Robust Solvers for Elliptic Problems in Fluid Models Context

M. Gaja¹,A. Ratnani¹, E. Franck², J. Lakhlili¹, M. Mazza¹, E.Sonnendruecker¹

November 16, 2016

¹Max Planck Institute for Plasma Physics, Germany ²Inria Nancy Grand Est and IRMA Strasbourg, France

M. Gaja ()

IPL 2016

Isogeometric Analysi

- B-Splines
- 3 Multigrid
 - Prolongation and Restriction Operators for B-Splines
- 4 GLT: From Cardinal BSplines to the Toeplitz Matrix
- 5 Results: GLT as a Smoother
- 6 Results: GLT + MG
- 7 Mass Matrix on a Circle and a Square
- 8 Conclusions and Future Prospects

- **Aim** : We are interested in devising a robust and optimal solver for the Laplacian operator and the mass matrix.
- **Problem**: Hyperbolic models with small viscosities are in general strongly nonlinear and coupled and ill-conditioned.
- **Solutions**: Use algorithm (Physic based preconditioning, semi implicit scheme etc) which allows to split and reformulate the full system to some simpler systems.
- Simple systems: Laplacian, small advection or vector elliptic operators.
- **Key point**: Operator inversion under control (Convergence, computational cost, robustness, optimality).

Context

Linearized Euler Equation:

$$\begin{cases} \partial_t \mathbf{u} + \mathbf{a} \cdot \nabla \mathbf{u} + c \nabla p &= 0 \\ \partial_t p + \mathbf{a} \cdot \nabla p + c \nabla \cdot \mathbf{u} &= 0 \end{cases} \longrightarrow \begin{cases} \mathbf{u}^{n+1} + \Delta t \mathbf{a} \cdot \nabla \mathbf{u}^{n+1} + c \Delta t \nabla p^{n+1} &= \mathbf{u}^n \\ p^{n+1} + \Delta t \mathbf{a} \cdot \nabla p^{n+1} + c \Delta t \nabla \cdot \mathbf{u}^{n+1} &= p^n \end{cases}$$

• Using splitting scheme with reformulation, we obtain predictor-corrector scheme:

$$\begin{cases} \mathbf{u}^* + \Delta t \mathbf{a} \cdot \nabla \mathbf{u}^* = \mathbf{u}^n \\ p^{n+1} + \Delta t \mathbf{a} \cdot \nabla p^{n+1} - c^2 \Delta t^2 \Delta p^{n+1} = p^n - c \Delta t \nabla \cdot \mathbf{u}^* \\ \mathbf{u}^{n+1} = \mathbf{u}^* - c \Delta t \nabla p^{n+1} \end{cases}$$

- **Conclusion**: when a is small we need to perform mass matrices inversion and stiffness matrix inversion. Aim: To come up with a Laplacian and mass solver.
- **Remark**: this approach is extendable to complex systems. Other approaches could give similar outcome.

Context

Isogeometric AnalysisB-Splines

3 Multigrid

- Prolongation and Restriction Operators for B-Splines
- 4 GLT: From Cardinal BSplines to the Toeplitz Matrix
- 5 Results: GLT as a Smoother
- 6 Results: GLT + MG
- 7 Mass Matrix on a Circle and a Square
- 8 Conclusions and Future Prospects

Isogeometric Analysis

Definition (IgA)

Is a recently developed computational approach that offers the possibility of integrating FEA into conventional CAD design tools.

- Finite Elements Analysis (FEA) models are created from CAD representations.
- Creating FEA models accounts more than 80 % of overall analysis time and is a major engineering bottelneck.
- The geometry is approximated in the FEA mesh
- Use B-Splines as basis functions in the Tokamak context:
 - Adapt geometry to the physics.
 - Using high order polynomial.

B-Splines

To create a family of *B-Splines*, we need a non-decreasing sequence of knots $T = (t_i)_{1 \le i \le N+k}$, also called **knot vector**, with k = p + 1. Each set of knots $T_j = \{t_j, \dots, t_{j+p}\}$ will generate a *B-spline* N_j .

Definition (B-Spline series)

The j-th B-Spline of order k is defined by the recurrence relation:

$$N_j^k = w_j^k N_j^{k-1} + (1 - w_{j+1}^k) N_{j+1}^{k-1}$$

where,

$$w_j^k(x) = \frac{x - t_j}{t_{j+k-1} - t_j} \qquad \qquad N_j^0(x) = \chi_{[t_j, t_{j+1}]}(x)$$

for $k \geq 1$ and $1 \leq j \leq N$.

Isogeometric AnalysisB-Splines

3 Multigrid

- Prolongation and Restriction Operators for B-Splines
- 4 GLT: From Cardinal BSplines to the Toeplitz Matrix
- 5 Results: GLT as a Smoother
- 6 Results: GLT + MG
- 7 Mass Matrix on a Circle and a Square
- 8 Conclusions and Future Prospects

Multigrid

Multigrid Idea

Project the system in a subspace, solve the resulting system in this subspace and interpolate the solution in order to improve the previous approximation.

Multigrid Components

The Multigrid combines two iterative methods:

Smoother: a classic iterative method,

Coarse Grid Correction: projection of the error equation, solution of the restricted problem, interpolation.

Multigrid Algorithm 2 Grid Cycle

- **1 Iterate** on $A_f u = b_f$ to reach u_f (in our case, 5 Gauss-Seidel steps).
- **2** Restrict the residual $r_f = b_f A_f u_f$ to the coarse grid by $r_c = Rr_f$
- **3** Solve $A_c E_c = r_c$ (or come close to E_c by 5 iterations from E = 0).
- **Interpolate** E_c back to $E_f = PE_c$. Add E_f to u_f .
- **Iterate** 5 more times on $A_f u = b_f$ starting from the improved $u_f + E_f$.

Prolongation and Restriction Operators for B-Splines

These operators are based on the **knot insertion** algorithm. For the 1D case: one can insert a new knot t, where $t_j \leq t \leq t_{j+1}$.

For this purpose, we use the De Boor's algorithm.

$$\bar{T} = \{t_1, ..., t_j, t, t_{j+1}, ..., t_{N+k}\}$$
$$\alpha_i = \begin{cases} 1, & 1 \le j \le j - k + 1\\ \frac{t - t_i}{t_{i+k-1} - t_i}, & j - k + 2 \le i \le j\\ 0, & j + 1 \le i \end{cases}$$
$$\mathbf{Q}_i = \alpha \mathbf{P}_i + (1 - \alpha_i) \mathbf{P}_{i-1}$$

Prolongation and Restriction Operators Cont'd

This can be written in the matrix form as: $\mathbf{Q} = A\mathbf{P}$. The basis transformation A is called the knot insertion matrix of degree k-1 from T to \tilde{T} .

The insertion matrix from T_0 to T_n is simply:

$$A := A_0^n = A_0^1 A_1^2 A_2^3 \dots A_{n-1}^n$$

In 2D, the interpolation operator can be constructed using the Kronecker product.

The Problem with Multigrid: Numerical Take-1D

The Problem with Multigrid: Numerical Take-1D

¹Max Planck Institute for Plasma Physics, Germany

The Problem with Multigrid: Numerical Take-2D

The Problem with Multigrid: Numerical Take-2D

The Problem with Multigrid: Numerical Take-2D

¹Max Planck Institute for Plasma Physics, Germany

Isogeometric Analysis

- B-Splines
- 3 Multigric
 - Prolongation and Restriction Operators for B-Splines

GLT: From Cardinal BSplines to the Toeplitz Matrix

- 5) Results: GLT as a Smoother
- 6 Results: GLT + MG
- 7 Mass Matrix on a Circle and a Square
- 8 Conclusions and Future Prospects

- **PDE:** Lu = g after discretization gives $L_n u_n = g_n$ with $\{L_n\}_n$ is a sequence of discretizations.
- **GLT:** is a generalization of fourier analysis for the discretization of PDEs.
- Application to the Laplacian operator: using GLT in the fourier space:

$L_n \approx M_p D_n$

Where M_p is homogenous to the mass matrix, and D_n is the FD of the Laplacian operator in the fourier space.

- Low frequency problem: the eigenvalues of D_n are $(2 2\cos(\theta))$, solved via the MG.
- High frequency problem: M_p tends to zero when p is large.
- Idea: preconditioning by M^{-1} and use exploit kronecker product for the inversion.

GLT: From Cardinal BSplines to the Toeplitz Matrix

Theorem

The symbol m_p is given by

$$\mathfrak{m}_{p}(x,\theta) := \mathfrak{m}_{p}(\theta) = \phi_{2p+1}(p+1) + 2\sum_{k=1}^{p} \phi_{2p+1}(p+1-k)\cos(k\theta)$$

Toeplitz matrix

M. G

is a real/complex valued $n \times n$ matrix $T_n = (t_{jk})_{j,k=0,\dots,n-1}$, where $t_{jk} = t_{j-k}$, i.e.

$$T_n(f(\theta)) = \begin{pmatrix} t_0 & t_{-1} & t_{-2} & \dots & t_{-(n-1)} \\ t_1 & t_0 & t_{-1} & \dots & \\ t_2 & t_1 & t_0 & \dots & \vdots \\ \vdots & & \ddots & \\ t_{n-1} & \dots & & \dots & t_0 \end{pmatrix}$$
aja () IPL 2016 November 16, 2016 17 / 28

Isogeometric Analysis

- B-Splines
- 3 Multigrid
 - Prolongation and Restriction Operators for B-Splines

4 GLT: From Cardinal BSplines to the Toeplitz Matrix

- 5 Results: GLT as a Smoother
 - 6 Results: GLT + MG
 - 7 Mass Matrix on a Circle and a Square
 - 8 Conclusions and Future Prospects

Results: GLT as a Smoother

Isogeometric Analysis

- B-Splines
- 3 Multigrid
 - Prolongation and Restriction Operators for B-Splines
- 4 GLT: From Cardinal BSplines to the Toeplitz Matrix
- 5 Results: GLT as a Smoother
- 6 Results: GLT + MG
 - 7 Mass Matrix on a Circle and a Square
 - Conclusions and Future Prospects

Results: GLT + MG

Results: GLT + MG

Results: GLT + MG

Isogeometric Analysis

- B-Splines
- 3 Multigrid
 - Prolongation and Restriction Operators for B-Splines
- 4 GLT: From Cardinal BSplines to the Toeplitz Matrix
- 5 Results: GLT as a Smoother
- 6 Results: GLT + MG
- 7 Mass Matrix on a Circle and a Square
 - Conclusions and Future Prospects

Mass on a circle and square

Table 2: Number of iterations-massmatrix on a circle 64*64

Degree	PCG	CG
3	98	340
5	160	1711
7	245	>3000

MG+GLT on a Circle

Computational Costs

Table 4: Computational cost comparison for the Laplacian operator -2D 64*64 elements

Degree/Scheme	MG + GLT	MG
1	1.32	1.76
2	2.56	2.75
3	2.58	4.42
4	3.42	21.62
5	6.35	170.48
6	15.71	677.17*
7	25.99	825.56*
8	27.89	800.72*
9	58.03	1098.94*

This is not yet optimized!

Isogeometric Analysis

- B-Splines
- 3 Multigrid
 - Prolongation and Restriction Operators for B-Splines
- 4 GLT: From Cardinal BSplines to the Toeplitz Matrix
- 5 Results: GLT as a Smoother
- 6 Results: GLT + MG
- Mass Matrix on a Circle and a Square
- 8 Conclusions and Future Prospects

Conclusions and Future Prospects

Conclusions:

- GLT treats the problem arising from the high degree component.
- GLT + MG gives a robust and optimal solver for the Laplacian operator.
- Can be used also for the mass matrix.

Future work:

- Short time:
 - Optimization
 - Apply the GLT theory to vector elliptic operators; grad div

$$\mu \boldsymbol{u} - \nabla \nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$

Ill-conditioned when $\mu
ightarrow 0$

• Long term: Applying this with time integration schemes for models like Euler and MHD.

Bibliography

- J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, *Isogeometric Analysis: Toward Integration of CAD and FEA*, John Wiley & Sons, 2009.
- S. Serra-Capizzano, *The GLT class as a generalized Fourier analysis and applications*, Linear Algebra Appl. 419 (2006) 180-233.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, *Robust and optimal multi-iterative techniques for IgA Galerkin linear systems*, Comput. Methods Appl. Mech. Engrg. 284 (2015) 230-264.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, *Robust and optimal multi-iterative techniques for IgA collocation linear systems*, Comput. Methods Appl. Mech. Engrg. 284 (2015) 1120-1146