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Context and overall approach

Target problem

Typical problem

Unknowns wy(t,x),k =1, N macroscopic fields.
System of (mostly) hyperbolic conservation laws

0wy +V~¢k(W) = 'Dk(W)—l—Sk

®, : fluxes (nonlinear) - Dy : parabolic terms (diffusion).
Systems of interest : Euler/Navier Stokes - MHD

Numerical challenges
@ explicit schemes

e CFL conditions :time scale constrained by space grid

o forces to resolve possibly unwanted fast times scales
@ implicit schemes

o large nonlinear system

o costly matrix assembly/storage/inversion.

4
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Kinetic schemes

Distribution function f(t,x,v).
Boltzmann-BGK equation

Oef +V - (Fv) = (F(MF),v) — )
with
@ macroscopic data m(t,x) = Mf = [ K(v)f(t,x,v)d>v obtained by linear map
from f
e collision vector K(v) € RV,
e F¢9(m) equilibrium state

° fK(v)Feq(m,v)d3v = m,¥m (macro conservation)

° /S(Feq(m))d3vz max /5(f)d3v, s entropy
Mf=m
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Kinetic schemes

In the limit of short relaxation times 7 — 0

Om+V-®(m)=0, with ®(m)= /vFeq(m,v)d3v

Basic idea

Solving the split transport/relaxation kinetic system for small 7 provides a natural
scheme to approximate the relaxed system.

Interesting Features

e transport stage (T) is linear
8tf+V~(fv) =0
@ nonlinearities in the relaxation stage (R) are local :

Orf = (1/7)(F*(MF) = f)

o finite At (splitting) or/and T generate generate additional diffusive terms.
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_ Comoand ovenll anponch Rl
Lattice Boltzmann schemes

A particular discretization of f(t,x,v)
@ v : small set of discrete velocities v;,i =1,q

@ Finite set of Boltzmann-BGK equations coupled only through relaxation
1, eq )
Oefi+ ¥ vify = = (£ = £), Vi
T

@ x : structured cartesian mesh x, generated by the velocity set for a given
time scale At

V(k,k"),3(i,j) € [1,9] X Z,xk — X} = jAtv;

@ splitting scheme
Q exact transport : *(x) = f;(t",x — Atv;)
@ local relaxation : f;(t"+ At) = (1 —s)f* + s (m(f*))
At

relaxation parameter s = 5204 (Crank-Nicolson)

e 7 < At (over-relaxation) fast oscillations around equilibrium manifold

David Coulette, E. Franck, P. Helluy, M. Mehrenberge: Implicit DG November 18, 2016

6/29



Context and overall approach Lattice Boltzmann schemes

Standard Lattice Boltzmann models

Notation : DdQq with d =1,2,3 space dimension g number of velocities.

\; R
BV I
/ 5= S\ il
1 S s
! %6-_ _ _ W |/
7------4------ 8 Boo-o iy
D1Q3 D2Q9 D3Q27

@ K built from low-order polynomials : macro quantities are moments.
@ splitting error generates diffusive terms : can mimic physical diffusion

@ Can be applied to any hyperbolic system of conservations laws (fluid
mechanics [CD98], Maxwell [Gral4], MHD [Del02], etc.)

@ transport is easy but At/Ax linked : integer CFL-like condition
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A tour in DG Lattice Boltzmann schemes family

Section 2

A tour in DG Lattice Boltzmann schemes family

David Coulette, E. Franck, P. Helluy, M. Mehrenberge: Implicit DG November 18, 2016 8 /29



Simple example D1Q3 (1)

vi=i\ie{-1,0,1}.
K(v)=(1,v)T — w=(p,q). Density p, momentum g = pu.

limit system is the Euler isothermal equation

Z[@twa(?x(v,,)fT_l(feq )] =0 dtp+0xq =0
> [0e(fivi) + 0x (VP ) — r*l(v,fe"—v,f)] 0 9eq+0x(q°/p+ c2p)=0

e %9 is an equilibrium (Maxwellian) state if:
_ _ > 2 _ 2
P—Z,’fieq q—Z,-f,-eqv,- %JFPC —Zifieqvi

solving the linear system for €9 we obtain

f59 = p(\2 —u? —c?) /N2 5] =4 (L u+u?+c?) /N2
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A tour in DG Lattice Boltzmann schemes family [GSREYATCT]

Simple example D1Q3 (2)

Let's consider the extended moment set (p,q,z), with z =", fiv2.
In moment space, the D1Q3 model reads

8tp—|— 8Xq = O,

0tq+0xz =0,

D24+ N0q=1"Yzp,q) —2) =7 Hq?/p+ Pp—2z).
Chapman-Enskog method shows that for small 7 we have

8tp+8xq = 07

2
8tq+6x<qp+c2p> = 70 ()\2—c2—3u2)8xq—|—2u(u2—c2)8xp
—_—
sign!

The viscosity terms are not entropy dissipative — small Mach flows.
Different from the Jin-Xin relaxation [JX95, Dub13].
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Dellar’'s approach : D2Q9 + 2 x D2Q5 for 2D MHD

Bibliography [Del02]

Otp+ V- (pu)=0
Basic resistive MHD{  9¢(pu)+ V- [(p+ B?/2)I+ puu — BB|=V - (
0:B+V x[nV x B—uxB]=0

LBM modelisation

o fluid part : standard Euler/Navier Stokes ; Lorentz force — included in the
equilibrium flux
@ induction equation : B cannot be directly cast as a first order moment (due
to antisymmetry).
@ Dellar's approach
e associate each component of B to a separate DsQq model
o a=1,d:B*=3"gf"
o coupling is done though the equilibrium.
o extension to more complex MHD models

4
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A (too) general approach : N, (DdQqy) schemes

Generic Multi-LBM Scheme building
For each k=1, N consider a DsQq, model given by
@ g velocities vy ;
a g x q invertible square matrix Py mapping micro/macro variables m = Pf

a subset of 1 < ¢, < gx — 1 conserved variables.
eq

q equilibrium functions £ ( or equivalently m;? = [Pfe];)

1

In moment space we have

N
: _ 1 -
Oemic+V - | Picdiag[vid P lmk} - Ez:Pkaij Hm? —m;)
Jj=1

With Q the linear relaxation matrix made of gy x g; blocks. £ may depend on
conserved variables.

o limit system yields C =}, ¢, equations on the conserved variables.
o diffusive terms are shaped by equilibrium and the structure of .

4
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(DdQ(d +1))" schemes

Bibliography [Gral4]
Target problem

O Wy +V'¢‘k(w) = 'Dk(W), k=1,n

For each k one conserved quantity and d flux components : d+ 1 scalar fields

(DdQ(d +1)" scheme building
For each k =1,n we consider the "same" DdQ(d + 1) model given by
e d+1 velocities v; forming a simplex, >~,v; =0
o 1 conserved quantity my o =>_;f ;. (w=[my0,m2p0....mp0])
@ d non-conserved quantities are the Mo =i feivi,a=1,d
°

q = d +1 equilibrium functions 9 obtained by solving wy = 3=, £*/(w) and

F(w) =32 £ (w)vy?
o dissipative provided |v,| > sup{|A], A € spec(d,, P)}

y
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Implementation of an implicit DG-LBM solver
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Back to our problem

Guiding principle
@ Replace strongly coupled non-linear hyperbolic system by a (larger) set of
more loosely coupled ones.
@ in essence : split spatial coupling / inter-variable nonlinear coupling.

@ compensate for larger problem size by efficient parallelization.

Requisites
@ unstructured meshes to handle complex geometry
e no CFL

@ high order in space and time.

Project guidelines

@ unstructured mesh : DG space discretization ( h,p refinement, locality)
@ no CFL? — implicit schemes

@ control diffusive terms : high space and time order + relaxation tweaking.

v
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DG - Implicit upwind transport scheme 1

We consider a coarse mesh made of hexahedral curved macrocells

@ Each macrocell is itself split into
smaller subcells of size h.

@ In each subcell L we consider
polynomial basis functions 1/},& of
degree p.

@ Expansion on the polynomial basis:
discontinuous approximation of f.

Fx,v,pAt) = FP(x,v) =Y P (Vk(x), x €L
k
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Implementation of an implicit DG-LBM solver High order implicit DG scheme

DG - Implicit upwind transport scheme 2

Implicit DG approximation scheme

VL,Vk
A L . L
/L At wk—/Lv'Vwkfl_p—F/aL(v-n fP+v-n"fh) 1 =0.

@ time step index: p OLNOR

@ R denotes the neighbor cells along
oL.

@ v-nT =max(v-n,0),
v-n~ =min(v-n,0).

@ nyR is the unit normal vector on JL
oriented from L to R.

Features

@ implicit scheme , unconditionally stable , (h, p) refinement

@ requires a priori the resolution of a large linear system for each v.
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Getting high order in time : symmetric splitting
Bibliography: [MQ02]

Example

@ D2Q9 model ,Euler stationary state in a constant gravity field g = ge, .

@ Analytical solution p = pge&/T

Splitting schemes made of symmetric building blocks

All steps implemented as 0 weighted schemes.

0 = 0 explicit , # =1 implicit ; § = 1/2 (Crank-Nicolson) — symmetric
@ Transport (T)
@ Macroscopic source (S) (gravity)
@ BGK Relaxation (R).

St order [ T(At) [ S(At) | R(At)
2" order | T(At/2) [ R(At/2) | S(At) | R(At/2) | T(At/2)
2" order collapsed [ R(At/2) | S(At) \ R(At/2) | T(At) |
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Euler gravity stationary

At Convergence of L2 error on macroscopic data wrt analytical solution.

R e @—@ 1storder

—14 ....... [Pzl T @@ 1storder t1
B : : @—@ 2nd order full
16 S o @@ 2nd order collapsed []
—18L r : ' i
-6 -5 —4 -3 -2 -1 0
logy (At/At,ey)

First order t1 : first order splitting with fully implicit & = 1 blocks.
First order : first order splitting with 6 = 1/2 second order symmetric blocks.
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Euler Gaussian pulse

e D2Q9 model on a square : 8x8 elements, 10x10 subcells, 3" order

@ Initial condition : narrow gaussian density bump
p=1+0.1exp(—40* (x2+y?).
@ Convergence evaluated from highly time-resolved solution.

0 T T T T T
ol e d
e e T
—~ O T
b :
G m8b A T
<
R 1)) NS SRR T g o S
20 :
= —12f e RIS STTITE SRS
14l > ... | ®—® 1storder
: @—@ 2nd order full
—16 v | @@ 2nd order collapsed ||
—18 I T T
—6 -5 —4 -3 -2 -1 0
log, (At/At,.s)
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Implementation of an implicit DG-LBM solver INEEILFES{ilaE e

The benefits of upwinding

upwind flux — data dependencies follow the (constant) velocity

@ transport operator can be cast into Block Triangular Form (BTF) by appropriate
data renumbering.

@ inversion : BTF + inversion of diagonal blocks.

@ data blocks at the subcell scale : too small for efficient parallelism.

Coarse grain block structure at macrocell level
@ L is upwind with respect to R if v-n g >0 on LNOR.

@ In a cell L, the solution depends only on the values of f in the upwind macrocells.

2 5 8
1 4 7
0 3 6
v
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Dependency graph

For a given velocity v we can build a dependency graph. Vertices are associated to
macrocells and edges to macrocells interfaces or boundaries. We consider two fictitious
additional vertices: the “upwind” vertex and the “"downwind"” vertex.

NA 10 10 10 10
2 2 b

o /2 s s o
2 2 2

o /1 e 7 o
2 2 2

9 /o0 s e 1o
2 2 2

9 9 9 9 NA

@ The dependency graph yields a coarse block triangular ordering
@ the local system in each macrocell is solved "on the fly" using the KLU library.
@ no need to assemble, store, and factorize the global system !
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Transport solver parallelism

@ ideal across velocities (uncoupled) Toraidal mesh - 720 macrocells

@ across macrocells : can be high but
load imbalance

@ realistic mesh : complex to manage...

Toroidal mesh - transport graph for (1,0, 0) velocity.

We need smart task scheduling
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Kirsch : Task-Based parallel DG-LBM solver

Here comes StaPU
@ StarPU is a task-based scheduling library developed at Inria Bordeaux
[AAFT12]: http://starpu.gforge.inria.fr
Task description : codelets, inputs (R), outputs (W or RW).
The user submits tasks in a correct sequential order.

StarPU schedules the tasks in parallel if possible.

MPI extension easy : dispatch data and declare owner process :
communications handled transparently.

SCHNAPS + StaRPU + LBM = KIRSCH
@ starting point SCHNAPS : general DG explicit solver.
@ StarPU + Optimization for Kinetic LBM-like schemes
@ KIRSCH : Kinetic Representation for SCHnaps
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http://starpu.gforge.inria.fr

D2Q9 multithread performance

Full D2Q9 scheme on square grids. Constant dof number per macrocell. Number
N of macrocells N from 1 to 64 = 8x8.

@ for 1 macrocell : saturation at ne.e = n,. This is expected.

o efficiency grows with N due to topological parallelism.

25 I I T T

+ + 1x1x3375 D2Q9 : :

+ 4 2x2x3375 D2Q9 , '

20 H+ + 3x3x3375 D2Qo |- S CATTINE .
+ + 4x4x3375 D2Q9 i

o 8x8x3375 +
S 15H s | A g aRRRERLE
3 £+
v ++++++++++
2 10+ iﬂrw """""""""
n

Spo g G R ARE SELY SR EELEERRLLEPRREERREE
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D3Q* multithread performance

D3Q15,D3Q19,D3Q27 models on a cube with 4x4x4 elements and 8000 dof per
elements with eager scheduler.

25

1 1
+ + 4x4x4x8000 nv 15
+ + 4x4x4x8000 nv 19 : :
20 H+ + 4xaxax8000 ny 27 [ i A
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MPI Scaling : D3Q15 in a torus

Toroidal mesh : 720 macroelements x 3335 dof
2064 interfaces - 192 boundary faces

Wall time in sec for 100 interations.
Nthreads/Nmpi 1 2 3 4
14 6862 2772 1491 1014

v . 0 Y
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Conclusion and prospects
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Conclusion and prospects

Conclusions and prospects

Current state
o DG-LBM parallel solver
@ 2nd order in time
o validation tests on standard 2D LBM-BGK models (Fluids, 2D MHD)
@ good MPI/Multithreaded scaling in both 2D and 3D.

Next steps
(DgQd +1)" approach is appealing : stable and generic.

@ optimization : Transport Tasks Optimization / GPU codelets

@ higher order in time (composition [CCDV09] , complex time steps) :mitigate
diffusion

o validate 2D — 3D MHD models.

@ benchmark wrt JOREK. |
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What StarPU does for us

Task graph for 2DQ9 model
@ a single 2D macrocell

@ a single time step of the first order scheme ( T + R)

“\'
R — ‘_‘Q
.ﬁ;'
S ‘W
.ﬂ«am,umnﬂm . .S
— N
>
——— A\
RN
e —
E——

Pretty simple...
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What StarPU does for us

@ 4 macrocells in a 2D square
@ a single time step of the first order scheme ( T + R)

I

N
<
i
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