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Outline

� Motivations

� Preconditioning and GLT
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Act I

� Motivations

� Preconditioning and GLT

� GLT for Harmonic Maxwell problem
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Motivations

� Direct solvers are great but

� have a complexity of O
(
n(d+1)/2

)
using the sparsity of the matrix

� memory limitation: the factorization (which is dense) cannot be
stored for problems of interest

� Iterative solvers are good but
� one has to deal with ill-conditioned matrices

à needs preconditioners: algebraic, physics-based, etc
à another alternative is to use the GLT, an elegant way of building

preconditioners to fix a specific pathology
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Preconditioning: Problem setting

Linear PDE: Au = b

⇓ linear discretization method

Sequence of linear systems {Anun = bn} of increasing dimension dn

The matrix An may have a structure

Example in 1d using Finite Differences:

{
−u′′ = f in (0, 1)

u = 0 on ∂(0, 1)
⇒ An =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


i.e., An is a so called Toeplitz matrix (constant along the diagonals)
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Preconditioning: Problem setting

� Why structure is important? Iterative methods, especially multigrid and
preconditioned Krylov can exploit it in order to accelerate their convergence.

Their convergence depends on the spectral features of An

For structured matrices the spectral analysis is strictly related to the notion of symbol

Qualitative definition: the symbol is a function which describes the asymptotical spectral
distribution of a matrix-sequence {An}n

GLT sequences = a tool for computing spectral symbols
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Spectral tools: symbol

� A little bit more accurate definition:

� {An}n = matrix-sequence, dim(An) = dn → ∞

� f : D ⊂ Rd → C, 0 < measure(D) < ∞

{An}n has a spectral distribution described by f means:

The eigenvalues of An are approximately a uniform sampling of f over D.

f = spectral symbol of {An}n. Notation: {An}n ∼λ f

� E.g.: When dn = n, d = 1, D = [0, π], {An}n ∼λ f means

λj (An) ≈ f

(
jπ

n

)
, j = 0, ... , n− 1.

� Remark: this definition can also be given is the singular values sense (replacing
f → |f |). Notation: {An}n ∼σ f .
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Spectral tools: GLT theory

The set of GLT sequences form a ∗-algebra (involutive algebra)
i.e., it is closed under linear combinations, products, inversion, conjugation.

Let {An}n ∼GLT κ1 and {Bn}n ∼GLT κ2, then

� {αAn + βBn}n ∼GLT ακ1 + βκ2, α, β ∈ C;
� {AnBn}n ∼GLT κ1κ2;
� if κ1 vanishes, at most, in a set of zero Lebesgue measure, then {A−1

n }n ∼GLT κ−1
1 ;

� {A∗n}n ∼GLT κ̄1.

à This ∗-algebra is not empty!

� Dn(a), a : [0, 1]→ C Riemann integrable function, a diagonal sampling matrix, i.e.,

Dn(a) =


a( 1

n )
a( 2

n )

. . .

a(1)

 , {Dn(a)} ∼λ a

� Tn(f ), i.e., a Toeplitz matrix obtained from the Fourier coefficients of
f : [−π, π]→ C, with f ∈ L1([−π, π]) as follows

Tn(f ) =


f0 f−1 · · · f−(n−1)

f1

. . .
. . .

...
...

. . .
. . . f−1

fn−1 · · · f1 f0

 , {Tn(f )} ∼λ f
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Spectral tools: GLT theory for B-Splines Finite Elements
Let’s summarize,

� we can construct a ∗-algebra to mimic the eigenvalues of sequence of matrices.

� But this is not sufficient to capture the spectral behavior of a B-Splines discretization!

Solution

à Enrich the ∗-algebra with terms like
∫

Ω D
(r )ϕiD(s)ϕj . But, how?

à Simply, buy computing their exact symbol (or an approximation c.f. later for Maxwell)

Example: Mass matrix
∫ 1

0 Np
i Np

j

mp(x , θ) := mp(θ) = φ2p+1(p + 1) + 2
p

∑
k=1

φ2p+1(p + 1− k) cos(kθ). (1)

Example: Stiffness matrix
∫ 1

0

(
Np

i

)′ (
Np

j

)′

sp(x , θ) := sp(θ) = −φ′′2p+1(p + 1)− 2
p

∑
k=1

φ′′2p+1(p + 1− k) cos(kθ). (2)

where φ2p+1 is the cardinal B-Spline of degree 2p + 1
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Spectral tools: GLT theory for B-Splines Finite Elements

� In 2d and 3d, we can use the previous symbols and Kronecker algebra

� Are we limited to linear problems? à No!

Example Let’s consider the following weak formulation

Dij (α, β, ε) =

(∫
Ω

αϕj ϕi + β1 ϕj ∂x ϕi + β2 ϕj ∂y ϕi + (∂x β1 + ∂y β2)ϕj ϕi + ε∇ϕi · ∇ϕj

)
The symbol of the associated sequence of linear system is

dp(α, β, ε, h; x, θ) := αmp(θ1)mp(θ2)

+ h (β1(x)ap(θ1)mp(θ2) + β2(x)mp(θ1)ap(θ2))

+ h (∂x β1(x) + ∂y β2(x))mp(θ1)mp(θ2)

+ εh2 (sp(θ1)mp(θ2) + mp(θ1)sp(θ2))
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Spectral tools: GLT theory

Fundamental property
Each GLT sequence {An}n is equipped with a symbol in the singular value sense, i.e.
there exists a function χ : [0, 1]× [−π, π]→ C such that

{An}n ∼σ χ

E.g.: if An = Dn(a)Tn(f ), then {An}n ∼σ χ = a · f

Advantage of this tool: studying the symbol
� we retrieve information on the conditioning
� we get hints on how to design good preconditioning strategies, because of this

property: if {An}n ∼σ f and {Bn}n ∼σ g , then{
B−1

n An

}
n
∼σ g−1f

Target: choose g in order to eliminate the ‘pathologies’ of f

à c.f. M. Gaja talk for Poisson
� sp is nonnegative and has a unique zero in 0 of order 2 ⇒ nd−2Ln is ill-conditioned in

the low frequencies. Classical problem solved by MG preconditioning.
� sp has infinitely many exponential zeros at the π-edges when p becomes large ⇒

nd−2Ln is ill-conditioned in the high frequencies. Non-canonical problem solvable by
GLT theory.
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GLT for curl-curl problem

� Application: compatible B-Splines discretization based on the discrete De Rham
sequence of this variational problem:

Find u ∈ H(curl, Ω) such that

(~∇× u, ~∇× v) + ν (u, v) = (f, v), ∀v ∈ H(curl, Ω),

where ν ≥ 0 and H(curl, Ω) := {u ∈ (L2([0, 1]2))2 s.t. ~∇× u ∈ L2([0, 1]2)}.

� Coefficient matrix Aν
n: is a 2× 2 block matrix.

� Spectral symbol f ν:

� 2D problem ⇒ f ν is bivariate (defined in [−π, π]2);
� vectorial problem ⇒ f ν is 2× 2 matrix-valued function. In this case, we have to

look at the two eigenvalue functions of f ν.
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GLT for curl-curl problem

Eigenvalue functions of f ν

λ1 (f
ν(θ1, θ2)) ≈ mp−1(θ1)mp−1(θ2)

ν

n2

λ2 (f
ν(θ1, θ2)) ≈ mp−1(θ1)mp−1(θ2)

[
4− 2 cos(θ1)− 2 cos(θ2) +

ν

n2

]
A nice connection between continuous problem and spectral information:

� Continuum: the curl-curl operator has infinite dimensional kernel and on the
complement behaves as a second order operator.

⇓

� Spectral counterpart: when ν = 0, λ1(f ν) ≡ 0, while λ2(f ν) is the symbol of the 2D
Laplacian operator.
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GLT for curl-curl problem

� Ok, nice...but what can we do with this information?

An equispaced sampling of the eigenvalues functions in [−π, π]2 gives an

approximation of the eigenvalues of Aν
n.

λ1(f
ν) λ2(f

ν)

Comparison between the eigenvalues of Aν
n (colored dots) and λk (f

ν), k = 1, 2, when
n = 40, p = 3, ν = 10−2 (matrix-size 3612).
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GLT for curl-curl problem

A study of the eigenvalue functions tell us that:

(1) Aν
n is ill-conditioned in the low frequencies. Classical problem solved by MG

preconditioning.

(2) Aν
n is ill-conditioned in the high frequencies. Non-canonical problem solvable by GLT

theory.

� Solver proposal: Using the symbol we can construct a smoother for MG valid for
high-frequencies:

PCG or the PGMRES with preconditioner

I2 ⊗T (mp−1(θ1))⊗T (mp−1(θ2))

� Remark: such a preconditioner is a tensor product of banded matrices then only a
linear computational cost is required.
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Construction of the Multigrid

� Use the Auxiliary Space Preconditioning method1

� Proposed preconditioner (HX): R + GBhGT + Πcurl
h Bh

(
Πcurl

h

)T

where

à Bh correponds to MultiGrid V-cycles solver for the poisson problem
(∇u,∇v ) + µ(u, v )

à Bh correponds to MultiGrid V-cycles solver for the poisson problem
(∇u,∇v) + µ(u, v)

� How to construct the operators Π
grad
h and Πcurl

h ?

à use the projection-based interpolation by Demkovicz? (in progress)

.

1Hiptmair, Xu, SIAM J. Numer. Anal., 2007
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DeRham sequence
The continuous case

here without boundary conditions

R ↪→ H1(Ω)
∇−−−−→ H(curl, Ω)

~∇×−−−−−→ H(div, Ω)
∇·−−−−−→ L2(Ω) −→ 0 (3)

using pullbacks in the case of a mapping (vector fields transformations)

H1(Ω)
∇−−−−→ H(curl, Ω)

~∇×−−−−−→ H(div, Ω)
∇·−−−−−→ L2(Ω)

ı0

x ı1

x ı2

x ı3

x
H1(P) ∇−−−−→ H(curl,P)

~∇×−−−−−→ H(div,P) ∇·−−−−−→ L2(P)

(4)

Commutative diagram between continuous and discrete spaces.

H1(Ω)
∇−−−−→ H(curl, Ω)

~∇×−−−−−→ H(div, Ω)
∇·−−−−−→ L2(Ω)

Π
grad
h

y Πcurl
h

y Πdiv
h

y ΠL2

h

y
Vh(grad, Ω)

∇−−−−→ Vh(curl, Ω)
~∇×−−−−−→ Vh(div, Ω)

∇·−−−−−→ Vh(L
2, Ω)

(5)
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DeRham sequence
Discrete case for B-Splines

Buffa et al[2009] show the construction of a discrete DeRham sequence using B-Splines.

R ↪→ Sp,p,p︸ ︷︷ ︸
Vh(grad,P)

∇−−−−→

Sp−1,p,p

Sp,p−1,p

Sp,p,p−1


︸ ︷︷ ︸

Vh(curl,P)

~∇×−−−−−→

Sp,p−1,p−1

Sp−1,p,p−1

Sp−1,p−1,p


︸ ︷︷ ︸

Vh(div,P)

∇·−−−−−→ Sp−1,p−1,p−1︸ ︷︷ ︸
Vh(L

2,P)

−→ 0

(6)

C∞(Ω)
∇−−−−→ C∞(Ω)

~∇×−−−−−→ C∞(Ω)
∇·−−−−−→ C∞(Ω)

Π
grad
h

y Πcurl
h

y Πdiv
h

y ΠL2

h

y
Vh(grad, Ω)

∇−−−−→ Vh(curl, Ω)
~∇×−−−−−→ Vh(div, Ω)

∇·−−−−−→ Vh(L
2, Ω)

(7)
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DeRham sequence
Discrete case for B-Splines: The 1D case

� DeRham sequence is reduced to R ↪→ Sp︸︷︷︸
Vh(grad,P)

∇−−−−→ Sp−1︸ ︷︷ ︸
Vh(L

2,P)

−→ 0

� The recursion formula for derivative writes

Np
i
′
(t) = Dp

i (t)−Dp
i+1(t) where Dp

i (t) =
p

ti+p+1 − ti
Np−1

i (t)

� we have Sp−1 = span{Np−1
i , 1 ≤ i ≤ n− 1} = span{Dp

i , 1 ≤ i ≤ n− 1}
à a change of basis as a diagonal matrix

� Now if u ∈ Sp , with and expansion u = ∑i ui N
p
i , we have

u′ = ∑
i

ui

(
Np

i

)′
= ∑

i

(−ui−1 + ui )D
p
i

� If we introduce the B-Splines coefficients vector u := (ui )1≤i≤n (and u? for the
derivative), we have

u? = Du

where D is the incidence matrix (of entries −1 and +1)
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DeRham sequence
Discrete derivatives for B-Splines

H1(Ω)
∇−−−−→ H(curl, Ω)

~∇×−−−−−→ H(div, Ω)
∇·−−−−−→ L2(Ω)

Π
grad
h

y Πcurl
h

y Πdiv
h

y ΠL2

h

y
Vh(grad, Ω)

G−−−−−⇀↽−−−−−
GT

Vh(curl, Ω)
C−−−−−⇀↽−−−−−
CT

Vh(div, Ω)
D−−−−−⇀↽−−−−−
DT

Vh(L
2, Ω)

(8)

Let I be the identity matrix, we have
in the 2D case:

G =

(
D ⊗ I
I ⊗D

)
(9)

C =
(

I ⊗D
−D ⊗ I

)
[scalar curl], C =

(
−I ⊗D D ⊗ I

)
[vectorial curl] (10)

D =
(
D ⊗ I I ⊗D

)
(11)

in the 3D case:

G =

D ⊗ I ⊗ I
I ⊗D ⊗ I
I ⊗ I ⊗D

 (12)

C =

 0 −I ⊗ I ⊗D I ⊗D ⊗ I
I ⊗ I ⊗D 0 −D ⊗ I ⊗ I
−I ⊗D ⊗ I D ⊗ I ⊗ I 0

 (13)

D =
(
D ⊗ I ⊗ I I ⊗D ⊗ I I ⊗ I ⊗D

)
(14)
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Conclusion and perspectives

Summary

� We use the GLT theory to spectrally analyse matrices coming from a IgA
discretization of the curl-curl problem.

� We exploit the obtained spectral information to suggest a suitable solver for the
corresponding linear systems.

Ongoing work and Perspectives

� projectors based interpolation to ensure the commutativity of the discrete DeRham
sequence.

� 3D case

� Application for Tokamak Plasma

~∇× ~∇× E− ω2

c2
K E = f

where

K =

 S −iD 0
iD S 0
0 0 P

+
i

ε0ω

0 0 0
0 0 0
0 0 g


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Act II: CLAPP–a framework for Computational Plasma
Physics

� Efficient 6d Vlasov–Poisson solver

� Geometric electromagnetic PIC framework

� Finite Elements in CLAPP: Jorek-Django
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CLAPP Framework: Motivations

� As a user, you want a fast code and you want it now

� As a developer, you want to code fast code, faster

� Within CLAPP, we try to offer robust numerical methods allowing
researchers to build complicated simulations.

à It’s not easy!
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CLAPP Framework: Available libraries

� CLAPPIO Input/Output Library

� PLAF Parallel Linear Algebra Library

� SPL Library for NURBS/B-Splines

� DISCO Abstract Discretization Context Library

� FEMA Library of Finite Elements Assemblers

� HYPI A PIC for Hybrid pushers based on pp forms

� GLT Library of Preconditioners and linear solver for B-Splines
discretizations

� SPIGA Structure Preserving IsoGeoemtric Analysis library.
Implements specific models (poisson, . . . )

� SELALIB Library of Semi-Lagrangian (and PIC methods)

� CIMEQ Common interface for magnetic equilibria
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SELALIB: Efficient 6d Vlasov–Poisson solver

� Numerics: Semi-Lagrangian solver with Lagrange or spline
interpolation.

� Parallelization schemes
� Domain partitioning into 6d cubes with adapted interpolation

schemes.
� Remap between two domain partitionings: One keeping x sequential

and one keeping v sequential.

� Optimizations:
� Vectorization of interpolation routines.
� Cache-efficient memory layout.

� Computing
� Strong scaling of about 90% efficiency from 2560 to 20480 cores.
� Ported to new Intel Knights Landing architecture with performance

comparable to Intel Xeon E5-2698 node.
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SELALIB: Efficient 6d Vlasov–Strong scaling
Configuration: 646 grid points, 50 time steps, 7-point Lagrange
interpolation, 4 MPI with 5OMP-threads per node.
Hardware: Ivy Bridge (hydra@mpcdf) (64 GB per node, InfiniBand
FDR14).
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SELALIB: Geometric electromagnetic PIC framework

� Discretization: Conforming spline finite elements for fields
(discrete deRham complex), Particle–In–Cell for distribution
functions.

� Formulation of equations based on semi-discrete Hamiltonian and
Poisson bracket.

� Temporal discretizations:
� Symplectic method based on Hamiltonian splitting.
� Average vector field splitting method: Semi-implicit (only implicit in

field equations), energy conserving.
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SELALIB: Weibel instability 1d2v: Conservation properties.
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growth rate

Propagator total energy Gauss law momentum P2

Hamiltonian 6.3E-7 1.5E-14 3.2E-15

Boris 3.4E-10 1.0E-4 1.3E-14

AVF 1.2E-16 3.8E-7 2.1E-14
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Finite Elements in CLAPP: Jorek-Django

� a collection of libraries written in Fortran2003

� these libraries are part of a more general framework (CLAPP) for
computational plasma physics, developped at the NMPP.

� Important features
� Parallel using MPI (+ OpenMP in progress)
� compatible Finite elements discretizations for

H1(Ω),H(curl, Ω),H(div, Ω), L2(Ω)
� Collocation method in 1D, i.e. toroidal direction, (in progress)
� Isoparametric/Isogeometric + Standard discretizations
� General boundary conditions (including strong/weak ones)
� Matrix-Free for nonlinear problems
� Physics-Based preconditioning
� Auxiliary Spaces Preconditioning (in progress)
� Multilevel methods, for B-Splines
� Robust Multigrid for B-Splines based on the GLT theory (in progress)

à Poisson and H1-elliptic problems
à H(curl) and H(div)-elliptic problems
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Applications

Some examples solved using Jorek-Django
� Geometric Multigrid for B-Splines

� Poisson (Implemented)
� Maxwell (in progress)

� Helmoltz equation

� MHD equilibrium

� Anisotropic Diffusion

� Harmonic Domain Maxwell and Full-wave (in progress)

� Time Domain Maxwell (in progress)

� Reduced MHD (under validation)

� Physics-Based preconditioning for the wave equation

� Physics-Based preconditioning for the 3D reduced MHD (under
validation)

� Burger and Euler using a relaxation method (validated in 1d)
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Discretization
The IsoGeometric Approach

Q

F

Patch 
Physical Domain

K
Q

F

Patch 
Physical Domain

K

Grid generation: the use of h/p/k-refinement keeps the mapping
F unchanged.

� Compact support

� Partition of Unity

� Affine covariance

� IsoParametric concept

� Error estimates in Sobolev norms

� Exacte DeRham discrete sequence
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Jorek-Django: Conclusion and perspectives
Conclusions

� we have developped a Parallel framework for Finite Elements for
H1(Ω), H(curl, Ω), H(div, Ω) problems

� B-Splines discretizations are fully validated

� First (internal) Pre-Release expected before February 2017

Ongoing work and Perspectives

� new quadrature rules for B-Splines: reduces the number of points per element

à well adapted to uniform unclamped B-Splines

à needs Nitsche method to impose the boundary condition

� other discretizations still in progress

� Physics-Based Preconditioner for the Reduced-MHD (model199 then 303)

� OpenMP, OpenACC

� mesh generation

à Alignement and equidistributed meshes

à C1 constraints in polar-like meshes and X-point using a local construction for

arbitrary regularity for tensor B-Splines.

Statistics

� number of commits: 2′215

� number of lines: 76′225 (not including models ∼ 30′000)

� documentation: about 400 pages (and more to come)
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JorekDjango Framework

JorekDjango is the association of a set of libraries from CLAPP that
allows the user to write (system of) partial differential equations and
solve them using a Finite Element or Collocation method.

CLAPPIO PLAF SPL

DISCO FEMA

MODEL

Figure : Strucutre of the JorekDjango Framework
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Linear Algebra in Jorek-Django
PLAF Objects

Linear Algebra Objects

� Linear Operator

� Matrix

� Linear Solver

� Eigenvalues Solver

� Vector

Discretization Objects

� Numbering

� Graph

� DDM

Internal PLAF dependencies

Vector

Linear Solver Eigenvalues Solver

MatrixLinear Operator

DDM Graph

Numbering
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Discretization
B-Splines

To create a family of B-splines, we need a non-decreasing sequence of
knots T = (ti )16i6N+k , also called knot vector, with k = p + 1.
Each set of knots Tj = {tj , · · · , tj+p} will generate a B-spline Nj .

Definition (B-Spline serie)

The j-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wk

j N
k−1
j + (1− wk

j+1)N
k−1
j+1

where,

wk
j (x) =

x − tj

tj+k−1 − tj
N1

j (x) = χ[tj ,tj+1[(x)

for k ≥ 1 and 1 ≤ j ≤ N.
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B-Splines Discretization: Knot vector families
Clamped knots

uniform

T1 = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}
T2 = {−0.2,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 0.8}

Figure : Quadratic B-Splines generated by T1 (left) and T2 (right)
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B-Splines Discretization: Knot vector families
Clamped knots

non-uniform

T3 = {0, 0, 0, 1, 3, 4, 5, 5, 5}
T4 = {−0.2,−0.2, 0.4, 0.6, 0.8, 0.8}

Figure : Quadratic B-Splines generated by T3 (left) and T4 (right)
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B-Splines Discretization: Knot vector families
Unclamped knots

uniform

T5 = {0, 1, 2, 3, 4, 5, 6, 7}
T6 = {−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

Figure : Quadratic B-Splines generated by T5 (left) and T6 (right)
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B-Splines Discretization: Knot vector families
Unclamped knots

non-uniform

T7 = {0, 0, 3, 4, 7, 8, 9}
T8 = {−0.2, 0.2, 0.4, 0.6, 1.0, 2.0, 2.5}

Figure : Quadratic B-Splines generated by T7 (left) and T8 (right)
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Discretization
Refinement strategies in IGA

Refinement strategies

Refining the grid can be done in 3 different ways. This is the most
interesting aspects of B-splines basis.

h-refinement by inserting new knots. It is the equivalent of mesh
refinement of the classical finite element method.

p-refinement by elevating the B-spline degree. It is the equivalent of
using higher finite element order in the classical FEM.

k-refinement by increasing / decreasing the regularity of the basis
functions (increasing / decreasing multiplicity of
inserted knots).

r-refinement moving the control points to reduce a given error
estimate
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Reduce MHD model

Single fluid resistive MHD
∂t ρ +∇ · (ρv) = 0,

ρ∂t v + ρv · ∇v +∇p = J×B−∇ ·Π,
∂t p + v · ∇p + p∇ · v +∇ · q = 0
∂t B = −∇× (−v×B + ηJ) ,
∇ ·B = 0, ∇×B = J.

� Reduced MHD model: Reduce the number of variables and eliminate the fast waves
in the reduced MHD model.

� We consider the cylindrical coordinate (R, Z , φ) ∈ Ω× [0, 2π].

Reduced MHD: Assumption

B =
F0

R
eφ +

1

R
∇ψ× eφ, v = −R∇u × eφ + v||B

with u the electrical potential, ψ the magnetic poloidal flux, v|| the parallel velocity.

� Initialization: we use ψ and pressure equilibrium, a zero velocity (u = v‖ = 0).
� Wave structure: low Mach and low β regime → a large ratio between wave speeds.

� This problem coupled with hyperbolic structure generate ill-conditioned problem.
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Preconditioning
� The implicit system after linearization is given by Bn+1

pn+1

un+1

 =

(
AB,p CB,p,u

Cu,B,p Au

)−1
 RB

Rp

Ru


� with AB,p and Au the advection terms linked to B and p (resp u), CB,p,u and Cu,B,p

the coupling terms which gives the Alfven and acoustic waves.

� The solution of the system is given by Bn+1

pn+1

un+1

 =

(
Id A−1

B,pCB,p,u

0 Id

)(
A−1

B,p 0

0 P−1
schur

)(
Id 0
−Cu,B,pA−1

B,p Id

) RB

Rp

Ru


� Using the previous Schur decomposition, we obtain the following algorithm:

Predictor : AB,p

(
B∗

p∗

)
=

(
RB

Rp

)
Velocity evolution : Pschur un+1 =

(
−Cu,B,p

(
Bn+1

pn+1

)
+ Ru

)
Corrector : AB,p

(
Bn+1

pn+1

)
= AB,p

(
B∗

p∗

)
− CB,p,uun+1

� Preconditioning: we approximate the Schur complement by a multi-scale elliptic
operator.

� Using classical Multi-grids and auxiliary-space theory we can perform the invert of the
Schur approximation.
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Parallelism
Domain Decomposition

Available algorithms

� Tensor decomposition, when using Tensor Spaces

� Metis (ParMetis will be added later)

Figure : Metis (left) and tensor (right) partitioning.
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Numerical results: Parallel runs
The 2D case
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Numerical results: Parallel runs
The 2D case
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Numerical results: Parallel runs
The 2D case
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Application: Parallel runs
Parallel assembly for H(curl, Ω) and H(div, Ω) in 3D
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Application: Parallel runs
Parallel assembly for H(curl, Ω) and H(div, Ω) in 3D

Statistics: Quadratic Splines on a grid
323:

� 23′101′440 non zeros for H(curl)

� 98′304 dofs for H(curl)

� 13′860′864 non zeros for H(div )

� 98′304 dofs for H(div )
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Cost of the Object-Oriented implementation
1. How does the use of the procedure pointer for the weak formulation

perform compared to the hardcoded version of Poisson?
2. Is there a simple way to enhance and accelerate the assembly

procedure taking into account some discretizations properties?

Figure : Scalability of different assembly procedures for quadrtic and quitinc
B-Splines.
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