New developments in the CLAPP framework

E. Franck¹, M.Gaja², H. Guillard⁷, M. Hölzl², A. laagoubi⁷,K. Kormann² , J.Lakhlili², C. Manni⁴, M.Mazza², B. Nkonga³, <u>A. Ratnani</u> ², S. Serra-Capizzano⁵, E. Sonnendrücker², H. Speleers⁴, D. Toshniwal⁶ November 16, 2016

¹Inria Nancy Grand Est and IRMA Strasbourg, France 2 Max-Planck-Institut für Plasmaphysik, Garching, Germany ³University of Nice, France ⁴University of Rome Tor Vergata, Rome, Italy ⁵University of Insubria, Como, Italy 6 ICES University of Texas, Austin, USA ⁷Inria Sophia-Antipolis, France

- Motivations
- **Preconditioning and GLT**
- **GLT** for Harmonic Maxwell problem
- **CLAPP: a framework for Computational Plasma Physics**

- **Motivations**
- **Preconditioning and GLT**
- GLT for Harmonic Maxwell problem

A. Ratnani [IPL Strasbourg-](#page-0-0)2016

Motivations

- Direct solvers are great but
	- $\textcolor{black}{\Box}$ have a complexity of $\mathcal{O}\left(n^{(d+1)/2}\right)$ using the sparsity of the matrix
	- memory limitation: the factorization (which is dense) cannot be stored for problems of interest
- **In Iterative solvers are good but**
	- \Box one has to deal with ill-conditioned matrices
	- •• needs preconditioners: algebraic, physics-based, etc
	- **another alternative is to use the GLT, an elegant way of building** preconditioners to fix a specific pathology

Preconditioning: Problem setting

Linear PDE: $Au = b$

⇓ linear discretization method

Sequence of linear systems $\{A_n u_n = b_n\}$ of increasing dimension d_n

The matrix A_n may have a structure

Example in 1d using Finite Differences:

$$
\begin{cases}\n-u'' = f & \text{in} & (0,1) \\
u = 0 & \text{on} & \partial(0,1) \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & 2\n\end{cases}
$$

i.e., A_n is a so called Toeplitz matrix (constant along the diagonals)

IPP

Preconditioning: Problem setting

Why structure is important? Iterative methods, especially multigrid and preconditioned Krylov can exploit it in order to accelerate their convergence.

Their convergence depends on the spectral features of A_n

For structured matrices the spectral analysis is strictly related to the notion of symbol

Qualitative definition: the symbol is a function which describes the asymptotical spectral distribution of a matrix-sequence ${A_n}_n$

 GLT sequences $=$ a tool for computing spectral symbols

Spectral tools: symbol

A little bit more accurate definition:

- ${\Box} \{A_n\}_n = \text{matrix-sequence}, \dim(A_n) = d_n \to \infty$
- \Box $f : D \subset \mathbb{R}^d \to \mathbb{C}$, $0 < \text{measure}(D) < \infty$

 ${A_n}_n$ has a **spectral distribution** described by f means:

The eigenvalues of A_n are approximately a uniform sampling of f over D.

 $f =$ spectral symbol of $\{A_n\}_n$. Notation: $\left|\{A_n\}_n \sim_\lambda f\right|$

E.g.: When $d_n = n$, $d = 1$, $D = [0, \pi]$, $\{A_n\}_n \sim_\lambda f$ means

$$
\lambda_j(A_n) \approx f\left(\frac{j\pi}{n}\right), \quad j=0,\ldots,n-1.
$$

 Remark: this definition can also be given is the singular values sense (replacing f → $|f|$). Notation: $\{A_n\}_n \sim_\sigma f$.

Spectral tools: GLT theory

The set of GLT sequences form a ∗-algebra (involutive algebra) i.e., it is closed under linear combinations, products, inversion, conjugation.

Let {An}ⁿ ∼GLT *κ*¹ and {Bn}ⁿ ∼GLT *κ*2, then

- \blacksquare { $\alpha A_n + \beta B_n$ }_n ~ $\alpha I \tau$ $\alpha \kappa_1 + \beta \kappa_2$, $\alpha, \beta \in \mathbb{C}$;
- {AnBn}ⁿ ∼GLT *κ*1*κ*2;

■ if κ_1 vanishes, at most, in a set of zero Lebesgue measure, then $\{A_n^{-1}\}_n \sim_{GLT} \kappa_1^{-1}$; ■ {A_n^{*}_n ~_{GLT} κ₁⁻.

➠ This ∗-algebra is not empty!

 $D_n(a)$, $a:[0,1] \to \mathbb{C}$ Riemann integrable function, a diagonal sampling matrix, i.e.,

$$
D_n(a) = \begin{bmatrix} a(\frac{1}{n}) & & & \\ & a(\frac{2}{n}) & & \\ & & \ddots & \\ & & & a(1) \end{bmatrix}, \qquad \{D_n(a)\} \sim_{\lambda} a
$$

Spectral tools: GLT theory

The set of GLT sequences form a ∗-algebra (involutive algebra) i.e., it is closed under linear combinations, products, inversion, conjugation.

Let {An}ⁿ ∼GLT *κ*¹ and {Bn}ⁿ ∼GLT *κ*2, then

- \blacksquare { $\alpha A_n + \beta B_n$ }_n ~ $\alpha I \tau$ $\alpha \kappa_1 + \beta \kappa_2$, $\alpha, \beta \in \mathbb{C}$;
- {AnBn}ⁿ ∼GLT *κ*1*κ*2;
- if κ_1 vanishes, at most, in a set of zero Lebesgue measure, then $\{A_n^{-1}\}_n \sim_{GLT} \kappa_1^{-1}$; ■ {A_n^{*}_n ~_{GLT} κ₁⁻.

➠ This ∗-algebra is not empty!

 $T_n(f)$, i.e., a Toeplitz matrix obtained from the Fourier coefficients of $f:[-\pi,\pi]\rightarrow \mathbb{C}$, with $f\in L^1([-\pi,\pi])$ as follows

$$
T_n(f) = \left[\begin{array}{cccc} f_0 & f_{-1} & \cdots & f_{-(n-1)} \\ f_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & f_{-1} \\ f_{n-1} & \cdots & f_1 & f_0 \end{array} \right], \qquad \{T_n(f)\} \sim_{\lambda} f
$$

Spectral tools: GLT theory for B-Splines Finite Elements

Let's summarize,

- we can construct a ∗-algebra to *mimic* the eigenvalues of sequence of matrices.
- But this is not sufficient to *capture* the spectral behavior of a B-Splines discretization!

Solution

- **Enrich the** $*$ **-algebra with terms like** $\int_{\Omega} \mathcal{D}^{(r)} \varphi_i \mathcal{D}^{(s)} \varphi_j$ **. But, how?**
- Simply, buy computing their exact symbol (or an approximation c.f. later for Maxwell) Example: Mass matrix $\int_0^1 N_i^p N_j^p$

$$
m_p(x,\theta) := m_p(\theta) = \phi_{2p+1}(p+1) + 2\sum_{k=1}^p \phi_{2p+1}(p+1-k)\cos(k\theta). \tag{1}
$$

Example: Stiffness matrix $\int_0^1 \left(N^{\rho}_i\right)'\left(N^{\rho}_j\right)'$

$$
s_p(x,\theta) := s_p(\theta) = -\phi''_{2p+1}(p+1) - 2\sum_{k=1}^p \phi''_{2p+1}(p+1-k)\cos(k\theta). \tag{2}
$$

where ϕ_{2p+1} is the cardinal B-Spline of degree $2p+1$

Spectral tools: GLT theory for B-Splines Finite Elements

- \blacksquare In 2d and 3d, we can use the previous symbols and Kronecker algebra
- Are we limited to linear problems? ➡ No!

Example Let's consider the following weak formulation

$$
D_{ij}(\alpha,\beta,\epsilon) = \left(\int_{\Omega} \alpha \varphi_j \varphi_i + \beta_1 \varphi_j \partial_x \varphi_i + \beta_2 \varphi_j \partial_y \varphi_i + (\partial_x \beta_1 + \partial_y \beta_2) \varphi_j \varphi_i + \epsilon \nabla \varphi_i \cdot \nabla \varphi_j\right)
$$

The symbol of the associated sequence of linear system is

$$
d_p(\alpha, \beta, \epsilon, h; \mathbf{x}, \theta) := \alpha m_p(\theta_1) m_p(\theta_2)
$$

+ $h(\beta_1(\mathbf{x}) a_p(\theta_1) m_p(\theta_2) + \beta_2(\mathbf{x}) m_p(\theta_1) a_p(\theta_2))$
+ $h(\partial_x \beta_1(\mathbf{x}) + \partial_y \beta_2(\mathbf{x})) m_p(\theta_1) m_p(\theta_2)$
+ $\epsilon h^2(s_p(\theta_1) m_p(\theta_2) + m_p(\theta_1) s_p(\theta_2))$

 $^{10}/_{32}$

Spectral tools: GLT theory

Fundamental property

Each GLT sequence $\{A_n\}_{n=1}$ is equipped with a symbol in the singular value sense, i.e. there exists a function $\chi : [0, 1] \times [-\pi, \pi] \to \mathbb{C}$ such that

{An}ⁿ ∼*^σ χ*

E.g.: if
$$
A_n = D_n(a) T_n(f)
$$
, then $\{A_n\}_n \sim_{\sigma} \chi = a \cdot f$

Advantage of this tool: studving the symbol

- \blacksquare we retrieve information on the conditioning
- we get hints on how to design good preconditioning strategies, because of this property: if ${A_n}_n$ _{\sim σ} f and ${B_n}_n$ _{\sim σ} g, then

$$
\left\{B_n^{-1}A_n\right\}_n \sim_{\sigma} g^{-1}f
$$

Target: choose g in order to eliminate the 'pathologies' of f

- ➠ c.f. M. Gaja talk for Poisson
- s_p is nonnegative and has a unique zero in 0 of order 2 \Rightarrow $n^{d-2}L_n$ is ill-conditioned in the low frequencies. Classical problem solved by MG preconditioning.

 s_p has infinitely many exponential zeros at the π -edges when p becomes large \Rightarrow n^{d-2} L_n is ill-conditioned in the high frequencies. Non-canonical problem solvable by GLT theory.

 $\frac{11}{32}$

 Application: compatible B-Splines discretization based on the discrete De Rham sequence of this variational problem:

Find $u \in H$ (curl, Ω) such that

$$
(\vec{\nabla}\times\mathbf{u},\vec{\nabla}\times\mathbf{v})+\nu(\mathbf{u},\mathbf{v})=(\mathbf{f},\mathbf{v}),\quad \forall \mathbf{v}\in H(\mathrm{curl},\Omega),
$$

where $\nu \geq 0$ and $H(\text{curl}, \Omega) := \{ \mathbf{u} \in (L^2([0,1]^2))^2 \text{ s.t. } \vec{\nabla} \times \mathbf{u} \in L^2([0,1]^2) \}.$

- **Coefficient matrix** A_n^{ν} : is a 2 × 2 block matrix.
- Spectral symbol $f^ν$:
	- $□$ 2D problem $\Rightarrow f^{\nu}$ is bivariate (defined in $[-\pi,\pi]^2);$ \Box vectorial problem $\Rightarrow f^{\nu}$ is 2 \times 2 matrix-valued function. In this case, we have to look at the two eigenvalue functions of f^{ν} .

 $^{12}/_{32}$

Eigenvalue functions of f *ν*

$$
\lambda_1 \left(f^{\nu}(\theta_1, \theta_2) \right) \approx m_{p-1}(\theta_1) m_{p-1}(\theta_2) \frac{\nu}{n^2}
$$

$$
\lambda_2 \left(f^{\nu}(\theta_1, \theta_2) \right) \approx m_{p-1}(\theta_1) m_{p-1}(\theta_2) \left[4 - 2 \cos(\theta_1) - 2 \cos(\theta_2) + \frac{\nu}{n^2} \right]
$$

A nice connection between continuous problem and spectral information:

⇓

 Continuum: the curl-curl operator has infinite dimensional kernel and on the complement behaves as a second order operator.

■ Spectral counterpart: when $\nu = 0$, $\lambda_1(f^{\nu}) \equiv 0$, while $\lambda_2(f^{\nu})$ is the symbol of the 2D Laplacian operator.

 $^{13}/_{32}$

Ok, nice...but what can we do with this information?

An equispaced sampling of the eigenvalues functions in [−*π*, *π*] ² gives an approximation of the eigenvalues of $\mathcal{A}^{\nu}_{\mathbf{n}}.$

*λ*1(f *ν*) $\lambda_2(t)$ *ν*)

Comparison between the eigenvalues of $\mathcal{A}_{\mathbf{n}}^{\nu}$ (colored dots) and $\lambda_k(f^{\nu}), k = 1, 2$, when $n = 40, p = 3, \nu = 10^{-2}$ (matrix-size 3612).

 $^{14}/$ ₃₂

A study of the eigenvalue functions tell us that:

- (1) \mathcal{A}_n^{ν} is ill-conditioned in the low frequencies. Classical problem solved by MG preconditioning.
- (2) \mathcal{A}_n^{ν} is ill-conditioned in the high frequencies. Non-canonical problem solvable by GLT theory.
	- Solver proposal: Using the symbol we can construct a smoother for MG valid for high-frequencies:

PCG or the PGMRES with preconditioner

$$
I_2\otimes \mathcal{T}(m_{p-1}(\theta_1))\otimes \mathcal{T}(m_{p-1}(\theta_2))
$$

 Remark: such a preconditioner is a tensor product of banded matrices then only a linear computational cost is required.

 $^{15}/$ ₃₂

Construction of the Multigrid

- Use the Auxiliary Space Preconditioning method $¹$ </sup>
- Proposed preconditioner (HX): $R+\mathcal{G}B_h\mathcal{G}^{\sf T} + \mathbf{\Pi}_h^{\sf curl}\mathbf{B}_h\left(\mathbf{\Pi}_h^{\sf curl}\right)^{\sf T}$ where
	- \mathbb{B}_{h} correponds to MultiGrid V-cycles solver for the poisson problem $(\nabla u, \nabla v) + u(u, v)$
	- \mathbf{B}_h correponds to MultiGrid V-cycles solver for the poisson problem $(\nabla \mathbf{u}, \nabla \mathbf{v}) + \mu(\mathbf{u}, \mathbf{v})$
- \blacksquare How to construct the operators Π^{grad}_h and Π^{curl}_h ?
	- use the projection-based interpolation by Demkovicz? (in progress)

¹Hiptmair, Xu, SIAM J. Numer. Anal., 2007

.

םםו

The continuous case

IPP

here without boundary conditions

$$
\mathbb{R} \hookrightarrow H^1(\Omega) \xrightarrow{\nabla} H(\text{curl}, \Omega) \xrightarrow{\ \overrightarrow{\nabla} \times \ } H(\text{div}, \Omega) \xrightarrow{\ \nabla \cdot \ } L^2(\Omega) \longrightarrow 0 \tag{3}
$$

using pullbacks in the case of a mapping (vector fields transformations)

$$
H^{1}(\Omega) \xrightarrow{\nabla} H(\text{curl}, \Omega) \xrightarrow{\vec{\nabla} \times} H(\text{div}, \Omega) \xrightarrow{\nabla} L^{2}(\Omega)
$$
\n
$$
\downarrow^{0} \uparrow \qquad \qquad \downarrow^{1} \uparrow \qquad \qquad \downarrow^{2} \uparrow \qquad \qquad \downarrow^{3} \uparrow \qquad \qquad (4)
$$
\n
$$
H^{1}(\mathcal{P}) \xrightarrow{\nabla} H(\text{curl}, \mathcal{P}) \xrightarrow{\vec{\nabla} \times} H(\text{div}, \mathcal{P}) \xrightarrow{\nabla \cdot} L^{2}(\mathcal{P})
$$

Commutative diagram between continuous and discrete spaces.

$$
H^{1}(\Omega) \longrightarrow H(\text{curl}, \Omega) \longrightarrow H(\text{curl}, \Omega) \longrightarrow L^{2}(\Omega)
$$

\n
$$
\Pi_{h}^{\text{grad}} \Bigg| \longrightarrow \Pi_{h}^{\text{curl}} \Bigg| \longrightarrow \Pi_{h}^{\text{div}} \Bigg| \longrightarrow \Pi_{h}^{\text{div}} \Bigg|
$$

\n
$$
V_{h}(\text{grad}, \Omega) \longrightarrow V_{h}(\text{curl}, \Omega) \longrightarrow V_{h}(\text{div}, \Omega) \longrightarrow V_{h}(L^{2}, \Omega)
$$

\nA Ratnani

Discrete case for B-Splines

Buffa et al[2009] show the construction of a discrete DeRham sequence using B-Splines.

$$
\mathbb{R} \hookrightarrow \underbrace{\mathcal{S}^{p,p,p}}_{V_h(\text{grad}, \mathcal{P})} \xrightarrow{\nabla} \underbrace{\begin{pmatrix} \mathcal{S}^{p-1,p,p} \\ \mathcal{S}^{p,p-1,p} \end{pmatrix}}_{V_h(\text{curl}, \mathcal{P})} \xrightarrow{\vec{\nabla} \times} \underbrace{\begin{pmatrix} \mathcal{S}^{p,p-1,p-1} \\ \mathcal{S}^{p-1,p,p-1} \\ \mathcal{S}^{p-1,p-1,p} \end{pmatrix}}_{V_h(\text{div}, \mathcal{P})} \xrightarrow{\nabla \cdot} \underbrace{\mathcal{S}^{p-1,p-1,p-1} \\ \mathcal{S}^{p-1,p-1,p} \\ V_h(\text{div}, \mathcal{P})} \xrightarrow{\nabla \cdot} \underbrace{\mathcal{S}^{p-1,p-1,p-1} \\ V_h(\mathcal{E}^{p,p-1,p-1} \end{pmatrix}}_{V_h(\mathcal{E}^{p,p-1,p-1})} \longrightarrow 0
$$

$$
\begin{array}{ccc}\nC^{\infty}(\Omega) & \stackrel{\nabla}{\longrightarrow} & C^{\infty}(\Omega) & \stackrel{\vec{\nabla}\times}{\longrightarrow} & C^{\infty}(\Omega) & \stackrel{\nabla}{\longrightarrow} & C^{\infty}(\Omega) \\
\Pi_h^{\textrm{grad}} & \Pi_h^{\textrm{curl}} & \Pi_h^{\textrm{div}} & \Pi_h^{\textrm{div}} \\
V_h(\textrm{grad}, \Omega) & \stackrel{\nabla}{\longrightarrow} & V_h(\textrm{curl}, \Omega) & \stackrel{\vec{\nabla}\times}{\longrightarrow} & V_h(\textrm{div}, \Omega) & \stackrel{\nabla}{\longrightarrow} & V_h(L^2, \Omega) \\
(7)\n\end{array}
$$

 $^{18}/$ ₃₂

Discrete case for B-Splines: The 1D case

DeRham sequence is reduced to

$$
R \hookrightarrow \underbrace{S^p}_{V_h(\text{grad}, \mathcal{P})} \xrightarrow{\nabla} \underbrace{S^{p-1}}_{V_h(L^2, \mathcal{P})} \longrightarrow 0
$$

The recursion formula for derivative writes

$$
N_i^{p'}(t) = D_i^p(t) - D_{i+1}^p(t) \quad \text{where} \quad D_i^p(t) = \frac{p}{t_{i+p+1} - t_i} N_i^{p-1}(t)
$$

■ we have S^{p-1} = span $\{N_i^{p-1}, 1 \le i \le n-1\}$ = span $\{D_i^p, 1 \le i \le n-1\}$ **■** a change of basis as a diagonal matrix

■ Now if $u \in S^p$, with and expansion $u = \sum_i u_i N_i^p$, we have

$$
u' = \sum_{i} u_i \left(N_i^p \right)' = \sum_{i} (-u_{i-1} + u_i) D_i^p
$$

■ If we introduce the B-Splines coefficients vector $\mathbf{u} := (u_i)_{1 \leq i \leq n}$ (and \mathbf{u}^{\star} for the derivative), we have

$$
\mathbf{u}^\star = D\mathbf{u}
$$

IPP

where D is the incidence matrix (of entries -1 and $+1$)

 $^{19}/$ 32

Discrete derivatives for B-Splines

$$
\begin{array}{ccc}\nH^{1}(\Omega) & \xrightarrow{\nabla} & H(\text{curl}, \Omega) & \xrightarrow{\nabla} & H(\text{div}, \Omega) & \xrightarrow{\nabla} & L^{2}(\Omega) \\
\text{H}_{h}^{\text{grad}} & \text{H}_{h}^{\text{curl}} & \text{H}_{h}^{\text{div}} & \text{H}_{h}^{\text{div}} \\
V_{h}(\text{grad}, \Omega) & \xrightarrow{\frac{G}{\sigma^{T}}} & V_{h}(\text{curl}, \Omega) & \xrightarrow{\frac{C}{\sigma^{T}}} & V_{h}(\text{div}, \Omega) & \xrightarrow{\frac{\mathcal{D}}{\mathcal{D}^{T}}} & V_{h}(L^{2}, \Omega) \\
\end{array}
$$
\n(8)

Let I be the identity matrix, we have in the 2D case:

$$
\mathcal{G} = \begin{pmatrix} D \otimes I \\ I \otimes D \end{pmatrix} \tag{9}
$$

$$
C = \begin{pmatrix} I \otimes D \\ -D \otimes I \end{pmatrix} \quad \text{[scalar curl]}, \quad C = \begin{pmatrix} -I \otimes D & D \otimes I \end{pmatrix} \quad \text{[vectorial curl]} \tag{10}
$$

$$
\mathcal{D} = \begin{pmatrix} D \otimes I & I \otimes D \end{pmatrix} \tag{11}
$$

Discrete derivatives for B-Splines

$$
\begin{array}{ccc}\nH^{1}(\Omega) & \xrightarrow{\nabla} & H(\text{curl}, \Omega) & \xrightarrow{\nabla} & H(\text{div}, \Omega) & \xrightarrow{\nabla} & L^{2}(\Omega) \\
\text{H}_{h}^{\text{grad}} & \text{H}_{h}^{\text{curl}} & \text{H}_{h}^{\text{div}} & \text{H}_{h}^{\text{div}} \\
V_{h}(\text{grad}, \Omega) & \xrightarrow{\mathcal{G}} & V_{h}(\text{curl}, \Omega) & \xrightarrow{\mathcal{C}} & V_{h}(\text{div}, \Omega) & \xrightarrow{\mathcal{D}} & V_{h}(L^{2}, \Omega) \\
\end{array}
$$
\n(8)

Let I be the identity matrix, we have in the 3D case:

$$
\mathcal{G} = \begin{pmatrix} D \otimes I \otimes I \\ I \otimes D \otimes I \\ I \otimes I \otimes D \end{pmatrix} \tag{12}
$$

$$
\mathcal{C} = \begin{pmatrix}\n0 & -I \otimes I \otimes D & I \otimes D \otimes I \\
I \otimes I \otimes D & 0 & -D \otimes I \otimes I \\
-I \otimes D \otimes I & D \otimes I \otimes I & 0\n\end{pmatrix}
$$
\n(13)

$$
\mathcal{D} = (D \otimes I \otimes I \quad I \otimes D \otimes I \quad I \otimes I \otimes D)
$$

(14)

Conclusion and perspectives

Summary

- We use the GLT theory to spectrally analyse matrices coming from a IgA discretization of the curl-curl problem.
- We exploit the obtained spectral information to suggest a suitable solver for the corresponding linear systems.

Ongoing work and Perspectives

- **P** projectors based interpolation to ensure the commutativity of the discrete DeRham sequence.
- 3D case
- **Application for Tokamak Plasma**

$$
\vec{\nabla}\times\vec{\nabla}\times\bm{E}-\frac{\omega^2}{c^2}K\,\bm{E}=\bm{f}
$$

where

$$
K = \begin{pmatrix} S & -iD & 0 \\ iD & S & 0 \\ 0 & 0 & P \end{pmatrix} + \frac{i}{\epsilon_0 \omega} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & g \end{pmatrix}
$$

 $2^{21}/32$

Act II: CLAPP–a framework for Computational Plasma **Physics**

- Efficient 6d Vlasov–Poisson solver
- Geometric electromagnetic PIC framework
- **Finite Elements in CLAPP: Jorek-Django**

- As a user, you want a fast code and you want it now
- As a developer, you want to code fast code, faster

- As a user, you want a fast code and you want it now
- As a developer, you want to code fast code, faster

- As a user, you want a fast code and you want it now
- As a developer, you want to code fast code, faster

■ Within CLAPP, we try to offer robust numerical methods allowing researchers to build complicated simulations.

- As a user, you want a fast code and you want it now
- As a developer, you want to code fast code, faster

■ Within CLAPP, we try to offer robust numerical methods allowing researchers to build complicated simulations.

➠ It's not easy!

CLAPP Framework: Available libraries

- **CLAPPIO** Input/Output Library
- **PLAF** Parallel Linear Algebra Library
- **SPL** Library for NURBS/B-Splines
- **DISCO** Abstract Discretization Context Library
- **FEMA** Library of Finite Elements Assemblers
- **HYPI** A PIC for Hybrid pushers based on pp forms
- GLT Library of Preconditioners and linear solver for B-Splines discretizations
- **SPIGA** Structure Preserving IsoGeoemtric Analysis library. Implements specific models (poisson, . . .)
- **SELALIB** Library of Semi-Lagrangian (and PIC methods)
- **CIMEQ** Common interface for magnetic equilibria

 $^{24}/$ 32

SELALIB: Efficient 6d Vlasov–Poisson solver

Numerics: Semi-Lagrangian solver with Lagrange or spline interpolation.

Parallelization schemes

- \Box Domain partitioning into 6d cubes with adapted interpolation schemes.
- \Box Remap between two domain partitionings: One keeping **x** sequential and one keeping **v** sequential.

■ Optimizations:

- Vectorization of interpolation routines.
- □ Cache-efficient memory layout.

■ Computing

- □ Strong scaling of about 90% efficiency from 2560 to 20480 cores.
- \Box Ported to new Intel Knights Landing architecture with performance comparable to Intel Xeon E5-2698 node.

 $^{25}/$ 32

SELALIB: Efficient 6d Vlasov–Strong scaling

Configuration: 64^6 grid points, 50 time steps, 7-point Lagrange interpolation, 4 MPI with 5OMP-threads per node.

Hardware: Ivy Bridge (hydra@mpcdf) (64 GB per node, InfiniBand FDR14).

 $^{26}/_{32}$

SELALIB: Geometric electromagnetic PIC framework

- Discretization: Conforming spline finite elements for fields (discrete deRham complex), Particle–In–Cell for distribution functions.
- **Formulation** of equations based on semi-discrete Hamiltonian and Poisson bracket.
- Temporal discretizations:
	- □ Symplectic method based on Hamiltonian splitting.
	- Average vector field splitting method: Semi-implicit (only implicit in field equations), energy conserving.

SELALIB: Weibel instability 1d2v: Conservation properties.

 $^{28}/_{32}$

Finite Elements in CLAPP: Jorek-Django

- a collection of libraries written in Fortran2003
- these libraries are part of a more general framework (CLAPP) for computational plasma physics, developped at the NMPP.

Important features

- \Box Parallel using MPI (+ OpenMP in progress)
- \Box compatible Finite elements discretizations for $H^1(\Omega)$, $H(\text{curl}, \Omega)$, $H(\text{div}, \Omega)$, $L^2(\Omega)$
- \Box Collocation method in 1D, *i.e.* toroidal direction, (in progress)
- $Isoparametric/Isogeometric + Standard discretizations$
- General boundary conditions (including strong/weak ones)
- □ Matrix-Free for nonlinear problems
- □ Physics-Based preconditioning
- Auxiliary Spaces Preconditioning (in progress)
- □ Multilevel methods, for B-Splines
- \Box Robust Multigrid for B-Splines based on the GLT theory (in progress)
	- \blacksquare Poisson and H^1 -elliptic problems
	- $\rightarrow H$ (curl) and H (div)-elliptic problems

 $^{29}/$ 32

Applications

Some examples solved using Jorek-Django

- Geometric Multigrid for B-Splines
	- D Poisson (Implemented)
	- Maxwell (in progress)
- Helmoltz equation
- **MHD** equilibrium
- Anisotropic Diffusion
- Harmonic Domain Maxwell and Full-wave (in progress)
- Time Domain Maxwell (in progress)
- Reduced MHD (under validation)
- Physics-Based preconditioning for the wave equation
- **Physics-Based preconditioning for the 3D reduced MHD (under** validation)
- Burger and Euler using a relaxation method (validated in 1d)

 $\frac{30}{32}$

Discretization

The IsoGeometric Approach

Grid generation: the use of $h/p/k$ -refinement keeps the mapping F unchanged.

- Compact support
- Partition of Unity
- Affine covariance
- IsoParametric concept
- **Error estimates in Sobolev norms**
- Exacte DeRham discrete sequence

Jorek-Django: Conclusion and perspectives

Conclusions

- we have developped a Parallel framework for Finite Elements for $H^1(\Omega)$, $H(\mathsf{curl},\Omega)$, $H(\mathsf{div},\Omega)$ problems
- B-Splines discretizations are fully validated
- **First (internal) Pre-Release expected before February 2017**

Ongoing work and Perspectives

- **n** new quadrature rules for B-Splines: reduces the number of points per element
	- ➠ well adapted to uniform unclamped B-Splines
	- ➠ needs Nitsche method to impose the boundary condition
- **D** other discretizations still in progress
- Physics-Based Preconditioner for the Reduced-MHD (model199 then 303)
- OpenMP, OpenACC
- **n** mesh generation
	- ➠ Alignement and equidistributed meshes
	- $\;\;\;\;\;\mathcal{C}^1$ constraints in polar-like meshes and X-point using a local construction for arbitrary regularity for tensor B-Splines.

Statistics

- number of commits: $2'$ 215
- number of lines: 76'225 (not including models \sim 30'000)
- documentation: about 400 pages (and more to come)

JorekDjango Framework

JorekDjango is the association of a set of libraries from CLAPP that allows the user to write (system of) partial differential equations and solve them using a Finite Element or Collocation method.

Figure : Strucutre of the JorekDjango Framework

Linear Algebra in Jorek-Django PLAF Objects

Linear Algebra Objects

- Linear Operator
- Matrix
- Linear Solver
- Eigenvalues Solver
- Vector

Discretization Objects

- Numbering
- Graph
- DDM

Internal PLAF dependencies

Discretization

B-Splines

To create a family of B-splines, we need a non-decreasing sequence of knots $T = (t_i)_{1 \le i \le N+k}$, also called **knot vector**, with $k = p + 1$. Each set of knots $\mathcal{T}_j = \{t_j, \cdots, t_{j+\rho}\}$ will generate a *B-spline N_j*.

Definition (B-Spline serie)

The *j*-th B-Spline of order k is defined by the recurrence relation:

$$
\mathit{N}_{j}^{k} = w_{j}^{k} \mathit{N}_{j}^{k-1} + (1-w_{j+1}^{k}) \mathit{N}_{j+1}^{k-1}
$$

where,

$$
w_j^k(x) = \frac{x - t_j}{t_{j+k-1} - t_j} \qquad \qquad N_j^1(x) = \chi_{[t_j, t_{j+1}]}(x)
$$

for $k \geq 1$ and $1 \leq j \leq N$.

 $\frac{35}{32}$

Clamped knots

IPP

uniform

$$
T_1 = \{0, 0, 0, 1, 2, 3, 4, 5, 5, 5\}
$$

$$
T_2 = \{-0.2, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 0.8\}
$$

Clamped knots non-uniform

IPP

 $T_3 = \{0, 0, 0, 1, 3, 4, 5, 5, 5\}$ $T_4 = \{-0.2, -0.2, 0.4, 0.6, 0.8, 0.8\}$

Unclamped knots uniform

IPP

$$
T_5 = \{0, 1, 2, 3, 4, 5, 6, 7\}
$$

$$
T_6 = \{-0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0\}
$$

Unclamped knots non-uniform

IPP

$$
T_7 = \{0, 0, 3, 4, 7, 8, 9\}
$$

$$
T_8 = \{-0.2, 0.2, 0.4, 0.6, 1.0, 2.0, 2.5\}
$$

A. Ratnani [IPL Strasbourg-](#page-0-0)2016

Discretization

Refinement strategies in IGA

Refinement strategies

Refining the grid can be done in 3 different ways. This is the most interesting aspects of B-splines basis.

h-refinement by inserting new knots. It is the equivalent of mesh refinement of the classical finite element method.

p-refinement by elevating the B-spline degree. It is the equivalent of using higher finite element order in the classical FEM.

k-refinement by increasing / decreasing the regularity of the basis functions (increasing / decreasing multiplicity of inserted knots).

r-refinement moving the control points to reduce a given error estimate

Reduce MHD model

Single fluid resistive MHD

$$
\begin{cases}\n\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0, \\
\rho \partial_t \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \rho = \mathbf{J} \times \mathbf{B} - \nabla \cdot \overline{\overline{\mathbf{R}}}, \\
\partial_t \rho + \mathbf{v} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{v} + \nabla \cdot \mathbf{q} = 0 \\
\partial_t \mathbf{B} = -\nabla \times (-\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}), \\
\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{B} = \mathbf{J}.\n\end{cases}
$$

- Reduced MHD model: Reduce the number of variables and eliminate the fast waves in the reduced MHD model.
- We consider the cylindrical coordinate $(R, Z, \phi) \in \Omega \times [0, 2\pi]$.

Reduced MHD: Assumption

$$
\mathbf{B} = \frac{F_0}{R} \mathbf{e}_{\phi} + \frac{1}{R} \nabla \psi \times \mathbf{e}_{\phi}, \quad \mathbf{v} = -R \nabla u \times \mathbf{e}_{\phi} + v_{||} \mathbf{B}
$$

with u the electrical potential, ψ the magnetic poloidal flux, v_{\parallel} the parallel velocity.

- **Initialization**: we use ψ and pressure equilibrium, a zero velocity $(u = v_{\parallel} = 0)$.
- Wave structure: low Mach and low β regime \rightarrow a large ratio between wave speeds.
- This problem coupled with hyperbolic structure generate ill-conditioned problem.

Preconditioning

 $\sqrt{2}$ \mathcal{L}

IPP

The implicit system after linearization is given by

$$
\left(\begin{array}{c}B^{n+1}\\ \rho^{n+1}\\ u^{n+1}\end{array}\right)=\left(\begin{array}{cc}A_{B,\rho}& C_{B,\rho,u}\\ C_{u,B,\rho}& A_u\end{array}\right)^{-1}\left(\begin{array}{c}R_B\\ R_\rho\\ R_u\end{array}\right)
$$

- with $A_{B,p}$ and A_u the advection terms linked to **B** and p (resp u), $C_{B,p,u}$ and $C_{u,B,p}$ the coupling terms which gives the Alfven and acoustic waves.
- The solution of the system is given by

$$
\begin{pmatrix}\nB^{n+1} \\
p^{n+1} \\
u^{n+1}\n\end{pmatrix} = \begin{pmatrix}\nI_d & A_{B,p}^{-1}G_{B,p,u} \\
0 & I_d\n\end{pmatrix} \begin{pmatrix}\nA_{B,p}^{-1} & 0 \\
0 & P_{schur}^{-1}\n\end{pmatrix} \begin{pmatrix}\nI_d & 0 \\
-C_{u,B,p}A_{B,p}^{-1} & I_d\n\end{pmatrix} \begin{pmatrix}\nR_B \\
R_p \\
R_u\n\end{pmatrix}
$$

Using the previous Schur decomposition, we obtain the following algorithm:

$$
\begin{cases}\n\text{Predictor}: \quad A_{\mathbf{B},p} \left(\begin{array}{c} \mathbf{B}^* \\ p^* \end{array} \right) = \left(\begin{array}{c} R_{\mathbf{B}} \\ R_p \end{array} \right) \\
\text{Velocity evolution}: \quad P_{schur} \mathbf{u}^{n+1} = \left(-C_{\mathbf{u},\mathbf{B},p} \left(\begin{array}{c} \mathbf{B}^{n+1} \\ p^{n+1} \end{array} \right) + R_{\mathbf{u}} \right) \\
\text{Corrector}: \quad A_{\mathbf{B},p} \left(\begin{array}{c} \mathbf{B}^{n+1} \\ p^{n+1} \end{array} \right) = A_{\mathbf{B},p} \left(\begin{array}{c} \mathbf{B}^* \\ p^* \end{array} \right) - C_{\mathbf{B},p,\mathbf{u}} \mathbf{u}_{n+1}\n\end{cases}
$$

- Preconditioning: we approximate the Schur complement by a multi-scale elliptic operator.
- Using classical Multi-grids and auxiliary-space theory we can perform the invert of the Schur approximation. $\frac{40}{32}$

Parallelism

Domain Decomposition

Available algorithms

- Tensor decomposition, when using Tensor Spaces
- Metis (ParMetis will be added later)

Figure : Metis (left) and tensor (right) partitioning.

 $\frac{41}{32}$

Numerical results: Parallel runs

The 2D case

 $^{\prime}$ 32

Numerical results: Parallel runs

The 2D case

A. Ratnani [IPL Strasbourg-](#page-0-0)2016

Numerical results: Parallel runs

The 2D case

A. Ratnani [IPL Strasbourg-](#page-0-0)2016

Application: Parallel runs

Parallel assembly for $H(\text{curl}, \Omega)$ and $H(\text{div}, \Omega)$ in 3D

A. Ratnani [IPL Strasbourg-](#page-0-0)2016

Application: Parallel runs

Parallel assembly for $H(\text{curl}, \Omega)$ and $H(\text{div}, \Omega)$ in 3D

Statistics: Quadratic Splines on a grid 32^3 :

- 23'101'440 non zeros for $H(curl)$
- 98'304 dofs for $H(curl)$
- 13'860'864 non zeros for $H(div)$
- 98'304 dofs for $H(div)$

 $\frac{46}{32}$

Cost of the Object-Oriented implementation

- 1. How does the use of the procedure pointer for the weak formulation perform compared to the hardcoded version of Poisson?
- 2. Is there a simple way to enhance and accelerate the assembly procedure taking into account some discretizations properties?

Figure : Scalability of different assembly procedures for quadrtic and quitinc B-Splines. A. Ratnani **[IPL Strasbourg-](#page-0-0)2016** $\frac{47}{32}$