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Physical Context

Goal : controlled nuclear fusion
“Lawson” criterion : nτET >
5.1021m−3 s keV

Tokamaks : Toroidal cham-
ber where a very hot plasma
(150M oK ) is confined thanks to
very large magnetic field (200 K
x earth magnetic field)
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Fusion plasma and instabilities

Very large number of possible instabilities → Numerical simulations

to help identify possible instabilities

to determine the stability domain constraining the operational range of the design
parameters

stability domain of the
safety factor q = aBT

R0BP

stability studies use the MHD model
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THE (ideal) MHD MODEL

Hydrodynamics :
∂

∂t
ρ+∇ · (ρu) = 0

∂

∂t
ρu +∇ · (ρu⊗ u) +∇p = FL

∂

∂t
p + u · ∇p + γp∇ · u = 0

+ Maxwell (pre-maxwell) equations :

∂

∂t
B +∇× E = 0

�
�

��1

c2

∂

∂t
E +∇× B = J

systems coupled by Ohm’s law E + u× B = 0

and the def of the Lorentz force FL = J× B
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THE MHD MODEL

First-order Hyperbolic system intensively studied from a mathematical and numerical view point

1 Nice properties :

existence of a conservative form, existence of an entropy
symmetry form
hyperbolic
eigensystem with explicit analytic expression

2 Not so nice :

not strictly hyperbolic
some fields are neither gnl nor ld
existence of the involution ∇ · B = 0
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MHD waves

Hyperbolic system with 3 different types of waves (+ entropy waves) If n is the
direction of propagation of the wave

Fast Magnetosonic waves : λF = u.n± CF

C 2
F =

1

2
(V 2

t + v2
A +

√
(V 2

t + v2
A)2 − 4V 2

t C 2
A)

Alfvén waves : λF = u.n± CA C 2
A = (B.n)2/ρ

Slow Magnetosonic waves : λS = u.n± CS

C 2
S =

1

2
(V 2

t + v2
A −

√
(V 2

t + v2
A)2 − 4V 2

t C 2
A)

v2
A = |B|2/ρ vA : Alfvén speed

V 2
t = γp/ρ Vt : acoustic speed
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MHD waves are polarized

propagation speed depends on the direction w r to the magnetic field.
In particular if n · B = 0 :

Alfvén waves : λF = 0

Slow Magnetosonic waves : λS = 0

Fast Magnetosonic waves : λF = ±CF with C 2
F = V 2

t + v2
A

only the Fast Magnetosonic waves survive !

Hervé Guillard - Jorek Seminar - 2015 June 2015- 7



Introduction Singular limit of hyperbolic PDEs Application to reduced MHD

MHD models in Tokamak simulation

8 variable (ρ,u,B, p) MHD model is not used intensively for Tokamak simulations

Large majority of Tokamak simulations are done with
Reduced MHD models

Example (Strauss Model 76) :

∂U

∂t
+ [ϕ,U]− [ψ, J]− ∂

∂z
J = 0

∂ψ

∂t
+ [ϕ,ψ]− ∂ϕ

∂z
= 0

U = ∇2
⊥ϕ J = ∇2

⊥ψ

[f , g ] = z.∇⊥f ×∇⊥g
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Reduced MHD models

Models introduced in the 70 (Strauss, Physics of Fluids, 19, p 134, 1976)

Understand the derivation of the reduced models

Understand their properties

What are the waves that are filtered out by these models ?

Is it possible to obtain rigorous convergence results ?
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Singular limit of hyperbolic PDEs

Let W ∈ IRN solution of the hyperbolic system with a large operator{
A0(W, ε)∂tW +

∑
j Aj(W, ε)∂xj W +

1

ε

∑
j Cj∂xj W = 0

W(0, x, ε) = W0(x, ε)

What is the behavior of the solutions when ε→ 0 ?

Evolution equation : depends on the initial conditions ! ⇒ 2 6= cases :

slow case :
∑

j Cj∂xj W(t = 0) ∼ O(ε)
W(t = 0) close to the kernel of the large operator s.t

∑
j Cj∂xj W/ε stays

bounded.

fast case :
∑

j Cj∂xj W(t = 0) ∼ O(1)

Hervé Guillard - Jorek Seminar - 2015 June 2015- 10



Introduction Singular limit of hyperbolic PDEs Application to reduced MHD

Singular limit of hyperbolic PDEs
Explicit linear example I

Consider the linear system

∂r

∂t
+a.∇r +

1

ε
divu = 0

∂u

∂t
+a.∇u +

1

ε
∇r = 0

Compact form :

∂tv + Hv +
1

ε
Lv = 0

Hv = a.∇v is a constant convection operator

L =

 0 ∇·

∇ 0

 (3)
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Singular limit of hyperbolic PDEs
Explicit linear example II

In Fourier space

∂v̂(k)

∂t
+ i [Ĥ(k) +

1

ε
L̂ (k)]v̂(k) = 0 for k ∈ Z 2 (4)

where the matrix Ĥ(k) + 1/εL̂(k) is equal to :
a.k k1/ε k2/ε

k1/ε a.k 0

k2/ε 0 a.k

 (5)
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This matrix is diagonalizable, its eigenvectors are :

s1(k) =
1√
2

 1
−k1/ | k |
−k2/ | k |

 , s2(k) =
1

| k |

 0
−k2

k1



, s3(k) =
1√
2

 1
k1/ | k |
k2/ | k |


(6)

with associated eigenvalues λ1 = a.k− | k |
ε
, λ2 = a.k and λ3 = a.k +

| k |
ε

.

Note : L̂s2(k) = 0 ;in physical space s2(k) corresponds to constant scalar fields

(∇r = 0) and div free vectors (∇ . u = 0)
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Singular limit of hyperbolic PDEs
Explicit linear example III

v̂(k, t) =8>>>>>>>>><>>>>>>>>>:

1√
2

(r̂(k, 0)− k1

| k | û(k, 0)− k2

| k | v̂(k, 0))e−i(a.k−|k|/ε)ts1(k)

+
1

| k | (−k2û(k, 0) + k1v̂(k, 0))e−ia.kts2(k)

+
1√
2

(r̂(k, 0) +
k1

| k | û(k, 0) +
k2

| k | v̂(k, 0))e−i(a.k+|k|/ε)ts3(k)
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Singular limit of hyperbolic PDEs
Explicit linear example IV

Slow component belonging to the kernel of L

v̂s(k, τ) =
1

| k |
(−k2û(k, 0) + k1v̂(k, 0))e−ia.kts2(k)

that satisfies the limit system {
∂vs

∂t
+ Hvs = 0

Lvs = 0
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Singular limit of hyperbolic PDEs
Explicit linear example V

Fast oscillatory component v̂f (k, t, t/ε)

1√
2

8>><>>:
(r̂(k, 0)− k1

| k | û(k, 0)− k2

| k | v̂(k, 0))e−ia.kts1(k) e i|k|t/ε +

(r̂(k, 0)− k1

| k | û(k, 0)− k2

| k | v̂(k, 0))e−ia.kts3(k) e−i|k|t/ε

that solves : (
∂vf

∂τ
+ Lvs = 0

vf (t, 0) = W(t)
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Explicit linear example VI

Summary of the linear example

vε(t, x) = vs(t, x) + vf (t/ε, t, x)

slow component : vs(t, x) satisfies the limit system{
∂vs

∂t
+ Hvs = 0

Lvs = 0

fast component : vf (t/ε, τ, x) satisfying{
∂vf

∂τ
+ Lvs = 0

vf (t, 0) = W(t)
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Explicit linear example VII

Slow limit (Well-Prepared initial data)

If the initial data ∈ KerL, then the fast component does not exist

If the initial data v(t = 0)− PKerLv(t = 0) < O(ε), then the fast
component remains < O(ε)
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Slow Singular limit in the non-linear case :

Assume the initial data is close to the kernel of the large operator L :

W0(x, ε) = W 0
0 (x) + εW 1

0 (x, ε)
∑

j

Cj∂jW
0
0 = 0

Solutions exist on some time independent of ε ?

Solutions converge to the solution of some limit system ?

Not always : counter-example (Schochet 1988) :
a(u)∂tu + a(u)∂xu + 1

ε∂yu = 0
with u0(x , y , ε) = u0

0(x) + εu1
0(y).
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Slow limit

If

1 Initial data : W0(x, ε) = W 0
0 (x) + εW 1

0 (x, ε) where
∑

j Cj∂jW
0
0 = 0

2 Structure of the system
1 A0,Aj and Cj are symmetric and C s continuous

2 A0 is positive definite and A0 = A0(εW)

3 The Cj are constant matrices

Then(Klainerman-Majda 1981-1982)
W (t, x, ε) exist for a time T independent of ε and converge to the solution of the

limit system :

1 A0(0)∂tW
0 +

P
j Aj(W

0, 0)∂xj W
0 +

P
j Cj∂xj W

1 = 0

2
P

j Cj∂xj W
0 = 0

3 W0(0, x) = W 0
0 (x)

Hervé Guillard - Jorek Seminar - 2015 June 2015- 20



Introduction Singular limit of hyperbolic PDEs Application to reduced MHD

Slow limit : comments on the proof

The Cj are constant matrices existence of solution : Iterative scheme (Lax)

where each iterate is linear symmetric hyperbolic system where the energy
identity of Friedrichs holds :

∂tE = (∇ · ~A W,W)

with ∇ · ~A = ∂tA0 +
∑

j ∂jAj +
1

ε�
�∂jCj

A0 = A0(εW)

∂tA0(εW) =
DA0

DW
ε∂tW

= −DA0

DW
εA−1

0 [Aj∂jW +
1

ε
∂jCjW]
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Slow limit : From the limit model to reduced model I.

A0(0)∂tW0 + Aj(W
0, 0)∂xj W

0 + Cj∂xj W
1 = 0 and Cj∂xj W

0 = 0

Assume that ∃M a parametrization of the kernel of L = {Cj∂xj ·}

ω ∈ IRn → W =Mω s.t LMω = 0

Adjoint operator M∗ IRN → IRn (M(ω),W) = (ω,M∗W)

then M∗L = 0 (Since L is skew symmetric)

Limit model can be written as a reduced model for ω ∈ IRn{
M∗A0(0)M ∂tω +M∗Aj(M(ω), 0)M ∂xj ω = 0
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Slow limit : From the limit model to reduced model II.
In practice

L = {Cj∂xj ·} is linear operator with constant coefficients

W =Mω = (
d∑

j=1

Pj∂xj + P0)ω

{Pj ; j = 0, d} : N × n constant matrices.

ω =M∗(W) = −
d∑

j=1

P t
j ∂xj W + P t

0W

where P t
j ; j = 0, · · · , d are rectangular n × N matrices, transposes of the Pj .

Note that the reduced system is a third order differential equation !{
M∗A0(0)M ∂tω +

∑
jM∗Aj(M(ω), 0)M ∂xj ω = 0
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Application to reduced MHD

Goal : Cast the MHD system in the previous general framework

ρ(p)
D

Dt
u +∇(p + B2/2)− (B.∇)B = 0 (7.1)

D

Dt
B− (B.∇)u + B∇.u = 0 (7.2)

1

γp

D

Dt
p +∇.u = 0 (7.3)

1 Identify the large operator

2 Make sure the assumptions on the structure of the system are verified

3 Apply the general result
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Large aspect ratio theory : geometrical setting
1. Scaling of the space variables

two scale analysis x = x/a, y = y/a but z = z/R0 and we assume ε = a/R0 is small

Definitions : poloidal (x , y) plan ; toroidal z− direction

v = v⊥ + vzz v⊥ = vxx + vyy

∇⊥f =
∂f

∂x
x +

∂f

∂y
y ∇⊥ • v⊥ =

∂vx

∂x
+
∂vy

∂y
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The large aspect ratio theory
2. Field scaling

Magnetic field : B =
F

R
z + BP = B0(z + εB) (8.1)

Pressure : p = P0(p̄ + εq) (8.2)

Velocity : u = εvAv (8.3)
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The large aspect ratio theory
3. Time scaling

Alfvén speed : v2
A = B2

0/ρ0

The relevant time scale in MHD is a/vA

Not in Tokamaks
→ The perturbations propagate
along the field lines !

The relevant time scale in Tokamak is R0/vA = a/(εvA)
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Scaled MHD equations

ρ(p̄ + εq) [
∂

∂τ
v + (v⊥ · ∇⊥)v] + ∂z (q + Bz )z +∇⊥B2/2− ∂zB − (B⊥ · ∇⊥)B

+ε(ρvz∂zv + ∂z (B2/2)z− Bz∂zB) +
1

ε
∇⊥(q + Bz ) = 0 (9.2)

∂

∂τ
B⊥ + (v⊥ · ∇⊥)B⊥ − (B⊥ · ∇⊥)v⊥ + B⊥∇⊥ · v⊥ − ∂zv⊥

+ε(vz∂zB⊥ − Bz∂zv⊥ + ∂zvzB⊥) = 0 (9.3)

∂

∂τ
Bz + (v⊥ · ∇⊥)Bz − (B⊥ · ∇⊥)vz + Bz∇⊥ · v⊥ + εvz∂zBz +

1

ε
∇⊥ · v⊥ = 0 (9.4)

1

γ(p̄ + εq)
[
∂

∂τ
q + (v⊥.∇⊥)q + εvz∂zq] + ∂zvz +

1

ε
∇⊥ · v⊥ = 0 (9.5)
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Apply the results of the general theory :

The solution converge to the solution of the limit system :

ρ(p̄)[
∂

∂τ
v + (v⊥ · ∇⊥)v] + ∂z (q + Bz )z +∇⊥B2/2− ∂zB − (B⊥ · ∇⊥)B

+ ∇⊥(q1 + B1
z ) = 0 (10.2)

∂

∂τ
B⊥ + (v⊥ · ∇⊥)B⊥ − (B⊥ · ∇⊥)v⊥ + B⊥∇⊥ · v⊥ − ∂zv⊥ = 0 (10.3)

∂

∂τ
Bz + (v⊥ · ∇⊥)Bz − (B⊥ · ∇⊥)vz + Bz∇⊥ · v⊥ + ∇⊥ · v1

⊥ = 0 (10.4)

1

γp̄
[
∂

∂τ
q + (v⊥.∇⊥)q] + ∂zvz + ∇⊥ · v1

⊥ = 0 (10.5)

with
∇⊥(q + Bz ) = 0

∇⊥ · v⊥ = 0
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Analysis of the limit system I

q + Bz = f (z)

Combine toroidal Farady law and pressure equation to eliminate the
corrective term, keep the pressure equation.

In the perp momentum equation, combine the ∇⊥B2/2 and ∇⊥(q1 + B1
z )

into a scalar “pressure” term ∇⊥λ
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Analysis of the limit system II

Incompressible sub-system for the perpendicular dynamics :

ρ
D⊥

Dt
v⊥ −∇//B⊥ + ∇⊥λ = 0 (11.1)

D⊥

Dt
B⊥ −∇//v⊥ = 0 (11.2)

∇⊥ · v⊥ = 0

Compressible 1D sub-system for the parallel dynamics :

ρ
D⊥

Dt
vz +∇//q = 0 (11.3)

(
1

γp̄
+ 1)

D⊥

Dt
q +∇//vz = 0 (11.4)

D⊥

Dt
· =

∂

∂τ
·+ (v⊥ · ∇⊥) · ∇//· = (B⊥ · ∇⊥) ·+∂z ·
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Analysis of the limit system III

The incompressible subsystem does not depend upon the compressible one

The compressible subsystem is a “slave” of the incompressible one

Only the incompressible sub-system need to be solved

∇⊥ · B⊥ = 0 is an involution.

⇒ concentrate on the incompressible sub-system
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Reduced form of the limit model

M parametrization of the kernel of the large operator

K = {(v⊥,B⊥);∇⊥ · v⊥ = ∇⊥ · B⊥ = 0}

Introduce 2 scalar functions φ, ψ such that

v⊥ = z×∇φ (12.1)
B⊥ = z×∇ψ (12.2)

For any scalar function F ∈ H1 if

M(F ) = z×∇F

The adjoint operator M∗ is defined by :

M∗(W) = z · ∇ ×W

(proof : Green formula)
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Reduced model

M∗A0(0)M ∂tω +
∑

jM∗Aj(M(ω), 0)M ∂xj ω = 0

After some algebra :
ρ [ ∂∂τ∇

2
⊥ϕ+ v⊥ · ∇⊥(∇2

⊥ϕ)]− B⊥ · ∇⊥∇2
⊥ψ − ∂

∂z∇
2
⊥ψ = 0

∂
∂τ ψ + v⊥ · ∇⊥ψ − ∂

∂zϕ = 0


can be written (Strauss Model 76) :

∂U

∂t
+ [ϕ,U]− [ψ, J]− ∂

∂z
J = 0

∂ψ

∂t
+ [ϕ,ψ]− ∂ϕ

∂z
= 0

U = ∇2
⊥ϕ J = ∇2

⊥ψ [f , g ] = z.∇⊥f ×∇⊥g
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Reduced model : waves filtering

solutions of the reduced model verify : LW = 0
On the fast (Alfvén) time scale a/vA, the full model reduces to

∂tW + LW = 0

whose solution are fast transverse magnetosonic waves traveling in the direction
orthogonal to the magnetic field :
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Conclusions

Rigorous derivation of reduced MHD model
Identification of the waves filtered out by the reduced models

Perspectives :

Study the fast limit
More complex models including curvature terms

Formulate the models in cylindrical coordinate
High order corrections : convergence of the asymptotic expansion of the solution

Relax the barotropic assumption
Relax the assumption of small aspect ratio a/R0 and develop a theory based
on the small parameter ρ∗
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