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Introduction

Physical Context

Deuterium tritium fusion
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Introduction

Fusion plasma and instabilities

Very large number of possible instabilities — Numerical simulations
@ to help identify possible instabilities

@ to determine the stability domain constraining the operational range of the design

parameters
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stability studies use the MHD model
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Introduction

THE (ideal) MHD MODEL

Hydrodynamics :
0
ap + V- (pl.l) =0

7]
8t,ou—l—V~(pu®u)—|—Vp:FL

%p+u-Vp+'ypV-u:0

+ Maxwell (pre-maxwell) equations :

0
—B E=
ot + V x 0

//+V><B=J

systems coupled by Ohm's law E+ux B =10
and the def of the Lorentz force F; =J x B

e
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Introduction

THE MHD MODEL

First-order Hyperbolic system intensively studied from a mathematical and numerical view point

@ Nice properties :

e existence of a conservative form, existence of an entropy
e symmetry form
e hyperbolic
e eigensystem with explicit analytic expression
@ Not so nice :

e not strictly hyperbolic
e some fields are neither gnl nor Id
e existence of the involution V-B =0
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Introduction

MHD waves

Hyperbolic system with 3 different types of waves (+ entropy waves) If n is the
direction of propagation of the wave

o Fast Magnetosonic waves : A\f = u.n =+ Cr

1

C? = E(VfZ +vi+ (V2 +v3)2—4V2C3)
o Alfvén waves : A\r =u.n=+ Cy C2 = (B.n)?/p
@ Slow Magnetosonic waves : A\s = u.n+ Cs

1
G = S(VZ+ i~ V37— 4V2C)

va=|B%/p va : Alfvén speed
VZ2=n~p/p V; : acoustic speed
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Introduction

MHD waves are polarized

propagation speed depends on the direction w r to the magnetic field.
In particular if n-B =0

o Alfvén waves : A\ =0

@ Slow Magnetosonic waves : As =0

e Fast Magnetosonic waves : \r = +Cr with CZ2 = V2 + vf‘

only the Fast Magnetosonic waves survive !
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Introduction

MHD models in Tokamak simulation

8 variable (p,u, B, p) MHD model is not used intensively for Tokamak simulations

Large majority of Tokamak simulations are done with
MHD models

Example (Strauss Model 76) :

ou 0

E+[@,U]—[¢,J]—§J:0

9 dp _
o Tlodl -5 =0
U=Vip J=Viy

[f,g] =2V, fx Vig

-
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Introduction

Reduced MHD models

Models introduced in the 70 (Strauss, Physics of Fluids, 19, p 134, 1976)
Understand the derivation of the reduced models

Understand their properties

What are the waves that are filtered out by these models ?

Is it possible to obtain rigorous convergence results ?
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Singular limit of hyperbolic PDEs

Singular limit of hyperbolic PDEs

Let W € R" solution of the hyperbolic system with a _

1

Ao(W, s)@tW + Zj AJ'(W7 8)(3ij + E Zj CJ(?XJW =0
W(0,x,¢) = Woy(x,¢)

What is the behavior of the solutions when ¢ — 0 ?

Evolution equation : depends on the initial conditions | = 2 £ cases :

ISIGHIEESE : 5, Cjo, W(t = 0) ~ O(c)
W(t = 0) close to the kernel of the large operator s.t 3. C;0,,W /e stays
bounded.

Mfastiease] - >, o, W(t =0) ~0(1)

s’ - = Ay
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Singular limit of hyperbolic PDEs

Singular limit of hyperbolic PDEs

Explicit linear example |

Consider the linear system

Q +a.Vr +1divu =0
ot €

1
M avu +ivr—o
ot €

Compact form :
OV + HV-F% Lv=20

Hv = a.Vv is a constant convection operator

0 V.

l&lzu’a_—
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Singular limit of hyperbolic PDEs

Singular limit of hyperbolic PDEs

Explicit linear example Il

In Fourier space

90(k)
ot

+iffi(k) + énﬁ, WJik) =0 for ke 22 (4)
where the matrix H(k) 4 1/el.(k) is equal to :

ak ke ko/e

ki/e ak 0 (5)

ko/e 0 ak

DA
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Singular limit of hyperbolic PDEs

This matrix is diagonalizable, its eigenvectors are :

1 1 1 0

si(k) = N :2; i :: I , sa(k) = k]| —k/1<2

1 1
;o oss(k)=—7=| k/|k|
V2\ ko/ | K|
k
with associated eigenvalues \; = a.k — |T|’ Ao =akand \3 =ak+ %

Note : ;in physical space s,(k) corresponds to constant scalar fields
(Vr =0) and div free vectors (V . u=0)

4 £ ©aAc
- = 2 g
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Singular limit of hyperbolic PDEs

Singular limit of hyperbolic PDEs

Explicit linear example Il

u(k, t) =
75 (0k.0) = i 8(k.0) — A2 0(k 0))e @K1
|k|( kati(k, 0) + ki 0(k, 0))e~ @Kty (k)
+5(006,0) + i (k 0) + 2 0(k, 0))e @Ky i)

DA
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Singular limit of hyperbolic PDEs

Singular limit of hyperbolic PDEs

Explicit linear example 1V

Slow component belonging to the kernel of L

1 .
(k. 7) = 1y(—hed(k,0) + kio(k, 0))e~ @Kty (k)

that satisfies the limit system

ot

ovs + Hv, =0
Lvs =0
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Singular limit of hyperbolic PDEs

Singular limit of hyperbolic PDEs

Explicit linear example V

Fast oscillatory component V¢ (k, t, t/¢)

L[ 00 - Koo - |’§f|ﬂ( 0))e= ks, )[R +

V2 (5060) - 2 a00) - ok 0))e @ s IR

that solves :

{ %4‘ Lv: =0
ve(t,0) = W(t)

LY
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Singular limit of hyperbolic PDEs

Explicit linear example VI

Summary of the linear example

o v (t,x) = vs(t,x) +vi(t/e, t,x)
@ slow component : v°(t,x) satisfies the limit system

{ 6"5—}— Hvs; =0

ot
Lvs =0

e fast component : vf(t/e, 7,x) satisfying

-
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Singular limit of hyperbolic PDEs

Explicit linear example VII

Slow limit (Well-Prepared initial data)

o If the initial data € KerlL, then the fast component does not exist

o If the initial data v(t = 0) — Pkg, V(t = 0) < O(¢), then the fast
component remains < O(g)
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Singular limit of hyperbolic PDEs

Slow Singular limit in the non-linear case :

Assume the initial data is close to the kernel of the large operator L :

Wo(x,e) = W2(x) + e Wi (x,€) > Gowg =0
J

@ Solutions exist on some time independent of £ ?
@ Solutions converge to the solution of some limit system 7

Not always : counter-example (Schochet 1988) :
a(u)Oru + a(u)oxu+ 10,u =0
with ug(x, y,e) = ud(x) + eui(y).

I&lzu’a_—
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Singular limit of hyperbolic PDEs

Slow limit

If

Q Initial data :  Wpy(x,e) = W(x) + e W} (x,e) where > GO W =0
@ Structure of the system
@ Ao, A;j and C; are symmetric and C° continuous
@ Ao is positive definite and | Ay = Ao(eW)
@ The G are constant matrices
Then(Klainerman-Majda 1981-1982)

W(t,x, ) exist for a time T independent of & and converge to the solution of the
limit system :

Q Ao(0)d:W° + 37, Aj(W°,0)0,W° + >, G, W' =0
Q@ >, GoW =0
Q@ W(0,x) = Wg(x)
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Singular limit of hyperbolic PDEs

Slow limit : comments on the proof

e The C; are constant matrices existence of solution : Iterative scheme (Lax)

where each iterate is linear symmetric hyperbolic system where the energy
identity of Friedrichs holds :

OE=(V-A W,W)

. 1
with V- A = 0;Aq + Zj 0iA; + E%
o Ao = Ao(EW)

DA
éMWW):aﬁﬂW

DA 1
:—Eﬁg%ﬂ&@w+g@qw1
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Singular limit of hyperbolic PDEs

Slow limit : From the limit model to reduced model I.

Ao(0)0: WP + A;(W°,0)0, W + C;O,W! =0 and GO W?=0

Assume that M a parametrization of the kernel of L. = {C;0,-}
weR"—- W=Mw st LMw=0

Adjoint operator M* RN — R" (M(w),W) = (w, M*W)

then M*LL = 0 (Since L is skew symmetric)

Limit model can be written as a reduced model for w € R"

{ M*Ag(0)M Bpw + M*Aj(M(w),0)M dyw = 0

-
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Singular limit of hyperbolic PDEs

Slow limit : From the limit model to reduced model II.

In practice

L = {G;0x} is linear operator with constant coefficients

d
W = Mw = (D Py, + Po)w
j=1

{P;;j =0,d} : N x n constant matrices.

d
w=M"(W)=->"Po,W+P;W
j=1
where Pf;j =0,---,d are rectangular n x N matrices, transposes of the P;.

Note that the reduced system is a _ differential equation !

{ M Ag(0)M O + 32, M*A{(M(w), 0)M Oy = 0

l&z’ - QA
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Application to reduced MHD

Application to reduced MHD

Goal : Cast the MHD system in the previous general framework

p(p)%u +V(p+B?*2)—(BV)B =0 (7.1)

D
1 D
%EP-FV.U =0 (7.3)

@ Identify the large operator
@ Make sure the assumptions on the structure of the system are verified
© Apply the general result

-
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Application to reduced MHD

Large aspect ratio theory : geometrical setting

1. Scaling of the space variables

z

two scale analysis x = x/a,y = y/a but z = z/Ry and we assume & = a/Ry is small

Definitions : poloidal (x, y) plan ; toroidal z— direction

V=v, +Vv;z VI = VXt Vvyy
of of ov ov
f=_— —-— =4 =
Vi BXX+(9yy Vievy ox + dy

-
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Application to reduced MHD

The large aspect ratio theory
2. Field scaling

F

Magnetic field : B = B2 + Bp = By(z+¢B) (8.1)
Pressure : p=Po(p+eq) (8.2)
Velocity : u=cevav (8.3)

DA
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Application to reduced MHD

The large aspect ratio theory

3. Time scaling

Alfvén speed : vz = B2/po

The relevant time scale in MHD is a/va

Not in Tokamaks
— The perturbations propagate
along the field lines !

The relevant time scale in Tokamak is Ry/va = a/(eva)

Hervé Guillard - Jorek Seminar - 2015
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Application to reduced MHD

Scaled MHD equations

3
(P +eq) [EVH” VW] +0:(q+B)z+V B%2/2-9,8—(BL-V.)B

1
+e(pvz0,v + 8,(B?/2)z — B,8,B)+ =Vi(q+B.) =0 (9.2)
g

0
EBJ_ + (v VL)BL —(BL-Vi)vy +B1Vy vy =0
+e(v0.B1 —B;0,v) +9;v.B,)=0 (9.3)

0 1
afBz-F(VJ_~VJ_)BZ—(BJ_‘VJ_)VZ-Q-BZVJ_‘VJ_-FEVZ(%BZ-F -V,:vy, =0 (9.4)
T g

1

d 1
[ 2 g+ (viVi)g+evedeql +Ove + =Vh vy =0 (9.5)
(P +eq) o7 &

2 =33 =3 Q
- = =
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Application to reduced MHD

Apply the results of the general theory :

The solution converge to the solution of the limit system :

1o}
P(P)5-v + (v - VLV +02(q + Bz)z + V.B%/2—0;,8B—(BL-V.)B

+Vi(¢t+BL) =0 (10.2)
o

G*TBJ_ + (v -V)BL —(BL-Vi)vy +B1V) vy —9v; =0 (10.3)
0 1
EBZ—"_(VL'VL)BZ_(BL'VL)VZ+BZVL'VL+ VJ_'VJ_ =0 (10.4)
1.0 1

—[=q+ (vLi.V1)q] + Ozv; + Vi-v; =0 (10.5)
vp Ot

with
Vi(g+B:)=0

VJ_'VJ_ZO

-
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Application to reduced MHD

Analysis of the limit system |

e g+ B, ="1(2)
@ Combine toroidal Farady law and pressure equation to eliminate the
corrective term, keep the pressure equation.

o In the perp momentum equation, combine the V| 82/2 and V (q* + BL)
into a scalar “pressure” term VA
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Application to reduced MHD

Analysis of the limit system Il

_ sub-system for the perpendicular dynamics :

1

pEVJ_ — V//BJ_ + V1A =0 (11.1)

DJ_

EBJ_ —V//VJ_ =0 (112)

Vi-vy=0
_sub—system for the parallel dynamics :

1
pﬁvz-i—V//q:O (11.3)
1 D+

D—L—QHV Vi) V,=(BL-V.) +8
Dt~ oy 1-Vi y=BL-Vi -
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Application to reduced MHD

Analysis of the limit system IlI

The incompressible subsystem does not depend upon the compressible one
The compressible subsystem is a “slave” of the incompressible one

Only the incompressible sub-system need to be solved

V1 -B; = 0is an involution.

= concentrate on the incompressible sub-system

=3 =]
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Application to reduced MHD

Reduced form of the limit mode

M parametrization of the kernel of the large operator
KZ{(VJ_,BJ_);VJ_~VJ_ ZVJ_'BJ_ 20}
Introduce 2 scalar functions ¢, v such that

vi=zxV¢ (12.1)
B =zxVy (12.2)

For any scalar function F € H! if
M(F)=zx VF
The adjoint operator M* is defined by :
M W)=2z-VxW

(proof : Green formula)

s’ - = DA
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Application to reduced MHD

Reduced model

M Ag(0)M Dy + 32, M Aj(M(w), 0)M 8y =0

After some algebra :

PlEVie+v - Vi(Vip)]—BL -V Vig—EZVigp=0
Zptv Vi —Zp=0

can be written (Strauss Model 76) :

ou 0
o Tl U=l - 5-J=0

DA
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Application to reduced MHD

Reduced model : waves filtering

solutions of the reduced model verify : LW =0
On the fast (Alfvén) time scale a/va, the full model reduces to

oW +LW =0

whose solution are | fast transverse magnetosonic waves traveling in the direction
orthogonal to the magnetic field :

et}

o
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Application to reduced MHD

@ Conclusions

e Rigorous derivation of reduced MHD model

o lIdentification of the waves filtered out by the reduced models
@ Perspectives :

e Study the fast limit
o More complex models including curvature terms
@ Formulate the models in cylindrical coordinate
o High order corrections : convergence of the asymptotic expansion of the solution
o Relax the barotropic assumption
e Relax the assumption of small aspect ratio a/Ry and develop a theory based
on the small parameter p*

=) = DA
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