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Model of a cold plasma

Linearization of Maxwell-Newton for one species of electrons with charge —e < 0

-50E +VAB =l J = —eNe(x)ue,
B  +VAE =0,
meOtue = —e (E 4+ ue A Bg(x)) — merue, .

The electronic density Ne(x) > 0 is given. If the plasma if hot, then Ne(x) >>
The background (strong) magnetic field Bo(x) ~ BSonstant js given.

Last equation is the only kinetic one in the talk.

1.

The collision frequency is v > 0. It corresponds to friction on a bath of static ions.

It is an extremely small quantity because the plasma has very low collisionality
v~ 1077 in a fusion plasma.

Goal of this talk : pass to the limit v = 0%.

Branbilla : Kinetic Theory of Plasma Waves-Homogeneous Plasmas, 1998.
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Time harmonic domain : 9; = iw

Set wp(x)? = ezNe(X)' we(x) = e|Bo(x)]

2o =0l and W =w + iy,
~, 2 2
-~ ww, . wewy
1 w(:,zfu.,'g) ’w(ﬁ27wg) 0
eV = _i wcwi 1_ ng 0
e B )
2
0 0 1— 2

ww

@ In the general case € is a normal matrix, and €Y is an hermitian complex
matrix. In vacuum Ne =0 : then wp =0 and ¥ =1L

@ Special values of w (for v = 0) are

@ w = wp(x) which is the cut-off (O-mode).
0 w? = wp(x)? + we(x)? which is the hybrid resonance.
@ w = wc(x) which is the cyclotron resonance (not considered below).

Maxwell's equations
with cold-plasma anistropic dielectric tensor ¥ € C° (ﬁ : MdXd), (€9)* = £°,

2
V/\V/\E—L%EVE:[)7 V AVA = curl curl .
c

Labrunie, and al, " Electromagnetic wave propagation and absorption in magnetized plasmas i .., 2015:
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-’]ll From (Ling-Feng) Lu PhD (Fusenet 2015)

Simulation results on RF wave propagation and variable density.

In this presentation, focus is on the mathematics of the hybrid resonance,
motivated by the numerical difficulties reported by Lu-Colas.

Surface: Electric field, z component (V/m)
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-_Illl Toy problem of the talk : Budden problem 62

e Restore an regularization (friction, damping, complex shift, ...) parameter v > 0

By &Y =0
—(a+ iv)E} —idEY =0,

—(BYY +idEY —(a+iv)EY =0,
By (&Y o,
=\ -y + (aiiy —(a+ iu)) Er =0,

2
<:>—(E2”)”+( - —(a—l—il/)) Ey =0.
o+ v

The dielectric tensor is
.= a(x) i5(x) \ _ €1 iex
T\ —id(x) alx) )T\ —iex el
where the plasma-dependent parameters are a and 9.

e Important example is : a(x) = —x and §(x) = 1.
The hybrid resonance is at x = 0.

e Our goal is to pass to the limit v — 0" with the limit absorption principle, in a
form compatible with the general principles of FEM (Finite Element Methods).

-Budden, Radio wave in the ionosphere, 1961.
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Numerical illustration (with FDTD)
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Note the local Ansatz

i5(x) i5(0) /
EY EY ~ — E; (0), =a'(0) #0.
1(x) = a(x)+lu2 Tiv 2 (0) r=a’(0) #
The resonant heating is generically positive
é
o= I|m 1//|E”\ = I|m V/|E1| = |(0)\ §+|2>0.

Rigorous mathematical proofs in time-harmonic-domain can be found in :

- Hybrid resonance of Maxwell's equations in slab geometry, D.+Imbert-Gérard+Weder, JMPA 2014
- A new set of local techniques is with integral contour in the complex plane : D.4+Imbert-Gérard-Lafitte (2016)
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Section 1

JiL

New tools :
manufactured
solutions

New tools : manufactured solutions
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-_’Ill Design of singular manufactured solutions

Def : manufactured solution = quasi-solution with the main singularity and with 3
properties.

New tools : We will note r = a/(0)

manufactured

solutions

-Take analytical formulas inspired by the maths and the physics

1 i 6(0) /1
Pl: F{ = o F = é, G = i—(r) (Elog (r2x2+u2) — iarctan (%X))

- The quasi-ness is measured as follows

G —(F) =d5 €L}

unif /v
P2: —(a+ iv)FY +id0Fy =g =0
(&) —iSF) — (a+ iV)F} = g5 € Lyt

The uniform boundedness is because

L _ .0(0) (1 2.2 2 . rx 6
a3 717 (Elog(rx +1/)—/arctan (—) +i=

v 62
and 5(x) — 5(0) 1 1 '
X) — o+ Iv
vo—j i5 - —i .
& =1 rx + iv + (a(X)+il/ rx+iz/) "
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The main trick

: s -Let p € C}(—1,1) = C3(R) be a smooth test function with compact support :
REKAT L supp(y) = (—e, .
- Check

Now tok By — e o=~ [ (FyBy - By o

manufactured
solutions

f—xjuz—qns;+a%ma>wa+wﬁ&
—BY Gy — Ey(i6Fy — (a+ iv)Fy — gy)] pdx
= [ (@585 ey E) e+ [ 5 (E5 Y — B Fy) e

= | (@58y ey Ep) oo

- Pass to the limit v — 0T

p3med /Q (FFB —EfC) ¢/dx = /Q (a3 By — g ES5) wdx, Vo € C}(Q).

- not in any classical textbook on waves in plasmas.
- extremely well adapted to FE modeling since integrable.
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._Illl Interpretation

- The identity

New ool : p3med /Q (FBf —Ef Cf) ¢'dx = /Q (93 By — &5 ES) wdx, Vo € C}(Q)
solutions

makes sense because

Ef, Bf €1
i
F2+ = 5 e l? C3+ ( ) (Iog(|rx|) — i 2sngn(rx)) e l?
5(x) —4(0 —
g = 100 ()+,.5rx o) e
rx rxa(x) 4
and 50 ,

qi = l—) (Iog(\rx|) — lfsign(rx)) +i—=el?

r

- The causality is guaranteed by the term sign(rx) =
- Loss of causality corresponds to sign(rx) = 0.

- Locally |sign(rx)| << log |x| << ﬁ
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JiL

New tools :
manufactured
solutions

Well-posedness (after elimination of e;)

Let @ = (~1,1), L2 = [2(Q), H} = H}(Q) and H} , = {v € H} | (0) = 0}.

Find (e2, b3) € L2 x L? with three conditions :
i) the weak formulations

Jo(b3e1 + ez«p’%)dx =0, Ve1€H],
Ja (b3<p’2 + (% - Oc) eypg) dx =0, Ve H&,ov

ii) the boundary conditions
b3(—1) + idex(—1) =f~ and b3(1) — idex(1) = f4,

in the sense of distributions

iii) one single integral relation with the singular manufactured
solution, for one single test function ¢ € H} — H} ; : ¢(0) # 0.

Note that e; is eliminated and £2 € [? thanks to Hardy's inequality.

Theor. (Campos-Pinto+D.) :
For all (f—, f1) € C2, there exists a unique solution (e, b3)
and it coincides with the limit solution (E", By ).
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_!Ill Dissipative inequalities

This construction is closer to the initial idea of entropies, and more ambitious.

New tools :
manufactured

solutions Change F}" +— —F/ so that
(R =
—(a+ iv)F{ —idFy =0
(&) +idFy = (a+iv)F =g
and for k € C
(BY — kCY) — (Ef — kFYY = ka
—(a+ iv)(Ef — kF{) —id6(Ey —kFy) =0

—(BY — G5) +id(E{ — kFY) — (a + iv)(Ey — kFy') = key -

One obtains (after passing to the limit)

P3: —|m/(52+ — kF)(Bf — kC )’ dx
Q

—Im/ (kq;(B; — kCS) — kg (B — kF2+)) @dx >0, YkeC, Ve G ().
Q
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JiL

New tools :

manufactured ‘7((-:*27 [)37 k) = 7'”1/(92 - kF;)m‘PldX
Q

solutions

e For (e2, b, k) € L? x L? x C, define the quadratic functional

flm/‘ <kq§r(b3 — KCY) ~ kg5 (&2 — KFS) ) wax

Q

The parallel with entropy techniques is evidenced with the notation

j(eg, b3, k) = S(U, k) with U = (eg, bg).

o For (e, b3, k, A1, M) € L2 x L2 x C x H(} X H&,O' define the Lagrangian

L(e2, b3, ki A1, A2) = T (e2, b3, k)

_ _ 52
+Im/(b3/\1 + &\ )dx + Im/ (b3,\’2 + (7 — a) ej,\g) dx € R.
Q Q o

Resonant formulations
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_!Ill Euler-Lagrange conditions

The optimality conditions write

§2
New tools : / ((b3 — kC;)@/ —+ kg;(P + )\i =+ (* — a) A2) udx = 0, Yu c L27
manufactured Q «
solutions
/ (—(e2 — kFy )¢ — kgf o + A1 + A5) vdx = 0, Vv € L2,
Q
— = — = (0
/ <<C3+ez - F2+b3> o+ (q;b3 —g;eg) go) dx + 2i i )k =0,
Q Il
[ (baes + exgr)ae = 0, Vir € HY,
Q
52
/Q (b3t,02/ + (E - a) echg) dx =0, Vo € H&,0~

Theor. For all (f_, fi) € C2, there exists a unique solution in the space
L2x [2xCx H} x H},. 1tis

(2, b3, k, A1, \2) = (B, BS, —id(0)ES (0), (—BS + kG ) o, (ESF — kFS) ).
A by-product is the decomposition into regular part+singular part

5
Bl = (B — kFY) 4 kR = Z(Ey — kFy) +kFy.
| ——
el

loc
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Section 2

Numerical results

Numerical results
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JiL

Numerical results

Firstly : design of an analytical solution : 1/3

e Take a = —x and § = /1 — x/4 + x2. The Budden equation boils down to

1 1
—Ey+(=-Z)E=0.
2+<4 X) 2

It is the Whittaker equation. Here it has (miraculously) 2 simple analytical
solutions

X Yy 1
u(x) = xe /% and v(x) = /% — (Iog [x] +/ c dy) xe /2
1 y

e Therefore
x<0: Ey=au+byv, a,b €C

and
x>0: Ey=agu+ bgrv, ar,bgreC

Resonant formulations
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-_’Ill Design of an analytical solution : 2/3

We use the boundary conditions

Numerical results

b3(—=1) + idex(=1) =f- and  b3(1) — idex(1) = f4,

note that e is continuous at the origin,

and verify the integral relation can be characterized under the form independent
of ¢

1
whg = _EI(QR —a).

One gets the non singular linear system

' (—1) + idu(—=1)  v/(=1)+ ixv(—1) 0 0 a f
0 0 o (=1) —idu(@) V(@) —iav() by _ fy
0 1 0 —1 aR N 0 :
i/2 0 ‘ —i/2 - br 0

It gives (ar, by, ag, br) — (ES, BY).
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-'.Ill Design of an analytical solution : 3/3

Plot

N=200

Numerical results 1
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-_’Ill Numerical solution with standard FE : 1/5

Numerical results

(b3)h S PO — (b3)h = ZB;+%IX;<X<X;+1
i

(e2)h € PL = (e2)n = Z'Vi Tx,-<x<x,-+2~
i
The first weak relation yields directly
_ i+l — i
ey ="h

Nl

The second weak relation yields

B,’ lfﬁ,',l §2
_ +3 2 +< ,a) vi = 0.
h

h a+iv
It is known that the quality of the solution is function of v and h.

= More facts in : A numerical study of the solution of x-mode equations around the hybrid resonance, Caldini-Queiros, D.

Imbert-Gérard, Kachanovska, 2016.
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-’_Ill Numerical solution with standard FE : 2/5

The regularization is a <— a + iv in the "dangerous” cell.

Numerical results

I E

v=10"1
E == .
R e
. 1 o6}
ERERE
v=10"3 -
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Numerical results

Numerical solution with

v =102

N=600, =1.0e-06

Nec00,

15 | R(E)

standard FE : 3/5

Resonant formulations

!
p. 19/ 29



-_’Ill Principle of the new discretization

Standard F.E. discretization,
except at x = 0 which is replaced by one integral relation for one ¢ € C&(Q)

Numerical results

{ Ja <b3<p'2 + (% — cx) e2g02> dx =0, Yo € H&’O,
Jo (Ff b3 — &G ¢'dx = Jo (a3 b3 — &) &) pax.
X
x=0

(e2)n € Py, (b3)n € Pp and (¢2)5 € Py — o
Principle : the same Finite Element, but one changes one line in the matrix.
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_!Ill Matrix structure

Numerical results

STANDARD :

NEW : 54 =

The number of points in the lines is

length (supyp)
Ax

Npoints =
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-'.Ill Comparison numerical solution /reference solution
(A.N.)

N=200

Numerical results
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JIL

Numerical results

Comparison numerical solution /reference solution

(AN.)
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_!Ill Coarsening the mesh

For the same analytical solution, we compare the two techniques for a coarse
mesh.
Number of cells is 48 then 12 : v = 10° for the "standard” FEM method.

Numerical results

[ classic

I

; _
— 1
Fa
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Section 3

2D
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-.Illl 2D extension

The method extends in multiD, where all previous techniques fail.

We consider the X-mode equations

2D
By +O,EY —OEy =0,
8,BY  —(a+iv)EV —iSEY =0,
—0xBY +idEY —(a+iv)EY =o.

The coefficients are a(x, y) and §(x,y) in C?(R?) N L (R?).
The function « vanishes on the vertical line and only there, i.e.,

a(x,y) <0, x<0, y€eR,
a(0,y)=0, x=0, y€eR
a(x,y) >0, x>0 yeR.

The function ¢ is uniformly positive : 0 < d_ < § < d4.

Resonant formulations
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_!Ill Manufactured solutions

Set r(y) = 9xa(0,y) < 0 and o(y) = §(0,y) > 0.
The following limits hold in the same spaces as v — 07

w ,,‘M
F 7 (xy) = — (r(}(})’i) (r(y)x + i0t) ™" 707,

/ _ig'w
F2W’+(X:Y) = m <w(y)(r(y)x+ i0t) T 4. > ,

_jo
1—(r(y)x+i0t) "7

G (xy) = a(y)w(y)

o’(y)
where the complex powers are defined according to the principal value of the
logarithm
i i iXlog |a| if 0
S 1 S 1 SOVIA e ita>0, *
(a+i0™)"* = V|L>n3+(a+”/) = {ei)\(loga|+i7r) ifa<0, for ae R*, AeR.
The new phase term highly depends on
0
!
= —ex.
a'(y) 95 %
The singular manufactured solution satisfies the bound

7

2ot TN Mg ) #1657 N oy < 00 i

:
Resonant formulations p. 26 /29



_i_[ll Representation

The plasma-dependent parameters are a(x,y) = —x and d(x,y) = y2 4+ 1.
1

10000
80000 \

60000

40000 o

20000 — s

2 - .

-20000 -10

-40000 : -15
2D -60000 (p— 20

-0.1 -0.05
X X

Real part of the singular manufactured solution
1 1 x<0
1,+\ o = ’
Real (Fl ) ~ cos(2y log |x|) x { exp(=27y), x>0

on a 2D domain Q = (—1,1)?, with dissipation v = 0.001 and weight w = 1.

The right plot shows the same function in logscale, to improve the visibility of the
oscillations along y outside the bottom-lower region where the negative sign of
o’(y) := 8,6(y,0) creates an exponential growths in the —y direction.

Not seen so far in any textbook in plasma physics.
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-.'Ill Perspectives

@ The mathematics of resonant Maxwell's equations is challenging.
Simplification with v = 0 is wrong. New insights in the regime v = 0.
@ The multiD theory is surprising : new divergence relation, new
quasi-solutions with singularity 1/x combined with highly oscillatory phase.
2D @ New approach fro FE solver where manufactured solutions (i.e.
quasi-modes) are explicitly used for the discretization.
Practical prescription : do not change the spaces, change a few lines in the
matrix.
The results are more accurate, even for coarse meshes. No tuning of the v.
@ An interesting problem (Lu-Colas, ...) is mode-coupling : in ITER, the
angle is 0 =~ 7 deg
£l sin20+£” cos? 6 iex sin @ (g —e1)sinfcosd
—iexsinf e iex cos @
(a” —¢e1)sinfcos —iexcos e, cos?f+ £l sin2 0

1)
Il

- Preprint (2016) : Martin Campos-Pinto -B.D., Constructive formulations of resonant Maxwell’s equations.

- A. Nicolopoulos : M2 report, 2016.
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JIL

Advertisement : official announcement very soon.

Summer School CEA-EDF-INRIA : "Waves and fusion plasmas” on modern
modeling aspects and related numerical methods.

Scientific committee : Eric Sonnendrucker (Garching), B. Després (LJLL-UPMC,
Paris), Martin Campos-Pinto (CNRS-LJLL, Paris), Lise-Marie Imbert-Gérard
(Courant Institute, New York).

Date : first week July 2017. Where : Inria in Paris.

Tentative program.
Courses delivered by : Rémi Dumont (IRFM-CEA Cadarache), Omar Maj
(IPP-Garching), Emanuele Poli (IPP-Garching), Lise-Marie Imbert-Gérard

(Courant, NYU), Leslie Greengard (Courant, NYU), Laurent Colas (IRFM-CEA
Cadarache).

Plus additional research talks.
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