DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Gyrokinetic simulations with **GYSELA: Main current issues** in **physics & numerics**

Y. Sarazin, Y. Asahi², N. Bouzat, G. Dif-Pradalier, P. Donnel, C. Ehrlacher, C. Emeriau³, X. Garbet, Ph. Ghendrih, V. Grandgirard, G. Latu, C. Passeron

CEA, IRFM, 13108 Saint Paul-lez-Durance, France. ² also JAEA, Japan. ³ also CEA, IRFU, Saclay, France.

- Fusion plasmas weakly collisional (ITER: v^* ~n/T²~10⁻³ ~ qR/ $\lambda_{\ell mn}$)
	- F can depart from a Maxwellian \Rightarrow kinetic description mandatory
- Gyro-freq. d ϕ_c /dt~10⁸ >> Turb. freq.~10⁵ $\rightarrow \; \phi_c$ can be safely "averaged out"
	- \Rightarrow phase-space reduction: 6D $F(\mathbf{x},v_{\text{II}},\mu,\varphi_{\text{C}},t) \rightarrow$

4D+1D F_G(
$$
x_G
$$
, $v_{//}$, μ , t)
Adiabatic invariant
 $\mu=mv_{\perp}^2/2B$

Maxwell's eqs. on $F \Rightarrow$ requires relation $F \leftrightarrow F_G$ \Rightarrow polarization density: $n = n_G + n_{pol}$

[Grandgirard, CPC 2016]

Self-consistently coupled Gyrokinetic & Quasi-Neutral eqs:

$$
dF_{Gs}/dt = S + C(F_{Gs}) + D_{BC}
$$

\n4D advection Source Collins in the *Boundary Conditions*
\n
$$
L(\phi) = \sum_{s} \int d\mathbf{v} \, J_s \, F_{Gs}
$$

Peculiarities: | global \longrightarrow boundary conditions $full-F \rightarrow multi-scale physics$ flux-driven \rightarrow steady-state on $\tau_{\sf E}$

Backward semi-Lagrangian scheme: Trajectories (F_G =Cst) followed backwards on fixed grid (weak noise, moderate dissip.)

Physics upgrades \rightarrow numerical challenges \rightarrow present solutions & issues

- Boundary conditions: core (r=0) & scrape-off layer
- Kinetic electrons: Field aligned method & open issues
- Small scale physics: gyro-average operator & boundary issue
- Neoclassical transport: collision operator & parallelization issue

Removing Inner Boundary Condition: $r = 0$

Issue at r=0: divergence of metric $(1/r)$ + too many θ points

Previously: $r_{min} > 0 \rightarrow$ Dirichlet for ϕ_{mn} Neumann for ϕ_{00}

Upgrade:

Poisson (trick): $r_{min}=\Delta r/2 \Rightarrow$ no BC required in r

Vlasov: bilinear interpolation in $0 < r < r_{min}$

0.8 0 -0.8
-0.8 -0.8 0 0.8

[Latu-Mehrenberger, 2016]

Towards Scrape-Off Layer physics r>**a**

Coupling core (r/a<1) – SOL (r/a>1) is important: H-mode, impurities & neutrals

Critical challenges: close/open magnetic surfaces (periodicity; plasmasurface interaction) relative fluctuation levels

particle sources/sinks

Possible alternatives: penalization and/or transition towards fluid description?

Kinetic electrons & spurious ω_H **modes**

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Electrostatic limit \rightarrow spurious " ω_H " modes: $\omega_H / \omega_{ci} = (k_{//} / k_{\perp}) (m_{i}/m_e)^{1/2}$ [Lee 1987]
	- Correspond to hydro-dynamical limit ($\omega \gg k_y v_{th}$) of ITG disp. rel.
	- Also: electrostatic limit ($\beta=0$) of kinetic Alfvén wave

[Ehrlacher 2016]

$$
\omega_{KAW}^2 = k_{\parallel}^2 v_A^2 \frac{1 + k_{\perp}^2 \rho_i^2}{1 + k_{\perp}^2 d_e^2} = \frac{k_{\parallel}^2 \rho_i^2 \omega_{ci}^2}{k_{\perp}^2 \rho_i^2 (m_e/m_i) + \beta/2} (1 + k_{\perp}^2 \rho_i^2)
$$
 [Scott 1997]

 \Rightarrow Should disappear in electromagnetics (for β > (k $_{\perp}$ p_i)² m_e/m_i ~2.10^{–5})

Trick: disappear when filtering out $(m\neq0,n=0)$ modes in QN eq. \blacksquare [Idomura 2016]

Kinetic electrons & Field-aligned method

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $\|v_{\rm the} \sim (m_{\rm i}/m_{\rm e})^{1/2} \times v_{\rm thi} \sim 10^8$ m.s $^{-1} \;\; \Rightarrow$ time step / $(m_{\rm i}/m_{\rm e})^{1/2}$ $\rho_{\rm e} \sim \rho_{\rm i} / (m_{\rm i}/m_{\rm e})^{1/2} \sim \rho_{\rm i} / 60 \sim 50$ µm $\;\Rightarrow$ nb grid points $\times (m_{\rm i}/m_{\rm e})^{3/2}$
	- Reducing numerical cost:
		- filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016] /m_e) only
			- Using field-aligned method

CEA | Y. Sarazin | Page 8

Optimized parallelization: memory OK, time+30%

[[]Ottaviani 2011; Hariri 2013]

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $\|v_{\rm the} \sim (m_{\rm i}/m_{\rm e})^{1/2} \times v_{\rm thi} \sim 10^8$ m.s $^{-1} \;\; \Rightarrow$ time step / $(m_{\rm i}/m_{\rm e})^{1/2}$ $\rho_{\rm e} \sim \rho_{\rm i} / (m_{\rm i}/m_{\rm e})^{1/2} \sim \rho_{\rm i} / 60 \sim 50$ µm $\;\Rightarrow$ nb grid points $\times (m_{\rm i}/m_{\rm e})^{3/2}$
	- Reducing numerical cost:
		- filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
		- Using field-aligned method

/m_e) only [Ottaviani 2011; Hariri 2013]

- Optimized parallelization: memory OK, time+30%
- Less toroidal points: $\sim N_{\varphi}/8$

Kinetic electrons & Field-aligned method

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $\|v_{\rm the} \sim (m_{\rm i}/m_{\rm e})^{1/2} \times v_{\rm thi} \sim 10^8$ m.s $^{-1} \;\; \Rightarrow$ time step / $(m_{\rm i}/m_{\rm e})^{1/2}$ $\rho_{\rm e} \sim \rho_{\rm i} / (m_{\rm i}/m_{\rm e})^{1/2} \sim \rho_{\rm i} / 60 \sim 50$ µm $\;\Rightarrow$ nb grid points $\times (m_{\rm i}/m_{\rm e})^{3/2}$
	- Reducing numerical cost:
		- filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
		- \blacksquare Using field-aligned method
- /m_e) only

- Log $|FT{\phi(\theta,\varphi)}|$ $t=6000$ t=7000 t=7000 t=7000 t=7000 t=7000 t=7000 t=1. -1.6 -2.4 -3.2 n n -4.0 -5.6 $000.0/\omega_c$ $00.0/\omega_c$ -10 -10 0.09 $\overline{\mathsf{m}}^{\text{loc}}$ $\overline{\mathsf{m}}^{\text{loc}}$ $\overline{}$ 0.4 0.06 Aliasing **Spurious** $\overline{0.2}$ 0.03 \Rightarrow OK 0.00 \rightarrow origin? -0.03 -0.2 -0.06 -0.4 -0.09 -0.6 IPL FRATRES, Strasbourg, Strasbourg, November 16-18, 2016 CEA | Y. Sarazin
	- Optimized parallelization: memory OK, time+30%
	- Less toroidal points: $\sim N_{\varphi}/8$
	- Spurious modes: under investigation

[[]Ottaviani 2011; Hariri 2013]

- Kinetic electrons mandatory: particle transport + trapped electron modes
- Numerical issues $\|v_{\rm the} \sim (m_{\rm i}/m_{\rm e})^{1/2} \times v_{\rm thi} \sim 10^8$ m.s $^{-1} \;\; \Rightarrow$ time step / $(m_{\rm i}/m_{\rm e})^{1/2}$ $\rho_{\rm e} \sim \rho_{\rm i} / (m_{\rm i}/m_{\rm e})^{1/2} \sim \rho_{\rm i} / 60 \sim 50$ µm $\;\Rightarrow$ nb grid points $\times (m_{\rm i}/m_{\rm e})^{3/2}$
	- Reducing numerical cost:
		- filtering passing electrons (adiabatic) \rightarrow artificially large (m_e/m_i) ~OK [Bottino 2016]
			- Using field-aligned method

[[]Ottaviani 2011; Hariri 2013]

 Optimized parallelization: memory OK, time+30%

/m_e) only

- **Less toroidal points:** 0.12 $\sim N_{\varphi}/8$ 0.09 0.06
- 0.03 Spurious modes: 0.00 under investigation -0.03

 -0.06

 -0.09

 \Rightarrow OK when filtered out

CEA | Y. Sarazin | Page 11

Small scales & gyro-average operator

Collisions: physical & numerical issues

- Critical for: flow damping: friction on trapped particles, Zonal Flow damping impurity transport (synergy turbulent-neoclassical) [Estève 2016] momentum & energy exchanges between species
- Constraints: Boltzmann H-theorem (entropy production, equil.=Maxwellian) Neoclassical transport = collisions \mathcal{N} + trajectories [Hirshman-Sigmar 1977; Helander-Sigmar 2005]
	- Collisions break down μ -invariance \rightarrow parallelization issue

$$
C_a(F_a) = \sum_b \left[\frac{T_b - T_a m_a v^2}{T_a} \nu_{E,ab} - \nu_{s,ab}(v) \frac{m_a}{T_a} v_{\parallel} \left(U_{\parallel d,a} - U_{\parallel ba} \right) \right] F_{M0a} + C_{v,ab}(F_a) + C_{d,ab}(F_a)
$$

\n
$$
\text{Energy exchange}
$$

- Conservation properties OK (on $\tau_{coll.}$): $\frac{\Delta n}{n} \simeq 10^{-5}$ $\frac{\Delta p_{\parallel}}{p_{\parallel}} \simeq 10^{-5}$ $\frac{\Delta E}{E} \simeq 10^{-4}$
- Neoclassical results under investigation

[Donnel 2016] Projection on Laguerre polynomials in $u = \frac{\mu B}{T}$ $F(\boldsymbol{r},v_\parallel,u,t)=F_{M0a}\sum\alpha_\ell(\boldsymbol{r},v_\parallel,t)P_\ell(u)$ replace differential operators by integrals

[Garbet 2009; Dif-Pradalier 2011;

Estève 20

Collisions: physical & numerical issues

- Critical for: flow damping: friction on trapped particles, Zonal Flow damping impurity transport (synergy turbulent-neoclassical) [Estève 2016] momentum & energy exchanges between species
- Constraints: Boltzmann H-theorem (entropy production, equil.=Maxwellian) Neoclassical transport = collisions \mathcal{N} + trajectories [Hirshman-Sigmar 1977; Helander-Sigmar 2005]
	- Collisions break down μ -invariance \rightarrow parallelization issue

[Garbet 2009; Dif-Pradalier 2011;

Intricate upgrades of **physics** & **numerical methods** / **parallelization**

- "Boundary Conditions": towards a model for the SOL \rightarrow gyro-fluid?
- Fully kinetic electrons (trapped & passing) still out of reach on present HPC Electromagnetics cure electrostatic artifacts Trapped kinetic + heavy electrons
	- Multi-scale physics requires accurate gyro-average operator
- Collisions mandatory BUT: complex (linearized) operator + parallelization issue!

Back-up slides

[Donnel 2016]

$$
\begin{split} C_{a}\left(F_{a}\right) & =\sum_{b}\left[\frac{T_{b}-T_{a}}{T_{a}}\frac{m_{a}v^{2}}{2T_{a}}\nu_{E,ab}-\nu_{s,ab}(v)\frac{m_{a}}{T_{a}}v_{\parallel}\left(U_{\parallel d,a}-U_{\parallel ba}\right)\right] & F_{M0a} \right. \\ & \left. \begin{aligned} & F_{A0a}\left(F_{a}\right) =\frac{1}{2B_{\parallel}^{*}v_{\perp}}\frac{\partial}{\partial v_{\perp}}\left[B_{\parallel}^{*}F_{M0a}\nu_{v,ab}v_{\perp}^{2}\left(v_{\perp}\frac{\partial g_{a}}{\partial v_{\perp}}+v_{\parallel}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] & g_{ab}=f_{a}-\frac{m_{a}v_{\parallel}U_{\parallel d,a}}{T_{a}} \\ & \qquad +\frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{v,ab}v_{\parallel}\left(v_{\perp}\frac{\partial g_{a}}{\partial v_{\perp}}+v_{\parallel}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] & g_{ab}=f_{a}-\frac{m_{a}v_{\parallel}U_{\parallel d,a}}{T_{a}} \\ & \qquad -\frac{m_{a}v^{2}}{2T_{a}}q_{ba} \\ \\ & C_{d,ab}\left(F_{a}\right) & =\frac{1}{2B_{\parallel}^{*}v_{\perp}}\frac{\partial}{\partial v_{\perp}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel}\left(v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}}-v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] & q_{ab}=T_{b}\frac{\left\langle \nu_{E,ab}\frac{m_{a}v^{2}}{2}f_{a}\right\rangle_{a}}{\left\langle \nu_{E,ab}\left(\frac{m_{a}v^{2}}{2}\right)^{2}\right\rangle_{a}} \\ & \qquad +\frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}}+v_{\perp}\frac{\partial g_{a}}{\
$$

- These terms are treated by projection on Laguerre polynomials, using a Crank-Nicolson scheme
- All the other terms are treated via finite differences with an explicit scheme