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Two-scale method for oscillatory equations

A classical oscillatory model problem:

Oru(t) = F(t,t/e,u(t)), t>0,
u(0) = wp.

» 0 < e <1 given parameter. F(t,7,u): smooth and
2m-periodic in 7.
» u(t): highly oscillatory in t as 0 < ¢ < 1.
» Including:
o Classical Hamiltonian system

o Dispersive and wave equation: nonlinear Klein-Gordon in
nonrelativistic limit; oscillatory nonlinear Schrodinger equation

» Widely studied:
o Classical discretization: At restricted by € for accuracy.
o Approximation in limit regime: time-averaging
e Asymptotic preserving: order reduction



Two-scale method for oscillatory equations

Recent trend: uniformly accurate (UA) numerical method for all
0<e<L

Two-scale method (Ph. Chartier etc. 2015):

orU(t, 7))+ éaTU(t,r) = F(t,7,U(t,7)), t>0, 7T,
U(O,T) = Uo(T).

» 7: fast time variable; independent of t.
» U(t, ) periodic in 7.

» Up(7): prescribed only at Up(0) = wp.
» u(t) = U(t, t/e).

Freedom to choose Up(7) such that: dXU(t,7) = O(1), € — 0,
for k = 0,1,2,3...



Two-scale method for oscillatory equations

Chapman-Enskog expansion:
u(t,7) = U(t)+ h(t,7), t>0,7€T

> U(t) = NU(t,7) = & [7 U(t, 7)dT
e macro-part, O(1)
e independent of 7
» h(t,7):= U(t,7) — U(t)
e micro-part, o(1)
e zero average

The two-scale equation decompose to

deh-+ TLh = (1 =TV (F(t,7, U+ h)).

Lh:=0;h. L has inverse: L=th= (1 — ) [ h(t,0)d0

{atg N(F(t, 7, U+ h)),



Two-scale method for oscillatory equations

» U(t): independent of ;
» look for asymptotic orders for h(t, )
h=cA(F(t,7,U+ h)) —eL=1(8:h),
Oth = eA[0:F(t, 7, U+ h) + OyF(t, 7, U+ h)(0:U + O¢h)]
—eLl7Y(9%h).

A= L7YI-nN).
o Assume 0:h = O(1) = h= O(e)
o Assume 92h = O(1) = 9:h = O(e) & 1st order expansion:

h(t,7) = hi(t, 7, U)+0(%), with hy(t, 7, U) := eA(F(t, T, U)).
o Further assume 92h = O(1) = 2nd order expansion:

h(t, ) =eA(F(t,7,U+ h1)) — 52A23t]-'(t, 7, U)
— A0y F(t, 7, VN (F(t,1,U)) + O(®)



Two-scale method for oscillatory equations

» Valid at t = 0:
U(0,7) = U(0) + h(0, 7)
> U(0) known via:
uo = U(0,0) = U(0) + h(0,0)
= U(0,7) = uo + h(0, ) — h(0,0)

o 1st order expansion of h = 1st order initial data
@ 2nd order expansion of h = 2nd order initial data

Rigorous result (Chartier, Crouseilles, Lemou and Méhats, 2015):
Under 2nd (or 1st) order initial data, 9KU(t,7) = O(1) for
k=0,1,2,3 (or k=0,1,2) forall 0 < & < 1.



Two-scale method for oscillatory equations

Numerical methods for the two-scale equation:

orU(t, 7))+ éa,-U(t,T) = F(t,7,U(t, 7))

» In 7: Fourier spectral
» In t: finite difference (FD)

e semi-implicit to avoid stability issue
o need 9! U = O(1) for n-th order accuracy.
A 2nd order scheme ( Chartier etc. 2015):

Unt2(r) — Un(r)
At/2
urti(ry - un(r) 1

Ae ot (U@ VD) = F (triajem, UTH())

+ 287 U"+1/2(7') = F (tn, 7, U"(7)),




Two-scale method for oscillatory equations

» UA 2nd (or 1st) order FD method obtained under the 2nd (or
1st) order initial data (Chartier etc. 2015).

» In t (alternatively): exponential integrator (El)

o need 97U = O(1) for n-th order accuracy.

o UA 2nd (or 1st) order El method under the 1st (or Oth) order
initial data (details later)



Two-scale method: application

2D beam model:
t
atf+Ka,f+(E—f+a(-)r)avf:o, t>0, r,vER,
€ € €
Br(rE):r/fdv, t>0, reR,
R
f(0,r,v)="fo(r,v), r,veR.

» a(-): given & 2m-periodic
» E(t,r): self-consistent electrical field
» filter out main oscillation:
. (51> R <r> _ (cos(t/s) —sin(t/s)) (r) S ( 0 1)
& v sin(t/e)  cos(t/e) v)]’ -1 0

g(t,&) = f (¢, cos(t/e)&y1 + sin(t/e)&a, —sin(t/e)é1 + cos(t/e)E2)



Two-scale method: application

Beam model in rotating frame:
Oeg(t,€) +&(t,t/e,&) [—sin(t/e) O¢,g(t, §) + cos(t/e) Og,g(t, §)] = 0
g(0,8) = fo(&1,62)-
E(t,T,€) ::ﬁ /Or(f,é) /ng(t, cos(7)s — sin(7)v,sin(7)s + cos(7)v) dvds
+ a(7)[cos(7)&1 + sin(T)&7],
r(7,€) 1= cos(1)& + sin(7)&.
» Characteristics
&i(t) = —sin (t/e) =(t, t/e,€),
&(t) = cos (t/e) =(t, t/e, €).

» Straightforward for the two-scale method: UA semi-Lagrangian! !

M. Lemou, F. Méhats, N. Crouseilles, X. Zhao, Uniformly accurate forward
semi-Lagrangian methods for highly oscillatory Vlasov-Poisson equations,
hal-01286947, preprint 2016.



Long-time Vlasov-Poisson with strong magnetic field

Consider the Vlasov-Poisson equation:

1 1
aff+‘5’~vxf+€(E+€vL> Vuf =0, t>0, x,veR?

E(t.0) = ~Vad(ex), —Bo() = [ fltxv)dv—1
R2
f(0,x,v) = fo(x,v), x,veR2telo,T].

where f = f(t,x,v), x = (x,x2), v = (v1, v2), v = (va, —v1).
» 4D drift-kinetic regime
» Strong magnetic field and long-time effect: 0 < e < 1.
» Main oscillation due to 0;f + 1/%vt -V, f
» f has wavelength in time O(£?)



Long-time Vlasov-Poisson with strong magnetic field

» Theoretical wise: As ¢ — 0, f(t,x,v) two-scale convergence to
g(t,x,r(v, 7)) (Frendd and Sonnerdriicker, 2000)

1
Org(t,x,v) + EL -V, g — 5(V- E)vi-V,g =0, t >0, xcR?
-V -E(t,x) = / g(t,x,v)dv — 1,
R2
g(0,x,v) = fo(x,v), r(v,7)=e "v.
Further implies Guiding Center equation:
Oep(t,x) +EL -Vep=0, t>0, xeR?
-V E(t,X) = p(t,X) -1,

p(0.0 = [ gOx v,
R
» Numerical wise: multiscale numerical schemes

o Exponential integrator (Frénod,Hirstoaga,Lutz and
Sonnendriicker, 2015): a limit solver
o AP semi-implicit Runge-Kutta (Filbet and Rodrigues 2016)



Long-time Vlasov-Poisson with strong magnetic field

Aim: construct a numerical scheme which

» is free from the constraint At = O(=P), p > 0

» deals with all regimes: ¢ = O(1), ¢ < 1 and intermediate,
with same cost and the same precision (uniform accuracy).



Long-time Vlasov-Poisson with strong magnetic field

Particle-in-Cell method: f(t,x,v) is sampled by

fo(t, %, V) = ) wied(x — xi(£))6(v — vie(t)), t>0, x,veR?
k=1

where the position x,(t) and velocities v, (t) obeys

%(t) = ng(’-“))
v
‘.’k(t): E(t7);k(t)) + kggt)7

xk(0) = xk0, Vi(0) = vio.

E = — V¢ is determined from (xx(t))x at position x by

Np
—A(t,x) =D wieb(x — x,(t)) — 1.
k=1

In practice, 0 <+  for example by the B-spline function



Long-time Vlasov-Poisson with strong magnetic field

» Self-consistent electrical field is oscillatory:
E(t,x) = &(t,t/e%,%).

» Start to reformulate the characteristic to use the two-scale
method.

First step: Filtering main oscillation

y(t) :e_tJ/€2V(t), with J = <_01 (1)> and e = <COSS sin s) .

—sins coss

Then the characteristic becomes
(1) = Ty o)
(1) = Ze V(1 1/ x(1),
x(0) = xo, y(0) = vo.

with V- £(t, /2, %) = S0P wied(x — xi(£)) — 1.



Long-time Vlasov-Poisson with strong magnetic field

One possible way: the generalised two-scale method in diffusion
scaling?: X(t,7) and Y(t,7) for 7 € [0,27] such that

X(t, 7 =t/e?) = x(t), Y(t,7 =t/e?) =y(t).
X and Y satisfies

1 1
8tX(t, T) + gaTX(t, T) — geTJ Y(t, 7'),

1 1
O Y(t,7) + =0-Y(t,7) = e TE(t, T, X(t, 7)),
€ €
X(0,0) = xo, Y(0,0) = yo,
where the electric field is given by

Np

Vi E(t,7,%) =Y wid(x — Xi(t,7)) — 1.
k=1

2M. Lemou, F. Méhats, X. Zhao, Uniformly accurate numerical schemes for
the nonlinear Dirac equation in the nonrelativistic limit regime,
arXiv:1605.02475[math.NA], preprint 2016.



Long-time Vlasov-Poisson with strong magnetic field

Come back to the (diffusion scaling) two-scale problem
1 1,
nX(t,7) + 50-X(t,7) = =Y (t,7),
5 5

Y (£,7) + E%BTY(t,T) - gefﬂg(m,X(t,T)),
X(0,0) = xo, Y(0,0) = yo,

Np

Vi E(t,7,x) =Y wid(x — Xi(t,7)).
k=1

» Could overcome temporal oscillation.
» However, £ can not be obtained exactly!

» Spatial error and particle error are amplified by 1/e which is
even worse!!

» Seek for more transformation.



Long-time Vlasov-Poisson with strong magnetic field

Then, we introduce two new unknown functions U, (t,7):
Us(t, ) =2 (X(t,T) +edemly(t, T)) , U_(t,7) = —2eJY(t,7),
which satisfy
1
8tUi + gaTUi - ]:i(ta T, U+, U,),

with

Fo(t,m, Up, Us) =2JE (t,7, 5 (Up +e™U2)),

Fo(t,7,Up,U-) =—=2Je ™€ (t, 7,5 (Up +eU)),
since 1 1
— 7J =
Xf2<U++e U_), Y = JU_.



Long-time Vlasov-Poisson with strong magnetic field

Write the reformulated problem for (Uy, U-) as

1
8tU+ ?aTU—f(t,T, U) — 0,
Uit=0,7=0) = up=(2(xo+etyo), —2ctyop).

Then decompose U(t,7) = U(t) + h(t, ), with U(t) = MU(t,")
Use first order the expansion derived before

U(t,7) = U(t) + 2L = M)F(t, 7, U(t)) + O(*). (%)

F o € = E[U](t, 7, X) where E[U](t, T, X) is computed via

N, )
V- E(t,7,x) = Zwkd (x — §(U+(t, T)+ eTJU(t,T))k> 1

k=1

Expansion (x) is implicit. Need to approximate explicitly £.



Long-time Vlasov-Poisson with strong magnetic field

To do so, from the relation between U, and X, we have
1
X = X' 4 O(), with X' (t,7) := [Q+(t) + eTJQ,(t)] .

Then, one can compute £t = £ 4+ O(?) as
V- EM¥(t,7,x) = Zwké x — Xt(t, 7)) — 1,

Finally,
uo =: U(0,7 = 0) = U(0) + £2h(r = 0),

and we deduce
U(0,7 = 0) = ug + £2(h(7) — h(0)), (%)

where h(7) = L=Y(1 — M)F(0, 7, up).



Long-time Vlasov-Poisson with strong magnetic field

Proposition (formal)
1
6tU + ?(%U — .F(t,’r, U) = 07
U(0, ) given by (xx)
Then we have (for a fixed t € [0, T])

sup ||OKUS(t, )i < G, k=0,1,2.

£€]0,1]

sup [|[dKF(t, )l < G,  k=0,1,2.

€€]0,1]




Numerical scheme-exponential integrator

7 being periodic, we consider the Fourier transform in 7 to get
~ it ~ _
Up(t) + 5 Ue(t) = Fe(t).

Integrating between t, and t, 1, we have

~ _ At ~ At 7K(At75)/\
Op(tnya) = o2 Ug(t,,)—i—/ e HBEIE L gyds
0

_itAt ~ At _it(at-s) [ = d ~
< Bl [ O () 4G T
0

Fo(tn) — Fo(tn_1)
At ’

_ At ~

e 2 Ué(tn) + Pfﬁf(tn) + Qe

with

At il A At il A
pr ::/ e 2l t_s)ds, qe ::/ e 2Bt gy,
0 0



Proposition (formal)

Let consider the solution U"(7) of the following semi-discretized
scheme

ijn+1 — L8t Hin Tn L (7p_ 71
Um=e 2 Ul +peFy T AT (]:4 4 )7
U? well-prepared

Then we have

sup ||U" — U(t")||1c < CAE?.
€€]0,1]

Vn< N,NAt=T.

The simple choice Up(7) = ug will not work: indeed, one has
02U7 = O(1/) which means that the numerical scheme behaves
well for ¢ = O(1) and ¢ very small, but not for intermediate
regimes.



Algorithm

» Initialization of x,, vy from f.
» Compute the "well-prepared” initial data for Uy (0, 7)
Time loop n —> n+1
> Xp(r) = J(UR(r) + €7 Un (7))
» Solve the Poisson equation:
Vo - E(tn, 7, %) = S22 wieb(x — XP(7))
» Advance (U"H)

From (U1 )k, one can reconstruct the original solution

1
X = XQ(r = tafe2) = 5 [UL(r = /%) + /U (= 10/22)]

Vi = Vi(r = /) = 2 U (7 = 1)),



Numerical tests

Let consider the following initial condition (Kelvin-Helmholtz
instability)

1
fo(x,v) = oy (1 +sin(x2) +ncos(kxy))e™ 2,

v|?
2

on a computational domain for x as 2 = [0, 27 /k] x [0, 27] for
k = 0.5 and n = 0.05, v € R

Numerical parameters: 64 points in x;-direction and 32 points in
xo-direction; the fifth order B-spline; N; = 32 and N, = 204800.



Uniform Accuracy
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Figure: Temporal error at t =1 in p with respect to At and ¢: results of
(*x) (1st row); results of ug (2nd row).



Uniform Accuracy
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Figure: Temporal error under (xx): in py 1 (1st row); in py2 (2nd row).



Uniform Accuracy

1

H(E) = / |v\2f(t,x,v)dxdv+1/ IE(£, %) [2dx
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Figure: Energy error |H(t,) — H(0)|.



Convergence to limit model

Convergence of the Vlasov-Poisson to the limit model as € — 0: in p and
Pv,2

error

Figure: Maximum error in p (left) and in py o (right).



Dynamics
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Figure: Contour plot of quantity p(t,x) — 1

at different t with ¢ = 0.005.



Numerical results: non-isotropic initial condition

1 (v Jr2)2+v2 (v: 72)2+v2
fo(x,v) = — (1 + sin(xz) + n cos(kxy 0_12 2+0_12 > .
47 n

with 1) = 0.05, k = 0.5, N, = 409600, N, = 16.

x(t,v) = f(t,x,v)dx
R2



Numerical results: non-isotropic initial condition
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Figure: Contour plot of quantity x(t,v) at different t with e = 0.005.




Conclusion

» general method to construct uniformly accurate schemes for
highly-oscillatory problems and application to strongly
magnetized plasmas in a diffusion scaling

» not based on computations of averaged models

Perspectives

» Systematical comparison with other methods: limit solvers
and AP schemes

» Extension to more general oscillations
» get rid of the variable 7



