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Example of a single particle motion

We consider only one charged particle submitted to an intense
electromagnetic field

o,

Tdt

dv 1

g = E(t,x) + SV x B(t,x),

where E and B are given and non uniform.
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Trajectory of a single particle under the effect of an external magnetic field



Outline of the Talk

@ Understand how to recover the correct guiding center velocity at the level
of the kinetic equation

@ Preserve the structure of the Vlasov-Poisson system in phase space and
construct numerical scheme on the original problem not on gyrokinetic
models.

o Part I. Modeling and scaling issues
@ Vlasov-Poisson system with a strong external magnetic field
@ 2D problem
@ 3D problem

9 Part Il. Strategy for numerical schemes

Q Numerical simulations
@ Vlasov-Poisson system with nonhomogeneous magnetic field



Vlasov-Poisson system with a strong external magnetic field

Assumptions
@ Consider the Vlasov-Poisson system 3D x 3D

@ Consider that the magnetic field is uniform B = b.«(t, X) €., where e;
stands for the unit vector in the z-direction,

@ we are interesting by the long time asymptotic of electrons

After a rescaling, it yields

of
2)7 TV Vil + {E -

bcxt(ts X)
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VL} - Vuf = 0.
E=-V¢, —Ap=p—pi.
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From the works of Arseneyv, or DiPerna-Lions, there exist global in time weak
solutions (energy and LP estimates are uniform with respect to time and ).
— this framework allows us to study the asymptotic = — 0.

where



In the limit ¢ — 0 for the 2D problem

First case : b., = bp.
If we are not interesting by the details of the dynamics of electrons, we only
want the evolution of the density p.

We define ) i
p° = / ffdv, and J°:= / fev dv,
JR2 JRr2

and get

op° . -

W + — lex(J ) = 0

S +divx/ VxViEav + Epf — Dyt o

ot Jra €

Then

@ the leading term induces that 7(v) ~ F(||v|]),
@ inthelimits — 0
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L R (vx/ [v][® Fdv + Ep>
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In the limit ¢ — 0 for the 2D problem

EL Ve g ExB Ay
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It gives the guiding center system U =
% +divxUp =0
—A¢ = p—pi.

This model satisfies some basic properties
@ preservation of energy

d [ .
o [ @) ax=o.

@ incompressible flow divxU = 0.
© preservation of L” norm of the density and for any continuous function n

%/.r](/)(t,x))dx =0.

For the Vlasov-Poisson system, this asymptotic limit is justified rigorously by
F. Golse and L. Saint-Raymond for weak solutions '.
Golse-St Raymond, JMPA’00, St Raymond, JMPA’02, Miot preprint 2016




In the limit ¢ — 0 for the 2D problem

Second case : bey = b(x).

We cannot get an equation on the density p but on the distribution function
F = F(t,x, w) with w = ||v]].

@ From a Hilbert expansion of /* = fy + & f; + ...

@ Apply a change of coordinate v = we,(0).

© We integrate on the angular velocity ¢ € [0, 27].
We formally get 7o = F(||v||) such that

(;)i + U ‘ VXF + UW % —
ot ow
where U corresponds to the drift velocity and (U. u,) is given by
Ue (- "o b) . w= Y vibE
) 2b T e T

We get the V*‘:‘:‘}LXB drift.

@ The drift-velocity results from two drifts,

@ Energy structure is preserved and the flow remains incompressible.




Idea of the proof (take b.x to be constant)

Step 1. Consider that (E, B) are given and smooth. We define

1 27 1 27

frdo, J(w) = 5 [ ew(0)f db.
0

Fr(w) = 27 Jo

and
S

5 (ew(e) Den(d) - 5 Id) £ do

=5 ).
Step 2. We get the following equation

W2

OtF°  +  divy < 5

ViFe + glzL aWF~“>

1. /w? . w R I
+ 0w (TV,%F<E+ EEL-EdwF'> = —R°(J°, %),
where R° is given by

R° = wdivx (e wd® + wdivk(X°) + OwI°E + 25°E)"

+

lwaw (W (e wd® + wdivk(Z°) + OwI°E + 2X°E)" . E) .

Step 3. Pass to the limit?.
2Vlasov-Poisson system is still open




In the limit ¢ — 0 for the 3D problem

Considering the 3D Vlasov-Poisson system with an external magnetic field, it
is possible to formally derive an asymptotic model for the limit (F~, P).
Applying the same strategy, we get® (for a uniform magnetic field)

oF oF oP bl
f+E/-LL‘Vx\F+EP\\W+V HTVHZ

— E
ot I f)XH +Er

vi=— + E IF
I OXH Fll OVH a

where E = (E... ,E,) is the electric field computed from J adv.

Properties

@ This model preserve the fundamental properties of the Vlasov-Poisson
system : energy conservation, divergence free flow, positivity of F.

@ Furthermore, we recover the classical drift velocity (E x B, V|B| x B, etc)
@ Adiabatic invariance.

3FF and P. Degond, arXiv:0905.2400 (2016)



Numerical approximation: state of the art

Aim. Construct a numerical scheme wich preserves the asymptotic behavior
when ¢ — 0.

Difficulty
There is no relaxation limit and no relaxation process to a unique equilibrium.J

Concerning the Vlasov-Poisson system with an external magnetic field

@ Boris’ scheme : a semi-implicit and second order scheme conserving
energy...

@ N. Crouselilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for
highly oscillatory Vlasov-Poisson equation, JCP (2013).

@ E. Frénod, S.A. Hirstoaga, M. Lutz, E. Sonnendrlcker, Long time
behaviour of an exponential integrator for a Vlasov-Poisson system with strong
magnetic field, CiCP (2015)

Other related works

@ E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration
Structure-Preserving Algorithms for Ordinary Differential Equations

@ Ph. Chartier, E. Faou, group IPSO in Rennes



Particle-In-Cell approximation
Let us now consider the Vlasov-Poisson system with an external magnetic
field and the corresponding characteristic curves which read

- IX
“at

av bex(X) + E(t,X),

E— =—= —

Tdt €
X(1°) = x°, V(%) = v°,
where the electric field is computed from the Poisson equation.

The Particle-In-Cell method,

@ we consider a set of particles characterized by a weight (wx)ker and
their position in phase space (xy, Vi ke computed by discretizing the
Vlasov-Poisson system at time t” = n At.

@ the solution f is discretized as follows

V) = Z Wic oh(X — XK) @n(V — V),
kczd



Asymptotic limit for the characteristics

For the PIC method, it is crucial to consider that the electric and magnetic
fields are smooth in such a way that characteristic curves are well defined.

First case : b,y = bp.
Let us study the long time behavior of the solution (X, V) to

(eX®) =V°, (eV°) = E(t,X°) — %V’fL

Then we combine two equations such that

VgL / EL
f—e——) = —(£,X°).
(x N ) 5 (1X0)

Passing formally to the limit and thanks to the energy estimate (for smooth
electric field), it yields that X* — Y when = — 0 and

EL
by

It corresponds to the characteristic curves of the guiding center model.

Y = (1,Y).

(3)

Therefore,
1p° = pllw—1.1 < Ceellfoll Lt (1+viyav)-




The simplest scheme : first order Euler semi-implicit

Consider the first order Euler semi-implicit scheme

Xn+1 = Xn
e—

_ Vn+1 )
At '

Vn+1 = Vn
e -

At €
X0 =x% VO =0,
We want to compare our discrete solution to
yn+1 o yn EJ_(tn_ yn)

At bex (y")

Proposition

Let us fix At > 0, assume that (x*). from (9) is bounded with respect to

e >0 and
(x*%,ev%) = (y%,0), as e—0.

Then, the limit satisfies (10).

o bcxt(Xn) Vn+1 1 + E(fn. Xn)7




Uniform accuracy result for large time step and small ¢ > 0

Theorem (FF and L.M. Rodrigues, SINUM 2016)

Consider that the electric field is given E € W'->°((0, T) x T?) and set
A\ = At/e? and R[W] = W= /be. Then,

2" =<'V - RIE(t"T, X"
satisfies
2" =[1d - R]7'(2" — RIE(t", X") —E({" ", X" ")), n>1.
Moreover, there exists C > 0 such that

:| eKX nAt )

X" Y7 < C&® |14 |1V — RIE(, X°)]
g

Corollary
For the density we have

o2t = p" 2|11 < Cene /fo('l + [lv]]) dv




Some comments and improvements

Comments :
@ This method introduces a numerical dissipation such that (V*). — 0 and

v E

— , as & —0.
€ be.xl

Therefore || V°||” is not anymore conserved and goes to zero...
@ We do not capture the “grad B” drift for non homogeneous magnetic field

1
2b2

ext

IVI* V™ bext.

Indeed the numerical dissipation is too strong...

@ We've constructed second and third order semi-implicit schemes which
preserve asymptotically the order of accuracy, that is, for smooth
electro-magnetic fields and when ¢ — 0, we get a scheme for the
Guiding centre model with the same order of accuracy as for the
Vlasov-Poisson system!

Improvements

@ Non homogeneous magnetic field




Second case : bey = b(x).
We proceed as before

(XY =V, (V) —E(tx7) - 2%

VSL (6)

We want to combine the two equations to remove the most singular term,
hence we set F = E/b and

Lemma
1 d € £ E € €
EFHV 2 = —V°. VyF(t,X°)V
d £ 5 5 £ 8FS (=3
4F E|:E(F(t7X) Ve) -V 5 (tX)} (7)
and for E° = (Ef, E5)
1d - _ ViE - VEEE  b(X%) . .
aa@ [P -] = 2=t - S v
d E g b(X*) o
£ € ‘/2E 1E+V1E 2E ° 12 12
E[W v ] = - T2 vr| *|V2|}-




Second case : b = b(x).

We set Z = V /b and get
X = b Z

e

and get an equation for Z,
V’ 1/ E
eZ) = —_lv==_
(€2) = e +¢ <b> b
Now, we decompose the last term as

1 1
Z(Vxb - 2) = |Z|PVab + 5 [2127222} Vib + [z 25] ( g:g >

Z" — (Vxb-2)Z

oo

and we get the result by combining the latter equations

(xfgzl) f%ffuzu Vib + O(¢).



Non homogeneous magnetic field

We consider the system

aX
C’,E — V.
dv bcxt(x) 1
E— = — Vv E(t, X),
ot - + E(t,X),
also set the kinetic energy e = ! ||V||* which satisfies
aw
»:H — E'V

Finally, we propose
@ solve numerically the equation to (X, Z)
@ solve the equation to w to get the precise evolution of it (slow scale)
@ write the source term on the eqn for Z as
1 1

_ 172 2 Ox, b
ZNyb -Z = bzwvxb + 5 {zw Zgi| Vxb + [z1 2] ( Dy, b )

Then apply semi-implicit schemes for the equation in Z and explicit for (w, X)
and set

V:\/ZWﬁ.



The simplest scheme : first order Euler semi-implicit

Consider the first order Euler semi-implicit scheme

Xn+1 _Xn _~
A -V
n+1 _ yn n
YV BeXyees e VIR 2) € Viog(b(X™) + (XY,
n+1 _ 4n
CAp = VTECX),
X0 =x% VO =v0 & =05|v°2.
)
We want to compare our discrete solution to
y”“—y"fi 1 noyn AN nyy) -
At _ bm(y") (E(t 1y ) € vlog(b(y )))
(10)
en+1 o en

At T bex:1(yn) e" V" log(b(y") - E(1",y").



One single particle motion without electric field

Numerical error (a) ||Xa; — X°||, (b) ||[Va; — V¢|| obtained with different time
steps At with the third order scheme

11 XEp ¢ - XEII
I1Ves - VEII

g in log scale € in log scale



One single particle motion without electric field

Numerical error (a) || Xa; — X°||, (b) ||Va; — V°|| obtained with different time
steps At with the third order scheme
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One single particle motion without electric field

Third order IMEX Runge-Kutta Third order IMEX Runge-Kutta
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One single particle motion with an electric field
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One single particle motion with an electric field
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Vlasov-Poisson system with nonhomogeneous magnetic field

We now consider the Vlasov-Poisson system with an external magnetic field
set in a disk centred at the origin and of radius Ry, = 6, 2 = D(0, 6), with
¢ = 0.05 and the initial data

1 X — Xo|? X + Xo||? V|2
fo(x,v) = 8202 2 {exp <77H > o > + exp <77H 5 ol )} exp (——‘LVH% ) ,
1l

with vy, = /2, xo = (3/2, -3/2).
We perform numerical simulations with

10
V102 —[x]}2’

such that it is one at the origin and smaller elsewhere.

b(x) =



Vlasov-Poisson system with nonhomogeneous magnetic field

2e-05
Relative kinetic energy ~—@—
0.03 1 Relative potential energy
Relative total energy
0.02 1 1.5e-05
0.01 -
1e-05 A
0
-0.01 A 5e-06
-0.02 4 04 Adiabatic invariant —e—
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

t t
Vlasov-Poisson system nhonhomogeneous magnetic field. Time
evolution of total energy and adiabatic invariant obtained with At = 0.1



The Vlasov-Poisson system ¢ = 0.01

Qe
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Conclusion

Comments :
@ Dominant term is a magnetics field ! (v x B) - V,, no more dissipative
effects

@ We have performed a rigorous analysis on the particle trajectories for a
homogeneous magnetic field, but only formal for the non homogeneous
case.

Current and future works :

@ Applications in plasma physics
o Treat more complex problems : capture drift due to the gradients of the
magnetic field, etc
@ Applications to numerical analysis

o Better understanding of the stability of high order schemes for PIC methods
and for the Vlasov-Poisson system.
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