DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics

Y. Sarazin, Y. Asahi², N. Bouzat, G. Dif-Pradalier,
P. Donnel, C. Ehrlacher, C. Emeriau³, X. Garbet,
Ph. Ghendrih, V. Grandgirard, G. Latu,
C. Passeron

CEA, IRFM, 13108 Saint Paul-lez-Durance, France. ² also JAEA, Japan. ³ also CEA, IRFU, Saclay, France.

- Fusion plasmas weakly collisional (ITER: $v^* \sim n/T^2 \sim 10^{-3} \sim qR/\lambda_{lpm}$)
 - F can depart from a Maxwellian \Rightarrow kinetic description mandatory
- Gyro-freq. $d\phi_c/dt \sim 10^8 >>$ Turb. freq. $\sim 10^5 \rightarrow \phi_c$ can be safely "averaged out"
 - \Rightarrow phase-space reduction: 6D F(**x**,v_{//},µ, ϕ_c ,t) \rightarrow

4D+1D
$$F_G(\mathbf{x}_G, \mathbf{v}_{//}, \mu, t)$$

Adiabatic invariant
 $\mu = m v_{\perp}^2 / 2B$

[Frieman-Chen, 1982, Littlejohn, 1983; Brizard-Hahm, 2007]

Maxwell's eqs. on F \Rightarrow requires relation F \leftrightarrow F_G \Rightarrow polarization density: n = n_G + n_{pol}

IRfm

[Grandgirard, CPC 2016]

Self-consistently coupled Gyrokinetic & Quasi-Neutral eqs:

$$dF_{Gs}/dt = S + C(F_{Gs}) + D_{BC}$$

4D advection Source Collisions Boundary Conditions
$$L(\phi) = \sum_{s} \int d\mathbf{v} J_{s} \cdot F_{Gs}$$

 $\begin{array}{|c|c|c|} \hline \mbox{Peculiarities:} & \mbox{global} & \rightarrow \mbox{ boundary conditions} \\ \hline \mbox{full-F} & \rightarrow \mbox{ multi-scale physics} \\ \hline \mbox{flux-driven} & \rightarrow \mbox{ steady-state on } \tau_{\rm E} \end{array}$

Backward semi-Lagrangian scheme: Trajectories (F_G=Cst) followed backwards on fixed grid (weak noise, moderate dissip.)

Physics upgrades \rightarrow numerical challenges \rightarrow present solutions & issues

- Boundary conditions: core (r=0) & scrape-off layer
- Kinetic electrons: Field aligned method & open issues
- Small scale physics: gyro-average operator & boundary issue
- Neoclassical transport: collision operator & parallelization issue

Removing Inner Boundary Condition: r = 0

Issue at r=0: divergence of metric (1/r) + too many θ points

Previously: $r_{min} > 0 \rightarrow |$ Dirichlet for ϕ_{mn} Neumann for ϕ_{00}

Upgrade:

Poisson (trick): $r_{min} = \Delta r/2 \Rightarrow$ no BC required in r

Vlasov: bilinear interpolation in 0<r<r_{min}

0.8

n

-0.2

0.2

Zoon on poloidal cut (f - f_init) [at nu=0.05, vpar=3.1 vth, phi=0

0

CEA | Y. Sarazin | Page 5

0.2

0

0.0001

-0.0001

-0.0002 -0.0003 -0.0004

Я

Towards Scrape-Off Layer physics r>a

Coupling core (r/a<1) – SOL (r/a>1) is important: H-mode, impurities & neutrals

Critical challenges:

close/open magnetic surfaces (periodicity; plasmasurface interaction) relative fluctuation levels

particle sources/sinks

Possible alternatives: penalization and/or transition towards fluid description?

Kinetic electrons & spurious ω_H modes

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Electrostatic limit \rightarrow spurious " ω_{H} " modes: $\omega_{H} / \omega_{ci} = (k_{//} / k_{\perp}) (m_{i} / m_{e})^{1/2}$ [Lee 1987]
 - Correspond to hydro-dynamical limit ($\omega >> k_{//} v_{th}$) of ITG disp. rel.
 - Also: electrostatic limit ($\beta=0$) of kinetic Alfvén wave

$$\omega_{KAW}^2 = k_{\parallel}^2 v_A^2 \; \frac{1 + k_{\perp}^2 \rho_i^2}{1 + k_{\perp}^2 d_e^2} = \frac{k_{\parallel}^2 \rho_i^2 \; \omega_{ci}^2}{k_{\perp}^2 \rho_i^2 (m_e/m_i) + \beta/2} \; (1 + k_{\perp}^2 \rho_i^2)$$
[Scott 1997]

 \Rightarrow Should disappear in electromagnetics (for $\beta > (k_{\perp}\rho_i)^2 m_e/m_i \sim 2.10^{-5})$

Trick: disappear when filtering out $(m \neq 0, n=0)$ modes in QN eq.

[Idomura 2016]

IPL FRATRES, Strasbourg, November 16-18, 2016

[Ehrlacher 2016]

Kinetic electrons & Field-aligned method

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $v_{the} \sim (m_i/m_e)^{1/2} \times v_{thi} \sim 10^8 \text{m.s}^{-1} \Rightarrow \text{time step / } (m_i/m_e)^{1/2}$ $\rho_e \sim \rho_i/(m_i/m_e)^{1/2} \sim \rho_i/60 \sim 50 \mu \text{m} \Rightarrow \text{nb grid points} \times (m_i/m_e)^{3/2}$
 - Reducing numerical cost:
 - filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
 - Using field-aligned method

[[]Ottaviani 2011; Hariri 2013]

CEA | Y. Sarazin | Page 8

 $[\]rightarrow$ nb grid points $\times (m_i/m_e)$ only

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $v_{the} \sim (m_i/m_e)^{1/2} \times v_{thi} \sim 10^8 \text{m.s}^{-1} \Rightarrow \text{time step / } (m_i/m_e)^{1/2}$ $\rho_e \sim \rho_i/(m_i/m_e)^{1/2} \sim \rho_i/60 \sim 50 \mu \text{m} \Rightarrow \text{nb grid points} \times (m_i/m_e)^{3/2}$
 - Reducing numerical cost:
 - filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
 - Using field-aligned method

 \rightarrow nb grid points ×(m_i/m_e) only

[Ottaviani 2011; Hariri 2013]

- Optimized parallelization: memory OK, time+30%
- Less toroidal points:
 ~ Ν_ω / 8

Kinetic electrons & Field-aligned method

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $v_{the} \sim (m_i/m_e)^{1/2} \times v_{thi} \sim 10^8 \text{m.s}^{-1} \Rightarrow \text{time step / } (m_i/m_e)^{1/2}$ $\rho_e \sim \rho_i/(m_i/m_e)^{1/2} \sim \rho_i/60 \sim 50 \mu \text{m} \Rightarrow \text{nb grid points} \times (m_i/m_e)^{3/2}$
 - Reducing numerical cost:

Log $|FT\{\phi(\theta,\phi)\}|$

- filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
- Using field-aligned method

[Ottaviani 2011; Hariri 2013]

- t=6000 t=7000 -1.6 -2.4 -3.2 n n -4.0 $000.0/\omega_c$ $00.0/\omega_c$ -10 -10 0.09 $\bar{\mathsf{m}}^{100}$ $\overline{\mathsf{m}}^{100}$ 0.4 0.06 Aliasing Spurious 0.2 0.03 $\Rightarrow OK$ 0.00 0.0 \rightarrow origin? -0.03 -0.2 -0.06 -0.4 -0.09 -0.6 IPL FRATRES, \$ 0.12
 - Optimized parallelization: memory OK, time+30%
 - Less toroidal points: ~ N_{\oppi} / 8
 - Spurious modes: under investigation

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $v_{the} \sim (m_i/m_e)^{1/2} \times v_{thi} \sim 10^8 \text{m.s}^{-1} \Rightarrow \text{time step } / (m_i/m_e)^{1/2}$ $\rho_e \sim \rho_i / (m_i/m_e)^{1/2} \sim \rho_i / 60 \sim 50 \mu \text{m} \Rightarrow \text{nb grid points} \times (m_i/m_e)^{3/2}$
 - Reducing numerical cost:
 - filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
 - Using field-aligned method

- Optimized parallelization: memory OK, time+30%
- Less toroidal points: 0.12 ~ N₀ / 8 0.09 0.06

 \rightarrow nb grid points $\times (m_i/m_p)$ only

0.00

-0.06

-0.09

-0.12

- 0.03 Spurious modes: under investigation -0.03
 - \Rightarrow OK when filtered out

CEA | Y. Sarazin | Page 11

[[]Ottaviani 2011; Hariri 2013]

Small scales & gyro-average operator

CEA | Y. Sarazin | Page 12

Collisions: physical & numerical issues

- Critical for: flow damping: friction on trapped particles, Zonal Flow damping impurity transport (synergy turbulent-neoclassical) [Estève 2016] momentum & energy exchanges between species
- Constraints: Boltzmann H-theorem (entropy production, equil.=Maxwellian)
 [Hirshman-Sigmar 1977; Helander-Sigmar 2005]
 Neoclassical transport = collisions
 - Collisions break down μ -invariance \rightarrow parallelization issue

$$C_{a}(F_{a}) = \sum_{b} \left[\frac{T_{b} - T_{a}}{T_{a}} \frac{m_{a}v^{2}}{2T_{a}} \nu_{E,ab} - \nu_{s,ab}(v) \frac{m_{a}}{T_{a}} v_{\parallel} \left(U_{\parallel d,a} - U_{\parallel ba} \right) \right] F_{M0a} + C_{v,ab}(F_{a}) + C_{d,ab}(F_{a})$$

v-motion

(radial & deflection)

- Conservation properties OK (on $\tau_{coll.}$): $\frac{\Delta n}{n} \simeq 10^{-5} \quad \frac{\Delta p_{\parallel}}{p_{\parallel}} \simeq 10^{-5} \quad \frac{\Delta E}{E} \simeq 10^{-4}$
- Neoclassical results under investigation

[Donnel 2016] **Projection on Laguerre polynomials in** $u = \frac{\mu B}{T}$ $F(\mathbf{r}, v_{\parallel}, u, t) = F_{M0a} \sum_{l} \alpha_{\ell}(\mathbf{r}, v_{\parallel}, t) P_{\ell}(u)$ \Rightarrow replace differential operators by integrals

[Garbet 2009: Dif Predalier 2011:

Estève 20

Collisions: physical & numerical issues

- Critical for: flow damping: friction on trapped particles, Zonal Flow damping impurity transport (synergy turbulent-neoclassical) [Estève 2016] momentum & energy exchanges between species
- Constraints: Boltzmann H-theorem (entropy production, equil.=Maxwellian)
 [Hirshman-Sigmar 1977; Helander-Sigmar 2005]
 Neoclassical transport = collisions
 - Collisions break down μ -invariance \rightarrow parallelization issue

[Garbet 2009: Dif Pradalier 2011:

Intricate upgrades of physics & numerical methods / parallelization

- **Boundary Conditions**": towards a model for the SOL \rightarrow gyro-fluid?
- Fully kinetic electrons (trapped & passing) still out of reach on present HPC Electromagnetics cure electrostatic artifacts Trapped kinetic + heavy electrons
- Multi-scale physics requires accurate gyro-average operator
- Collisions mandatory BUT: complex (linearized) operator + parallelization issue!

Back-up slides

DE LA RECHERCHE À L'INDUSTRI

[Donnel 2016]

$$\begin{split} C_{a}\left(F_{a}\right) &= \sum_{b} \left[\frac{T_{b} - T_{a}}{T_{a}} \frac{m_{a}v^{2}}{2T_{a}} \nu_{E,ab} - \nu_{s,ab}(v) \frac{m_{a}}{T_{a}} v_{\parallel} \left(U_{\parallel d,a} - U_{\parallel ba}\right) \right] F_{M0a} + C_{v,ab}(F_{a}) + C_{d,ab}(F_{a}) \\ & \text{Energy exchange} & \text{Momentum exchange} \\ \hline C_{v,ab}\left(F_{a}\right) &= \frac{1}{2B_{\parallel}^{*}v_{\perp}} \frac{\partial}{\partial v_{\perp}} \left[B_{\parallel}^{*}F_{M0a}\nu_{v,ab}v_{\perp}^{2} \left(v_{\perp} \frac{\partial g_{a}}{\partial v_{\perp}} + v_{\parallel} \frac{\partial g_{a}}{\partial v_{\parallel}} \right) \right] \\ & + \frac{1}{2B_{\parallel}^{*}} \frac{\partial}{\partial v_{\parallel}} \left[B_{\parallel}^{*}F_{M0a}\nu_{v,ab}v_{\parallel} \left(v_{\perp} \frac{\partial g_{a}}{\partial v_{\perp}} + v_{\parallel} \frac{\partial g_{a}}{\partial v_{\parallel}} \right) \right] \\ & C_{d,ab}\left(F_{a}\right) &= \frac{1}{2B_{\parallel}^{*}v_{\perp}} \frac{\partial}{\partial v_{\perp}} \left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel} \left(v_{\parallel} \frac{\partial g_{a}}{\partial v_{\perp}} - v_{\perp} \frac{\partial g_{a}}{\partial v_{\parallel}} \right) \right] \\ & + \frac{1}{2B_{\parallel}^{*}} \frac{\partial}{\partial v_{\parallel}} \left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel} \left(- v_{\parallel} \frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp} \frac{\partial g_{a}}{\partial v_{\parallel}} \right) \right] \\ & + \frac{1}{2B_{\parallel}^{*}} \frac{\partial}{\partial v_{\parallel}} \left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel} \left(- v_{\parallel} \frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp} \frac{\partial g_{a}}{\partial v_{\parallel}} \right) \right] \\ & \left\langle \dots \right\rangle_{a} = \int d^{3}v \frac{F_{M0a}}{n_{a}} \dots \\ \end{split}$$

- These terms are treated by projection on Laguerre polynomials, using a Crank-Nicolson scheme
- All the other terms are treated via finite differences with an explicit scheme