heat an object. It starts to glow faintly red at around 800 K
and moves through orange and yellow toward white as temperature increases.!

The filament of tungsten lamp has a temperature of 2 600 K and glows white hot.
The Sun has a surface temperature of 6 500 K. The spectra of these sources

>> lamp = blackbody(lambda, 2600);
>> sun = blackbody(lambda, 6500);
>> plot(lambda*1e9, [lamp/max(lamp) sun/max(sun)])

Fig. 10.1.
The spectrum of visible colors
as a function of wavelength in
nanometres. The visible range
depends on viewing conditions
and the individual but is gener-
ally accepted as being the range
400–700 nm. Wavelengths
greater than 700 nm are termed
infra-red and those below
400 nm are ultra-violet

Fig. 10.2. Blackbody spectra.
a Blackbody emission spectra for
temperatures from 1 000–6 000 K.
b Blackbody emissions for the
Sun (6 500 K), a tungsten lamp
(2 600 K) and the response of the
human eye – all normalized to
unity for readability

Incipient red heat 770 – 820 K,
dark red heat 920 – 1 020 K,
bright red heat 1 120 – 1 220 K,
yellowish red heat 1 320 – 1 420 K,
incipient white heat 1 520 – 1 620 K,
white heat 1 720 – 1 820 K.

Chapter 10  ·  Light and Color



Color is related  
to temperature red hot  

~1000K

yellow hot  
~1400K

white hot  
~1800K

Folklife Festival Welsh Blacksmith 2009	
Mr. T. in DC | CC A2.0.

Blacksmith at work 2010	
Derek Key | CC A2.0.



T=3000 K
T=2000– 

3000 K

T=5000– 
5400 K

T=8000– 
10000 K

Color temperature
Gluehbirne 2006	

Dickbauch

Sun Halo 2013	
Janice Marie Foote | CC A2.0.



NASA Goddard Photo and Video



Thermal radiation
lots of energy at longer wavelengths
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We can plot the emission spectra for a blackbody at different temperatures. First we
define a range of wavelengths

>> lambda = [300:10:1000]*1e-9;

in this case from 300 to 1 000 nm, and then compute the blackbody spectra
>> for T=1000:1000:6000
>>   plot( lambda*1e9, blackbody(lambda, T)); hold all
>> end

as shown in Fig. 10.2a. We can see that as temperature increases the maximum amount
of power increases and the wavelength at which the peak occurs decreases. The total
amount of power radiated is the area under the blackbody curve and is given by the
Stefan-Boltzman law

and the wavelength corresponding to the peak of the blackbody curve is given by Wien’s
displacement law

The wavelength of the peak decreases with increasing temperature and in familiar terms
this is what we observe when we heat an object. It starts to glow faintly red at around 800 K
and moves through orange and yellow toward white as temperature increases.!

The filament of tungsten lamp has a temperature of 2 600 K and glows white hot.
The Sun has a surface temperature of 6 500 K. The spectra of these sources

>> lamp = blackbody(lambda, 2600);
>> sun = blackbody(lambda, 6500);
>> plot(lambda*1e9, [lamp/max(lamp) sun/max(sun)])

Fig. 10.1.
The spectrum of visible colors
as a function of wavelength in
nanometres. The visible range
depends on viewing conditions
and the individual but is gener-
ally accepted as being the range
400–700 nm. Wavelengths
greater than 700 nm are termed
infra-red and those below
400 nm are ultra-violet

Fig. 10.2. Blackbody spectra.
a Blackbody emission spectra for
temperatures from 1 000–6 000 K.
b Blackbody emissions for the
Sun (6 500 K), a tungsten lamp
(2 600 K) and the response of the
human eye – all normalized to
unity for readability

Incipient red heat 770 – 820 K,
dark red heat 920 – 1 020 K,
bright red heat 1 120 – 1 220 K,
yellowish red heat 1 320 – 1 420 K,
incipient white heat 1 520 – 1 620 K,
white heat 1 720 – 1 820 K.
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Non-blackbody  
illuminants

RGB LED 2005	
PiccoloNamek | CC A3.0.

Deglr6328 | CC A3.0.

Deglr6328 | CC A3.0.



Non-blackbody 
illuminants

By derivative work: Papa November (talk) 2008	
Deglr6328 | CC A3.0.



Color change underwater

Kebes at the English language Wikipedia | CC A3.0.
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Reflection of light

! Specular reflection	
Ê angle of incidence equals angle of 

reflection

STScI & NASA



Reflection of light

! Lambertian reflection	
Ê diffuse/matte surface	
Ê brightness invariant to observer’s angle of view

Johann Heinrich Lambert	
1728–1777	
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Reflectance depends on wavelength

With kind permission of Springer Science+Business Media. 
Data from ASTER, Baldridge et al. 2009. 
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Reflectance depends on wavelength

Figure: Rockwell, B. W, McDougal, R. R., Gent, C. A. & the United States 
Environmental Protection Agency
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Unpacking reflectance and illumination
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Luminosity function
! At 555nm (green) 
Ê 1W → 683 lumens 

! At 500nm (blue) 
Ê 1W → 220 lumens 

! At 800nm (infrared) 
Ê 1W → 0 lumens





Rod cell response

! contain rhodopsin 	
! low-light vision	
! motion sensitive

M(l )



Cone human response

! contain photopsins 	
! bright-light vision	

! three types of cones (we are trichromats) 

! sensitive to different bands of spectrum

S LM

Typical humans (three color cone/pigment types plus rod cells). 2013	
Clive “Max” Maxfield | Used with permission.

MS(l ) MM(l ) ML(l )



Dichromats

Evolution of visual systems: modern mammalian dichromats  
(blue and yellow cones- plus rod cells). 2013	
Clive “Max” Maxfield | Used with permission.



Tetrachromats
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spectra



Color imaging  
spectra
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energy to blue cone

energy to green cone energy to red cone
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Color cube

R

B

G

Color cube	
RokerHRO | CC-BY-SA-3.0.



	 Slate Grey 	 112 	 128 	 144 
	 Slate Grey Dark 	 47  	 79  	 79 
	 Slate Grey Light 	 119 	 136 	 153 
	 Warm Grey 	 128 	 128 	 105 
	 Ivory Black 	 41 	 36 	 33 
	 Alizarin Crimson 	 227 	 38 	 54 
	 Brick 	 156 	 102 	 31 
	 Cadmium Red Deep 	 227 	 23 	 13 
	 Coral 	 255 	 127 	 80 
	 Deep Pink 	 255 	 20 	 147 
	 English Red 	 212 	 61 	 26 
	 Firebrick 	 178 	 34 	 34 
	 Geranium Lake 	 227 	 18 	 48 
	 Hot Pink 	 255 	 105 	 180 
	 Indian Red 	 176 	 23 	 31 
	 Light Salmon 	 255 	 160 	 122 
	 Madder Lake Deep 	 227 	 46 	 48

Color names  
and values

Liam	–	each	RGB	should	appear	on	

R BG



(0.6, 0.4, 0.2) (0.3, 0.2, 0.1)



Color and brightness

! The eye or camera provides a tristimulus value (R,G,B)	

! If lighting level changes the tristimulus is scaled 

! Useful to separate color from brightness	

! 3 tristimulus value → 1 brightness value, 2 color values

0% brightness	
(0, 0, 0)

75% brightness	
(175, 74, 18)

50% brightness	
(105, 46, 13)

100% brightness	
(253, 124, 27)



Chromaticity coordinates

233

This leads to a very important point about color reproduction – it is not possible to re-
produce every possible color using just three primaries. This makes intuitive sense since a
color is properly represented as an infinite-dimensional spectral function and a 3-vector can
only approximate it. To understand this more fully we need to consider chromaticity spaces.

The Toolbox function cmfrgb can also compute the CIE tristimulus for an arbitrary
spectral response. The luminance spectrum of the redbrick illuminated by sunlight at
ground level was computed earlier and its tristimulus is

>> RGB_brick = cmfrgb(lambda, L)
RGB_brick =
    0.6137    0.1416    0.0374

These are the respective amounts of the three CIE primaries that are perceived as hav-
ing the same color as the brick.

10.2.2 lChromaticity Space

The tristimulus values describe color as well as brightness. Relative tristimulus values
are obtained by normalizing the tristimulus values

(10.8)

which results in chromaticity coordinates r, g and b that are invariant to overall bright-
ness. By definition r+ g+ b= 1 so one coordinate is redundant and typically only r
and g are considered. Since the effect of intensity has been eliminated the 2-dimen-
sional quantity (r, g) represents color.

We can plot the locus of spectral colors, the colors of the rainbow, on the chromatic-
ity diagram using a variant of the color-matching functions

>> [r,g] = lambda2rg( [400:700]*1e-9 );
>> plot(r, g)
>> rg_addticks

which results in the horseshoe-shaped curve shown in Fig. 10.10. The Toolbox function
lambda2rg computes the color matching function Eq. 10.7 for the specified wavelength
and then converts the tristimulus value to chromaticity coordinates using Eq. 10.8.

The CIE primaries listed in Table 10.1 can be plotted as well

>> primaries = cmfrgb( [700, 546.1, 435.8]*1e-9 );
>> plot(primaries(:,1), primaries(:,2), 'd')

and are shown as diamonds in Fig. 10.10.

Fig. 10.10.
The spectral locus on the

r-g chromaticity plane. The CIE
standard primary colors are

marked by diamonds. Spectral
wavelengths (in nm) are marked.
The straight line joining the ex-
tremities is the purple boundary

and is the locus of saturated
purples

10.2  ·  Color

! All values in the range 0 to 1 

! Since r+g+b=1 we only need to consider two values, eg. (r,g)



r

Chromaticity diagram

Pure blue

Pure green

Pure red

Not possible

g



Chromaticity diagram for spectral locus

! Many spectral colours require 
negative amounts of red light! 

! RGB cannot represent all possible 
colors
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Chromaticity diagram for spectral locus

! Transform into xy colour space 

! Based on imaginary XYZ primaries
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Color gamut

! The set of colours that can be mixed 
from the 3 primary colours 

! Does not include all possible colors! 

! There are no 3 physically achievable 
primaries that can be mixed to form 
all colors
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Other color spaces

hue

red

color

spectral color

saturation

white

! Hue-Satura1on-Value	(HSV)	
! Two	colour	dimensions	
represented	in	polar	form	

! Angle	is	hue	
! 0-360deg	

! Normalised	length	is	saturaFon	
! 1	is	pure	colour	(spectral	color)	
! <	1,	mixed	with	some	white	
(pastel	color)	

! 0	is	white
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silicon photosensor, or	
pixel

light

colored 	
filter array	
(CFA)

The silicon equivalent
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Bayer filter  
pattern 46 85 153 128 206 144 192 107

78 39 110 85 109 115 129 65

40 73 79 75 120 110 184 110

70 32 78 61 107 50 116 75

48 88 163 123 242 123 149 115

83 66 122 67 116 102 108 73
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Bayer filter  
pattern
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Exposure
• Total exposure 

• Resulting pixel value
photoelectrons

charge well

thermal

electrons

photons

electron

accumulated

2

At the end of the exposure interval the accumulated charge (thermal- and photo-
electrons) is read. For low-cost CMOS sensors the charge wells are connected se-
quentially via a switching network to one or more on-chip analog to digital convert-
ers. This results in a rolling shutter and for high speed relative motion this leads to
tearing or jello effect as shown to the left. More expensive CMOS and CCD sen-
sors have a global shutter – they make a temporary snapshot copy of the charge in a
buffer which is then digitized sequentially.

The exposure on the sensor is

H = qL
T
N2 lx.s

where L is scene luminance (in nit), T is exposure time, N is the f -number (inverse
aperture diameter) and q ⇡ 0.7 is a function of focal length, lens quality and vi-
gnetting. Exposure time T has an upper bound equal to the inverse frame rate. To
avoid motion blur a short exposure time is needed, which leads to darker and noisier
images.

The integer pixel value is

x = kH

where k is a gain related to the ISO setting I Which is backward

compatible with historical
scales (ASA, DIN, ISO)
devised to reflect the
sensitivity of chemical films
for cameras – a higher
number reflected a more
sensitive or “faster” film.

of the camera. To obtain an sRGB
image with an average value of 118 I 18% saturation, middle

grey, of 8-bit pixels with
gamma of 2.2.

the required exposure is

H =
10
SSOS

lx.s

where SSOS is the ISO rating – standard output sensitivity (SOS) – of the digital cam-
era. Higher ISO increases image brightness by greater amplification of the measured
charge but the various noise sources are also amplified leading to increased image
noise which is manifested as graininess.

In photography the camera settings that control image brightness can be combined
into an exposure value (EV)

EV = log2
N2

T

Draft of April 10, 2016, Brisbane Copyright (c) Peter Corke 2015

k =
118
10

ISO

x = kAH
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Anton River:  https://www.youtube.com/watch?v=17PSgsRlO9Q

https://www.youtube.com/watch?v=17PSgsRlO9Q


L0 = Lg

worldreal ®

Display non-linearity

gamma

L0 =V g

L0 = L

gamma 	
encoded 
images

gamma encoding

gamma decoding
The system is linear end-to-end

gamma correction



Color planes

R’ G’ B’



file

header: image size, gamma, compression, pixel type...

meta data

Header: image size, gamma, 
compression, pixel type … 
Header: image size, gamma, 
compression, pixel type … 
Header: image size, gamma, 
compression, pixel type …	
Header: image size, gamma, 
compression, pixel type … 
Header: image size, gamma 
Header: image size, gamma, 

Meta data: camera 
settings, location, 
meta data: camera 
settings, location, 
meta data: camera 
settings, location, 
meta data: camera 
settings, meta data: 
camera settings, 
location, meta data: :

image pixels

Image file formats
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Cave Paintings ~40,000 years ago



Ideal City (1470)	
Piero della Francesca (1415–1492)



Figure 28 (Jan Vredeman de Vries, 1604). 	
Used with permission from Perspective, Dover Publications,1964.



trompe l'oeil |ˌtrômp ˈloi| 
noun ( pl. trompe l'oeils pronunc. same )	
visual illusion in art, esp. as used to trick the 
eye into perceiving a painted detail as a 
three-dimensional object.

Trompe L'oeil Tuscan Window Mural 2009	
Kristin Plansky | Used with permission.



New York City, Lower Manhattan, Front St.: Richard Haas Trompe l'oeil 1975	
Vincent Desjardins, 2011 | CC A2.0



People are actually avoiding walking in the "hole“ 2007	
Joe Beever | CC A2.0 



Stunning 3D chalk drawing from Zebit stops Liverpool 
shoppers in their tracks on Bold Street. 2012	
Bill Hunt  Original art: Zebit | CC A2.0 



Edgar Meuller http://www.metanamorph.com 
Edgar Mueller | CC-BY-SA-3.0, via Wikimedia Commons



Forced perspective 
2011 	

Seongbin Im | CC A2.0

On hands 2013 	
Kenzie Saunders | 

CC A2.0
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the	world
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The pinhole camera



Pinhole images

Camera obscura 2011	
1banaan | CC A2.0 

Camera obscura! 2011	
half alive - soo zzzz | CC A2.0 



The world’s largest pinhole camera

Members of The Legacy Project Collective 2008	
Jerry Keane | used with permission

Douglas McCulloh | CC-BY-SA-3.0-2.5-2.0-1.0, via Wikimedia Commons	
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! Similar triangles	

! Image formation is the mapping of scene points (X,Y,Z) to the image plane (x,y)

Simple imaging
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Simple imaging

! 3D to 2D 

! Perspective projection

image plane
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Perspective projection

Maps 

! Lines → lines 
Ê parallel lines not necessarily parallel 
Ê angles are not preserved 

! Conics → conics

Duk at the English language Wikipedia



No unique inverse

We cannot recover the lost dimension	

! Any 2D image could be generated by one of an infinite number of possible 3D worlds 

pin	hole	
camera	
projection
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Use a lens to gather more light

George R. Lawrence 1900
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Figure 11.1: Image formation geometry for a thin convex lens shown in 2-dimensional cross
section. A lens has two focal points at a distance of f on each side of the lens. By convention
the camera’s optical axis is the z-axis.

11.1 Perspective transform

The pin-hole camera produces a very dim image since its radiant power is the scene
luminance in units of watts/m2 multiplied by the size of the pin hole. The key to
brighter images is to collect light over a larger area using a lens or a curved mirror.
A convex lenses can form an image just like a pinhole but the larger diameter of the
lens allows more light to pass which leads to much brighter images.

The elementary aspects of image formation with a thin lens are shown in Figure
11.1. The positive z-axis is the camera’s optical axis. The z-coordinate of the object
and its image are related by the lens law

1

zo
+

1

zi
=

1

f
(11.1)

where zo is the distance to the object, zi the distance to the image, and f is the
focal length of the lens. For zo > f an inverted image is formed on the image
plane at z < − f . In a camera the image plane is fixed at the surface of the sensor
chip so the focus ring of the camera moves the lens along the optical axis so that

In the 5th century BCE, the philosopher Mo Jing in ancient China
mentioned the effect of an inverted image forming through a pin-
hole. The camera obscura is a darkened room where a dim inverted
image of the world is cast on the wall by light entering through a
small hole. Making the hole larger increases the brightness of the
image but makes it less focussed.
Camera obscuras were popular tourist attractions in Victorian
times, particularly in Britain, and many are still operating today.

Draft of December 31, 2010, Brisbane Copyright (c) Peter Corke 2010
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Figure 11.1: Image formation geometry for a thin convex lens shown in 2-dimensional cross
section. A lens has two focal points at a distance of f on each side of the lens. By convention
the camera’s optical axis is the z-axis.

11.1 Perspective transform

The pin-hole camera produces a very dim image since its radiant power is the scene
luminance in units of watts/m2 multiplied by the size of the pin hole. The key to
brighter images is to collect light over a larger area using a lens or a curved mirror.
A convex lenses can form an image just like a pinhole but the larger diameter of the
lens allows more light to pass which leads to much brighter images.

The elementary aspects of image formation with a thin lens are shown in Figure
11.1. The positive z-axis is the camera’s optical axis. The z-coordinate of the object
and its image are related by the lens law
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where zo is the distance to the object, zi the distance to the image, and f is the
focal length of the lens. For zo > f an inverted image is formed on the image
plane at z < − f . In a camera the image plane is fixed at the surface of the sensor
chip so the focus ring of the camera moves the lens along the optical axis so that

In the 5th century BCE, the philosopher Mo Jing in ancient China
mentioned the effect of an inverted image forming through a pin-
hole. The camera obscura is a darkened room where a dim inverted
image of the world is cast on the wall by light entering through a
small hole. Making the hole larger increases the brightness of the
image but makes it less focussed.
Camera obscuras were popular tourist attractions in Victorian
times, particularly in Britain, and many are still operating today.

Draft of December 31, 2010, Brisbane Copyright (c) Peter Corke 2010
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Quick geometry recap

◼ Some familiar concepts from geometry: 
➥Euclidean plane 
– a non-curved space where the rules of 

Euclidean geometry apply 
➥Cartesian coordinates 
– distances to a point with respect to the origin 

and measured along orthogonal axes

2
Chapter

Representing Position
and Orientation

Fig. 2.1.
a The point P is described by a co-
ordinate vector with respect to an
absolute coordinate frame. b The
points are described with respect

to the object’s coordinate frame {B}
which in turn is described by a

relative pose ξB. Axes are deno-
ted by thick lines with an open

arrow, vectors by thin lines with a
swept arrow head and a pose by a

thick line with a solid head

Fig. 2.2.
The point P can be described by

coordinate vectors relative to
either frame {A} or {B}. The pose

of {B} relative to {A} is AξB

A fundamental requirement in robotics and computer vision is to represent
the position and orientation of objects in an environment. Such objects in-
clude robots, cameras, workpieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be de-
scribed by a coordinate vector, also known as a bound vector, as shown in
Fig. 2.1a. The vector represents the displacement of the point with respect
to some reference coordinate frame. A coordinate frame, or Cartesian coor-
dinate system, is a set of orthogonal axes which intersect at a point known
as the origin.

More frequently we need to consider a set of points that comprise some
object. We assume that the object is rigid and that its constituent points
maintain a constant relative position with respect to the object’s coordinate
frame as shown in Fig. 2.1b. Instead of describing the individual points we
describe the position and orientation of the object by the position and ori-
entation of its coordinate frame. A coordinate frame is labelled, {B} in this
case, and its axis labels xB and yB adopt the frame’s label as their subscript.

The position and orientation of a coordinate frame is known as its pose
and is shown graphically as a set of coordinate axes. The relative pose of a
frame with respect to a reference coordinate frame is denoted by the symbol ξ



x =
x̃

z̃

, y =
ỹ

z̃

P̃ = (x,y,1)

P̃ 2 P2

Homogeneous coordinates

P = (x,y)P̃ = (x̃, ỹ, z̃)

P 2 R2

P = (x,y)

◼ Cartesian        →       homogeneous

◼ homogeneous   →    Cartesian
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ted by thick lines with an open

arrow, vectors by thin lines with a
swept arrow head and a pose by a

thick line with a solid head

Fig. 2.2.
The point P can be described by

coordinate vectors relative to
either frame {A} or {B}. The pose

of {B} relative to {A} is AξB

A fundamental requirement in robotics and computer vision is to represent
the position and orientation of objects in an environment. Such objects in-
clude robots, cameras, workpieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be de-
scribed by a coordinate vector, also known as a bound vector, as shown in
Fig. 2.1a. The vector represents the displacement of the point with respect
to some reference coordinate frame. A coordinate frame, or Cartesian coor-
dinate system, is a set of orthogonal axes which intersect at a point known
as the origin.

More frequently we need to consider a set of points that comprise some
object. We assume that the object is rigid and that its constituent points
maintain a constant relative position with respect to the object’s coordinate
frame as shown in Fig. 2.1b. Instead of describing the individual points we
describe the position and orientation of the object by the position and ori-
entation of its coordinate frame. A coordinate frame is labelled, {B} in this
case, and its axis labels xB and yB adopt the frame’s label as their subscript.

The position and orientation of a coordinate frame is known as its pose
and is shown graphically as a set of coordinate axes. The relative pose of a
frame with respect to a reference coordinate frame is denoted by the symbol ξ

Lines and points 
are duals



�̃= (l1, l2, l3)

A line in homogeneous form

p̃= (x̃, ỹ, z̃)

Point equation of a line

`1x̃+ `2ỹ+ `3z̃ = 0

˜̀T p̃= 0such that

y = mx+ c

contrast to



˜̀= p̃1 ⇥ p̃2

˜̀

Line joining points

p̃1 = (a,b,c)

p̃2 = (d,e, f )



�̃1 = (a,b,c)

p̃= ˜̀1 ⇥ ˜̀2

Intersecting lines

p̃

�̃2 = (d,e, f )

line equation of a point



Central projection model
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x̃ = f X , ỹ = fY, z̃ = Z
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Pin-hole model in homogeneous form

◼ Perspective transformation, with the pesky divide by Z, is linear 
in homogeneous coordinate form.

x =
x̃

z̃

, y =
ỹ
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ỹ

z̃

1

A=

0

@
f 0 0 0
0 f 0 0
0 0 1 0

1

A

0

BB@

X

Y

Z

1

1

CCA

3D to 2D scaling/ 
zooming



Change of coordinates
◼ scale point from metres to pixels 
◼ shift the origin to top left corner

◼ each pixel isv
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Corke, P. | Reproduced with permission from Springer Science, & Business Media
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Change of coordinates
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ũ/w̃
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Camera matrix
◼ Mapping points from the world to an image (pixel) coordinate is 

simply a matrix multiplication using homogeneous coordinates



Scale invariance
◼ Consider an arbitrary scalar scale factor
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◼ so the result is unchanged



0

@
ũ
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Normalized camera matrix
◼ Since scale factor is arbitrary we can fix the value 

of one element, typically C(3,4) to one.

u =
ũ
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, v =

ṽ
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◼ focal length 
◼ pixel size 
◼ camera position 
◼ & orientation



Camera calibration

◼ Process to determine intrinsic and extrinsic camera parameters
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◼ Once again the scale factor is arbitrary 
◼ 8 unique numbers in the homography matrix 
◼ Can be estimated from 4 world points and their corresponding image points

homography 
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q = Hp

Perspective rectification

>> H = homography(P, Q)  
H= 
 1.4003  0.3827 -136.5900 
-0.0785  1.8049 -83.1054 
-0.0003  0.0016 1.0000

q1q2

q3 q4

p4p3

p2 p1
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550 >> homwarp(H, im, 'full')

Perspective rectification

Corke, P. | Reproduced with permission from Springer Science, & Business Media

q = Hp
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Fundamental matrix

2pT F 1p = 0
Fundamental 

matrix 

• F has special structure 
–rank 2 
–null vector is the epipole coordinate 
–can be estimated from 4 point pairs

2p 2̀ = 0



Epipolar lines

◼ Epipolar lines intersect at the position of 
the other camera

>> F = 
    0.0000   -0.0000   -0.0001 
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◼ Epipolar lines intersect at the position of 
the other camera



Essential matrix

◼ Only 5DOF 
◼ Is related to the relative camera pose 

◼ Camera pose can be solved for 
- in general two solutions 
- translation only up to scale

E = [t]⇥R

2
x̃ E 1

x̃= 0 E = KT FK
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Stereo disparity
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Stereo disparity



Fisheye lens

Spiratone fisheye lens  2008	
Alessandro Leite | CC A2.0

Fisheye coke  2006	
Joel Gillman | CC A2.0



Fisher imaging model

z

x

y

θ
φ

R

P = (X,Y, Z)

r φ
camera
origin

image plane

v

u

optical axis

pO

>> cam = FishEyeCamera('name', 'fisheye', ...
  'projection', 'equiangular', ...
  'pixel', 10e-6, ...
  'resolution', [1280 1024])
>> [X,Y,Z] = mkcube(0.2, 'centre', [0.2, 0, 0.3], 'edge');
>> cam.mesh(X, Y, Z)

271

and project it to the fisheye camera’s image plane

>> cam.mesh(X, Y, Z)

and the result is shown in Fig. 11.16.
Wide angle lenses are available with 180° and even 190° field of view, however they

have some practical drawbacks. Firstly, the spatial resolution is lower since the cam-
eras pixels are spread over a wider field of view. We also note from Fig. 11.14 that the
field of view is a circular region which means that nearly 25% of the rectangular image
plane is effectively wasted. Secondly, outdoors images are more likely to include bright
sky so the camera will automatically reduce its exposure which can result in some
non-sky parts of the scene being very underexposed.

Table 11.1.
Fisheye lens projection models

Fig. 11.16.
A cube projected using the

FishEyeCamera class. The
straight edges of the cube are

curves on the image plane

11.3  ·  Non-Perspective Imaging Models

Fig. 11.17.
Catadioptric imaging. a A cata-
dioptric imaging system com-

prising a conventional perspec-
tive camera is looking upward

at the mirror; b Catadioptric
image. Note the dark spot in the
centre which is the support that
holds the mirror above the lens



Imaging by reflection

From Opticks, Newton, 1704.

An Accompt of a New Catadioptrical Telescope 
invented by Mr. Newton | by Isaac Newton	
Philosophical Transactions of the Royal Society, No. 81  
(25 March 1672)

Isaac Newton



Panorama lens

Panorama long  2013	
Michael Milford

Panorama round  2013	
Michael Milford



Panorama lens
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