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Two-scale method for oscillatory equations

A classical oscillatory model problem:

∂tu(t) = F (t, t/ε, u(t)), t > 0,

u(0) = u0.

ä 0 < ε ≤ 1 given parameter. F (t, τ, u): smooth and
2π-periodic in τ .

ä u(t): highly oscillatory in t as 0 < ε� 1.

ä Including:

Classical Hamiltonian system
Dispersive and wave equation: nonlinear Klein-Gordon in
nonrelativistic limit; oscillatory nonlinear Schrödinger equation

ä Widely studied:

Classical discretization: ∆t restricted by ε for accuracy.
Approximation in limit regime: time-averaging
Asymptotic preserving: order reduction



Two-scale method for oscillatory equations

Recent trend: uniformly accurate (UA) numerical method for all
0 < ε ≤ 1.

Two-scale method (Ph. Chartier etc. 2015):

∂tU(t, τ) +
1

ε
∂τU(t, τ) = F (t, τ,U(t, τ)), t > 0, τ ∈ T,

U(0, τ) = U0(τ).

ä τ : fast time variable; independent of t.

ä U(t, τ) periodic in τ .

ä U0(τ): prescribed only at U0(0) = u0.

ä u(t) = U(t, t/ε).

Freedom to choose U0(τ) such that: ∂kt U(t, τ) = O(1), ε→ 0,
for k = 0, 1, 2, 3...



Two-scale method for oscillatory equations

Chapman-Enskog expansion:

U(t, τ) = U(t) + h(t, τ), t ≥ 0, τ ∈ T

ä U(t) := ΠU(t, τ) = 1
2π

∫ 2π
0 U(t, τ)dτ

macro-part, O(1)
independent of τ

ä h(t, τ) := U(t, τ)− U(t)

micro-part, o(1)
zero average

The two-scale equation decompose to ∂tU = Π (F(t, τ,U + h)) ,

∂th +
1

ε
Lh = (I − Π) (F(t, τ,U + h)) .

Lh := ∂τh. L has inverse: L−1h = (I − Π)
∫ τ

0 h(t, θ)dθ



Two-scale method for oscillatory equations

ä U(t): independent of ε;

ä look for asymptotic orders for h(t, τ)

h = εA (F(t, τ,U + h))− εL−1(∂th),

∂th = εA [∂tF(t, τ,U + h) + ∂UF(t, τ,U + h)(∂tU + ∂th)]

− εL−1(∂2
t h).

A := L−1(I − Π).

Assume ∂th = O(1) ⇒ h = O(ε)
Assume ∂2

t h = O(1) ⇒ ∂th = O(ε) & 1st order expansion:

h(t, τ) = h1(t, τ,U)+O(ε2), with h1(t, τ,U) := εA (F(t, τ,U)) .

Further assume ∂3
t h = O(1) ⇒ 2nd order expansion:

h(t, τ) =εA (F(t, τ,U + h1))− ε2A2∂tF(t, τ,U)

− ε2A2∂UF(t, τ,U)Π (F(t, τ,U)) + O(ε3)



Two-scale method for oscillatory equations

ä Valid at t = 0:

U(0, τ) = U(0) + h(0, τ)

ä U(0) known via:

u0 = U(0, 0) = U(0) + h(0, 0)

⇒ U(0, τ) = u0 + h(0, τ)− h(0, 0)

1st order expansion of h ⇒ 1st order initial data
2nd order expansion of h ⇒ 2nd order initial data

Rigorous result (Chartier, Crouseilles, Lemou and Méhats, 2015):
Under 2nd (or 1st) order initial data, ∂kt U(t, τ) = O(1) for
k = 0, 1, 2, 3 (or k = 0, 1, 2) for all 0 < ε ≤ 1.



Two-scale method for oscillatory equations

Numerical methods for the two-scale equation:

∂tU(t, τ) +
1

ε
∂τU(t, τ) = F (t, τ,U(t, τ))

ä In τ : Fourier spectral

ä In t: finite difference (FD)

semi-implicit to avoid stability issue
need ∂n+1

t U = O(1) for n-th order accuracy.

A 2nd order scheme (Chartier etc. 2015):
Un+1/2(τ)− Un(τ)

∆t/2
+

1

ε
∂τU

n+1/2(τ) = F (tn, τ,U
n(τ)) ,

Un+1(τ)− Un(τ)

∆t
+

1

2ε
∂τ
(
Un+1(τ) + Un(τ)

)
= F

(
tn+1/2, τ,U

n+1/2(τ)
)
.



Two-scale method for oscillatory equations

ä UA 2nd (or 1st) order FD method obtained under the 2nd (or
1st) order initial data (Chartier etc. 2015).

ä In t (alternatively): exponential integrator (EI)

need ∂nt U = O(1) for n-th order accuracy.

UA 2nd (or 1st) order EI method under the 1st (or 0th) order
initial data (details later)



Two-scale method: application

2D beam model:

∂t f +
v

ε
∂r f +

(
E − r

ε
+ a

( t
ε

)
r
)
∂v f = 0, t > 0, r , v ∈ R,

∂r (rE ) = r

∫
R
fdv , t > 0, r ∈ R,

f (0, r , v) = f0(r , v), r , v ∈ R.

ä a(·): given & 2π-periodic

ä E (t, r): self-consistent electrical field

ä filter out main oscillation:

ξ =

(
ξ1

ξ2

)
:= e−Jt/ε

(
r

v

)
=

(
cos(t/ε) − sin(t/ε)

sin(t/ε) cos(t/ε)

)(
r

v

)
, J =

(
0 1
−1 0

)
g(t, ξ) := f (t, cos(t/ε)ξ1 + sin(t/ε)ξ2,− sin(t/ε)ξ1 + cos(t/ε)ξ2)



Two-scale method: application

Beam model in rotating frame:{
∂tg(t, ξ) + E(t, t/ε, ξ) [− sin (t/ε) ∂ξ1g(t, ξ) + cos (t/ε) ∂ξ2g(t, ξ)] = 0

g(0, ξ) = f0(ξ1, ξ2).

E(t, τ, ξ) :=
1

r(τ, ξ)

∫ r(τ,ξ)

0

∫
R
sg (t, cos(τ)s − sin(τ)v , sin(τ)s + cos(τ)v) dvds

+ a(τ)[cos(τ)ξ1 + sin(τ)ξ2],

r(τ, ξ) := cos(τ)ξ1 + sin(τ)ξ2.

ä Characteristics

ξ̇1(t) = − sin (t/ε) Ξ(t, t/ε, ξ),

ξ̇2(t) = cos (t/ε) Ξ(t, t/ε, ξ).

ä Straightforward for the two-scale method: UA semi-Lagrangian! 1

1M. Lemou, F. Méhats, N. Crouseilles, X. Zhao, Uniformly accurate forward
semi-Lagrangian methods for highly oscillatory Vlasov-Poisson equations,
hal-01286947, preprint 2016.



Long-time Vlasov-Poisson with strong magnetic field

Consider the Vlasov-Poisson equation:

∂t f +
v

ε
· ∇xf +

1

ε

(
E +

1

ε
v⊥
)
· ∇vf = 0, t > 0, x, v ∈ R2,

E(t, x) = −∇xφ(t, x), −∆φ(t, x) =

∫
R2

f (t, x, v)dv − 1,

f (0, x, v) = f0(x, v), x, v ∈ R2, t ∈ [0,T ].

where f = f (t, x, v), x = (x1, x2), v = (v1, v2), v⊥ = (v2,−v1).

ä 4D drift-kinetic regime

ä Strong magnetic field and long-time effect: 0 < ε ≤ 1.

ä Main oscillation due to ∂t f + 1/ε2v⊥ · ∇v f

ä f has wavelength in time O(ε2)



Long-time Vlasov-Poisson with strong magnetic field

ä Theoretical wise: As ε→ 0, f (t, x, v) two-scale convergence to
g(t, x, r(v, τ)) (Frenód and Sonnerdrücker, 2000)

∂tg(t, x, v) + E⊥ · ∇xg −
1

2
(∇ · E) v⊥ · ∇vg = 0, t > 0, x ∈ R2,

−∇ · E(t, x) =

∫
R2

g(t, x, v)dv − 1,

g(0, x, v) = f0(x, v), r(v, τ) = e−τJv.

Further implies Guiding Center equation:

∂tρ(t, x) + E⊥ · ∇xρ = 0, t > 0, x ∈ R2,

−∇ · E(t, x) = ρ(t, x)− 1,

ρ(0, x) =

∫
R2

g(0, x, v)dv.

ä Numerical wise: multiscale numerical schemes

Exponential integrator (Frénod,Hirstoaga,Lutz and
Sonnendrücker, 2015): a limit solver
AP semi-implicit Runge-Kutta (Filbet and Rodrigues 2016)



Long-time Vlasov-Poisson with strong magnetic field

Aim: construct a numerical scheme which

ä is free from the constraint ∆t = O(εp), p > 0

ä deals with all regimes: ε = O(1), ε� 1 and intermediate,
with same cost and the same precision (uniform accuracy).



Long-time Vlasov-Poisson with strong magnetic field

Particle-in-Cell method: f (t, x, v) is sampled by

fp(t, x, v) =

Np∑
k=1

ωkδ(x− xk(t))δ(v − vk(t)), t ≥ 0, x, v ∈ R2,

where the position xk(t) and velocities vk(t) obeys

ẋk(t) =
vk(t)

ε
,

v̇k(t) =
E(t, xk(t))

ε
+

v⊥k (t)

ε2
,

xk(0) = xk,0, vk(0) = vk,0.

E = −∇xφ is determined from (xk(t))k at position x by

−∆φ(t, x) =

Np∑
k=1

ωkδ(x− xk(t))− 1.

In practice, δ ↔ ϕ for example by the B-spline function



Long-time Vlasov-Poisson with strong magnetic field

ä Self-consistent electrical field is oscillatory:
E(t, x) = E(t, t/ε2, x).

ä Start to reformulate the characteristic to use the two-scale
method.

First step: Filtering main oscillation

y(t) = e−tJ/ε
2
v(t), with J =

(
0 1
−1 0

)
and esJ =

(
cos s sin s
− sin s cos s

)
.

Then the characteristic becomes

ẋ(t) =
1

ε
etJ/ε

2
y(t),

ẏ(t) =
1

ε
e−tJ/ε

2E(t, t/ε2, x(t)),

x(0) = x0, y(0) = v0.

with ∇x · E(t, t/ε2, x) =
∑Np

k=1 ωkδ(x− xk(t))− 1.



Long-time Vlasov-Poisson with strong magnetic field

One possible way: the generalised two-scale method in diffusion
scaling2: X (t, τ) and Y (t, τ) for τ ∈ [0, 2π] such that

X (t, τ = t/ε2) = xk(t), Y (t, τ = t/ε2) = y(t).

X and Y satisfies

∂tX (t, τ) +
1

ε2
∂τX (t, τ) =

1

ε
eτJY (t, τ),

∂tY (t, τ) +
1

ε2
∂τY (t, τ) =

1

ε
e−τJE(t, τ,X (t, τ)),

X (0, 0) = x0,Y (0, 0) = y0,

where the electric field is given by

∇x · E(t, τ, x) =

Np∑
k=1

ωkδ(x− Xk(t, τ))− 1.

2M. Lemou, F. Méhats, X. Zhao, Uniformly accurate numerical schemes for
the nonlinear Dirac equation in the nonrelativistic limit regime,
arXiv:1605.02475[math.NA], preprint 2016.



Long-time Vlasov-Poisson with strong magnetic field

Come back to the (diffusion scaling) two-scale problem

∂tX (t, τ) +
1

ε2
∂τX (t, τ) =

1

ε
eτJY (t, τ),

∂tY (t, τ) +
1

ε2
∂τY (t, τ) =

1

ε
e−τJE(t, τ,X (t, τ)),

X (0, 0) = x0,Y (0, 0) = y0,

∇x · E(t, τ, x) =

Np∑
k=1

ωkδ(x− Xk(t, τ)).

ä Could overcome temporal oscillation.

ä However, E can not be obtained exactly!

ä Spatial error and particle error are amplified by 1/ε which is
even worse!!

ä Seek for more transformation.



Long-time Vlasov-Poisson with strong magnetic field

Then, we introduce two new unknown functions U±(t, τ):

U+(t, τ) := 2
(
X (t, τ) + εJeτJY (t, τ)

)
, U−(t, τ) := −2εJY (t, τ), t ≥ 0, τ ∈ T,

which satisfy

∂tU± +
1

ε2
∂τU± = F±(t, τ,U+,U−),

with

F+(t, τ,U+,U−) = 2JE
(
t, τ, 1

2

(
U+ + eτJU−

))
,

F−(t, τ,U+,U−) = −2Je−τJE
(
t, τ, 1

2

(
U+ + eτJU−

))
,

since

X =
1

2

(
U+ + eτJU−

)
, Y =

1

2ε
JU−.



Long-time Vlasov-Poisson with strong magnetic field

Write the reformulated problem for (U+,U−) as

∂tU +
1

ε2
∂τU −F(t, τ,U) = 0,

U(t = 0, τ = 0) = u0 = (2(x0 + εJy0),−2εJy0).

Then decompose U(t, τ) = U(t) + h(t, τ), with U(t) = ΠU(t, ·)
Use first order the expansion derived before

U(t, τ) = U(t) + ε2L−1(I − Π)F(t, τ,U(t)) +O(ε4). (∗)

F ∝ E = E [U](t, τ,X ) where E [U](t, τ,X ) is computed via

∇x · E(t, τ, x) =

Np∑
k=1

ωkδ

(
x− 1

2
(U+(t, τ) + eτJU−(t, τ))k

)
− 1.

Expansion (∗) is implicit. Need to approximate explicitly E .



Long-time Vlasov-Poisson with strong magnetic field

To do so, from the relation between U± and X , we have

X = X 1st +O(ε2), with X 1st(t, τ) :=
1

2

[
U+(t) + eτJU−(t)

]
.

Then, one can compute E1st = E +O(ε2) as

∇x · E1st(t, τ, x) =

Np∑
k=1

ωkδ(x− X 1st
k (t, τ))− 1,

Finally,
u0 =: U(0, τ = 0) = U(0) + ε2h(τ = 0),

and we deduce

U(0, τ = 0) = u0 + ε2(h(τ)− h(0)), (∗∗)

where h(τ) = L−1(I − Π)F1st(0, τ,u0).



Long-time Vlasov-Poisson with strong magnetic field

Proposition (formal)

∂tU +
1

ε2
∂τU −F(t, τ,U) = 0,

U(0, τ) given by (∗∗)

Then we have (for a fixed t ∈ [0,T ])

sup
ε∈]0,1]

‖∂kt Uε(t, ·)‖L∞τ ≤ C1, k = 0, 1, 2.

sup
ε∈]0,1]

‖dk
t F(t, ·)‖L∞τ ≤ C2, k = 0, 1, 2.



Numerical scheme-exponential integrator

τ being periodic, we consider the Fourier transform in τ to get

Û ′`(t) +
i`

ε2
Û`(t) = F̂`(t).

Integrating between tn and tn+1, we have

Û`(tn+1) = e−
i`∆t
ε2 Û`(tn) +

∫ ∆t

0
e−

i`
ε2 (∆t−s)F̂`(tn + s)ds

≈ e−
i`∆t
ε2 Û`(tn) +

∫ ∆t

0
e−

i`
ε2 (∆t−s)

(
F̂`(tn) + s

d

dt
F̂`(tn)

)
ds

≈ e−
i`∆t
ε2 Û`(tn) + p`F̂`(tn) + q`

F̂`(tn)− F̂`(tn−1)

∆t
,

with

p` :=

∫ ∆t

0
e−

i`
ε2 (∆t−s)ds, q` :=

∫ ∆t

0
e−

i`
ε2 (∆t−s)sds.



Proposition (formal)

Let consider the solution Un(τ) of the following semi-discretized
scheme

Ûn+1
` = e−

i`∆t
ε2 Ûn

` + p`F̂n
` + q`

1

∆t

(
F̂n
` − F̂n−1

`

)
,

Û0
` well-prepared

Then we have

sup
ε∈]0,1]

‖Un − U(tn)‖L∞τ ≤ C∆t2.

∀n ≤ N,N∆t = T .

The simple choice U0(τ) = u0 will not work: indeed, one has
∂2
t U

ε = O(1/ε) which means that the numerical scheme behaves
well for ε = O(1) and ε very small, but not for intermediate
regimes.



Algorithm

ä Initialization of xk , vk from f0.

ä Compute the ”well-prepared” initial data for U±(0, τ)

Time loop n→ n + 1

ä X n
k (τ) = 1

2 (Un
+(τ) + eτJUn

−(τ))k

ä Solve the Poisson equation:

∇x · E(tn, τ, x) =
∑Np

k=1 ωkδ(x− X n
k (τ))

ä Advance (Un+1
± )k

From (Un
±)k , one can reconstruct the original solution

xnk = X n
k (τ = tn/ε

2) =
1

2

[
Un

+(τ = tn/ε
2) + eJtn/ε

2
Un
−(τ = tn/ε

2)
]
k
,

vnk = Y n
k (τ = tn/ε

2) =
J

2ε
eJtn/ε

2
Un
−(τ = tn/ε

2).



Numerical tests

Let consider the following initial condition (Kelvin-Helmholtz
instability)

f0(x, v) =
1

2π
(1 + sin(x2) + η cos(kx1)) e−

|v|2
2 ,

on a computational domain for x as Ω = [0, 2π/k]× [0, 2π] for
k = 0.5 and η = 0.05, v ∈ R2.

Numerical parameters: 64 points in x1-direction and 32 points in
x2-direction; the fifth order B-spline; Nτ = 32 and Np = 204800.



Uniform Accuracy

ρ(t, x) =

∫
R2

f (t, x, v)dv, x ∈ Ω
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Figure: Temporal error at t = 1 in ρ with respect to ∆t and ε: results of
(∗∗) (1st row); results of u0 (2nd row).



Uniform Accuracy

ρv,1(t, x) :=

∫
R2

(|v1| + |v2|)f (t, x, v)dv, ρv,2(t, x) :=

∫
R2

|v|2f (t, x, v)dv
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Figure: Temporal error under (∗∗): in ρv,1 (1st row); in ρv,2 (2nd row).



Uniform Accuracy

H(t) :=
1

2

∫
R2×R2

|v|2f (t, x, v)dxdv +
1

2

∫
R2

|E(t, x)|2dx
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Figure: Energy error |H(tn)− H(0)|.



Convergence to limit model

Convergence of the Vlasov-Poisson to the limit model as ε→ 0: in ρ and
ρv,2
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Figure: Maximum error in ρ (left) and in ρv,2 (right).



Dynamics
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Figure: Contour plot of quantity ρ(t, x)− 1 at different t with ε = 0.005.



Numerical results: non-isotropic initial condition

f0(x, v) =
1

4π
(1 + sin(x2) + η cos(kx1))

(
e−

(v1+2)2+v2
2

2 + e−
(v1−2)2+v2

2
2

)
.

with η = 0.05, k = 0.5, Np = 409600,Nτ = 16.

χ(t, v) :=

∫
R2

f (t, x, v)dx



Numerical results: non-isotropic initial condition

Figure: Contour plot of quantity χ(t, v) at different t with ε = 0.005.



Conclusion

ä general method to construct uniformly accurate schemes for
highly-oscillatory problems and application to strongly
magnetized plasmas in a diffusion scaling

ä not based on computations of averaged models

Perspectives

ä Systematical comparison with other methods: limit solvers
and AP schemes

ä Extension to more general oscillations

ä get rid of the variable τ


