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Challenge: 

Magnetic confinement  

of the plasma 

Context: Magnetic confinement in tokamaks 
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Temperature~100 million °C 

Plasma confined by gravity. 
  Temperature~15 million °C 
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Magnetic structure in tokamaks 
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Closed field 

lines 

Open 

field lines: 

Scrape-Off Layer 

Separatrix 

Divertor 

X-point 
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Magnetic structure in tokamaks 
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Magnetic surfaces nested into each other: → // transport >> ⊥ transport 

 → Poloidal flux 𝜓 labels magnetic surfaces 

→ Equilibrium profiles T, n ≈ 1D = 𝑓(𝜓) 
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→ Safety factor q characterizes helicity of field lines: 

 

→ Field lines close on themselves  

     on resonant surfaces 𝑞 = 𝑚/𝑛  
Ψ 

𝑞 𝜓 =
𝑑𝜑

𝑑𝜃
 

Magnetic structure in tokamaks 
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H-mode: improved confinement  

in X-point configuration 

 Improved confinement due to external transport barrier  

 

Plasma  

center 
Edge 

 Radial transport = turbulent 

→ turbulence stabilized at the edge 

→ External transport barrier 

→ Pressure profile on a "pedestal"  

→ Improved confinement 
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 BUT quasiperiodic relaxations of 

the edge plasma due to Edge 

Localized Modes (ELMs) 

 
Edge  

relaxation 

Filaments expelled from bulk plasma 
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Somehow analogous to solar eruptions… 
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[NASA 2014] 
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… are the Edge Localized Modes (ELMs) 

 in tokamaks 

7/48 

MAST [Kirk, ITPA 2010] 
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… are the Edge Localized Modes (ELMs) 

 in tokamaks 
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 Type-I ELMs (or giant ELMs): 

- Most harmful ELMs:  

expel 10-15% of the plasma 

- Short event ~0.1ms 

- Small frequency fELM ~ 10Hz 

MAST [Kirk, ITPA 2010] 
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… are the Edge Localized Modes (ELMs) 

 in tokamaks 

7/48 

 Type-I ELMs (or giant ELMs): 

- Most harmful ELMs:  

expel 10-15% of the plasma 

- Short event ~0.1ms 

- Small frequency fELM ~ 10Hz 

 Type-III ELMs: 

- Smaller relaxations:  

expel 1-5% of the plasma 

- Larger frequency fELM ~ 100Hz – 2kHz 

MAST [Kirk, ITPA 2010] 
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 ITER under construction: 

demonstrate the feasibility of 

an efficient energy production 

from fusion reactions 

 One of the main concerns: 

Control of the Edge Localized 

Modes (ELMs) 
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In ITER, TYPE-I ELM control will be mandatory 
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demonstrate the feasibility of 

an efficient energy production 

from fusion reactions 

 One of the main concerns: 

Control of the Edge Localized 

Modes (ELMs) 
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ITER → ELM energy~17MJ 

  → Acceptable: ~1MJ 

→ ELM control is mandatory 

 Tungsten sample after ELM–like 

power load produced by electron gun  
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Theoretical understanding:  

ELMs = Peeling-Ballooning (MHD) instabilities 

 Large edge current:  
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[Huysmans PPCF 2005] ψ 

J 

→ drives peeling/kink modes  
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[Huysmans PPCF 2005] 

ψ 

J 

→ drives peeling/kink modes  

ψ 

P 
Large edge pressure gradient: 

 

→drives ballooning modes 
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Theoretical understanding:  

ELMs = Peeling-Ballooning (MHD) instabilities 

 Large edge current:  

 

Large edge pressure gradient: 
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[Huysmans PPCF 2005] 

ψ 

J 

→ drives peeling/kink modes  

→drives ballooning modes 

ψ 

P 

- ELMs= 

 peeling-ballooning 

 modes 

- Theoretical  

description: 

Magnetohydro-

dynamics (MHD) 

KSTAR [Yun PRL2011] 
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Stability diagram 
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ELM-triggering threshold in 𝛻𝑃ped and Jped ∝ 𝛻𝑃ped  

→ idea: maintain the plasma under 𝛻𝑃ped threshold 

10/48 

Stability diagram 

 Aims:  Better understanding of ELM dynamics 

     Accurate reproduction of experimental features 

     Develop ELM control techniques 
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Resonant Magnetic Perturbations = RMPs  

RMP coils modify magnetic topology 
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 RMP coils:  

Magnetic  

Perturbation  

δB/B10-4 
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 RMP coils:  

Magnetic  

Perturbation  

δB/B10-4 

 

 

 

 Create magnetic reconnection  

on resonant surfaces q=m/n 

[J.Ongena, Nature16] 

q = helicity of field lines 

m = poloidal mode number 

n = toroidal mode number 
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 RMP coils:  

Magnetic  

Perturbation  

δB/B10-4 

 

 

 

 Create magnetic reconnection  

on resonant surfaces q=m/n 

[J.Ongena, Nature16] 

 Overlap of magnetic islands: 

→ chaotic / ergodic magnetic field 

[E. Nardon, PhD thesis 2007] 



Original goal of RMPs: 
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Ergodic layer at the edge:  

         transport ++    

[Original idea from Tore Supra’s ergodic divertor, Ghendrih PPCF96] 
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Original goal of RMPs: 
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Ergodic layer at the edge:  

         transport ++  reduced ∇P     no ELM drive 

ψ 

P 

stable plasma 

[Original idea from Tore Supra’s ergodic divertor, Ghendrih PPCF96] 



Unfortunately: more complicated picture 
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 For a same level of ergodization calculated in vacuum: 

[Fenstermacher IAEA2010, Suttrop PRL 2011] 

 

- DIII-D: 

- AUG: 

- JET: 

- MAST: 
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 For a same level of ergodization calculated in vacuum: 

[Fenstermacher IAEA2010, Suttrop PRL 2011] 

 

- DIII-D: 

- AUG: 

- JET: 

- MAST: 

Different behaviours due to plasma response to RMPs  

→ Needs better understanding 



Plasma response to RMPs 

François Orain et al.    

 Screening of Resonant perturbation: 

Plasma (electron) rotation   induce currents in response to RMPs  

             induce B field opposite to B perturbation 

             screening of RMPs 
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Plasma response to RMPs 

François Orain et al.    

 Screening of Resonant perturbation: 

Plasma (electron) rotation   induce currents in response to RMPs  

             induce B field opposite to B perturbation 

             screening of RMPs 
RMPs in vacuum RMPs with plasma response 

V┴e=0 High resistivity η 
 Other effect: Kink response: 

Amplification of stable peeling-kink modes by RMP.  

  
 Aims:  Better understanding of resonant and kink responses. 

     Depending on plasma response, RMP effect on ELMs? 
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Additional effect: increased transport of density= “pumpout” 
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AUG#31128: best ELM mitigation obtained with n=2 RMPs, coils= +90° : 

[Suttrop et al, PPCF 16] 
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AUG#31128: best ELM mitigation obtained with n=2 RMPs, coils= +90° : 

[Suttrop et al, PPCF 16] 

 One more aim:  understanding of mechanism of density pumpout 
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The JOREK code       jorek.eu 

 International context:  

 

- Developed by G. Huysmans at CEA [G. Huysmans and O. Czarny, NF 2007] 

- World leading non-linear MHD code with BOUT++, M3D, NIMROD 

- European collaboration (ITER, France, Germany, UK, Netherlands, Czech Rep.) 

 

 Structure:  

 

- Finite elements in poloidal plane → 2D cubic Bezier elements  

- Toroidal direction: Fourier decomposition: 

  e.g. temperature T= ∑ Tn exp(i n ) 

 

 Computations:  

 

- Fully implicit time stepping 

- Large sparse matrices (PastiX, [INRIA Team Bacchus, Hénon Parall. Comp 2002]) 

- Massively parallelized (MPI / OpenMP) → 256 – 1500 processors  

- Typical run: 10.000-200.000 cpuh  

16/48 

[O. Czarny, JCP 2008] 
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JOREK challenges 

 Main physics applications:  

 

- ELMs and control by RMPs, pellets, kicks, ELM-free regimes 

- Disruptions: mitigation by massive gas injection, runaway electrons 

 

 Challenges in physical description:  

 

- Realistic geometry (X-point, SOL…) 

- Non-linear MHD over long time scales (μs → s) 

- Realistic plasma parameters (resistivity) 

- Large number of toroidal harmonics 

 

 Computing issues:  

 

- Need refined mesh with large number of harmonics: 

→ resolution depends on linear solver performance (PASTIX) 

→ parallelization / memory consumption 
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Reduced MHD model implemented in JOREK: 

Ohm’s law: 

Poloidal 

momentum 

(vorticity): 

Tempe- 

rature: 

Mass  

density: 

Parallel 

momentum: 
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[Huysmans PPCF 2009, 

Orain PoP 2013] 
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Ohm’s law: 

Poloidal 

momentum 

(vorticity): 

Tempe- 

rature: 

Mass  

density: 

 - Neoclassical tensor: 
   [Gianakon PoP2002]  

Parallel 

momentum: 

Flows included in the model: 
          - ExB and diamagnetic drifts: 

- A source of 

toroidal rotation SV 
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[Huysmans PPCF 2009, 

Orain PoP 2013] 

Reduced MHD model implemented in JOREK: 
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Equilibrium flows affect ELM dynamics & RMP penetration: 

Source of toroidal rotation, sheath conditions, 

neoclassical effects and diamagnetic rotation 

 

 V|| 

||, d i v s
CV  

 Parallel flow: 

 Central plasma:  

source of toroidal 

rotation keeps initial 

experimental profile 

 SOL: sheath 

conditions on 

targets: 

V|| 
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Equilibrium flows affect ELM dynamics & RMP penetration: 

Source of toroidal rotation, sheath conditions, 
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 Central plasma:  
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rotation keeps initial 
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 SOL: sheath 

conditions on 
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V|| 

 Radial electric field: 

𝐸𝑟 = 𝛻 𝑝 𝑛 𝑒 + (𝑉𝜑𝐵𝜃 − 𝑉𝜃𝐵𝜑  

 

Er 

(kV/m) 
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Equilibrium flows affect ELM dynamics & RMP penetration: 

Source of toroidal rotation, sheath conditions, 

neoclassical effects and diamagnetic rotation 
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- Heat and particle sources: 

→ key to rebuild pedestal after ELM crash 
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Modeling choices and limitations 
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- Heat and particle sources: 
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Modeling choices and limitations 

d
D S

d t





 
 
 

    
 

( )

|| ||

d T
T T S

Td t

  

 
 
 

        
 

Temperature: 

Mass density: 

- η ∝ 𝑻−𝟑/𝟐 , K|| ∝ 𝑻𝟓/𝟐, 𝝂|| ∝ 𝑻−𝟑/𝟐 : temperature-dependent, K||/ K┴ = 2x108 

- Main numerical limit: central η0 10-100 times larger than experiment  
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A typical JOREK run: e.g. in ITER geometry 

1) Initial grid: polar grid for Bézier elements 

 

2) Flux-aligned grid including X-point and BC 

 

3) Equilibrium (n=0) flows 

 

4) Time integration for all n harmonics 
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A typical JOREK run: e.g. in ITER geometry 

1) Initial grid: polar grid for Bézier elements 

 

2) Flux-aligned grid including X-point and BC 

 

3) Equilibrium (n=0) flows 

 

4) Time integration for all n harmonics 

→ e.g. (n=3) RMPs 
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A typical JOREK run: e.g. in ITER geometry 

1) Initial grid: polar grid for Bézier elements 

 

2) Flux-aligned grid including X-point and BC 

 

3) Equilibrium (n=0) flows 

 

4) Time integration for all n harmonics 

→ e.g. (n=9) ELM 
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Single ELM crash simulation (w/o diamagnetic drifts) 

 

 

 Harmonics 0. . . 22 included 

 No diamagnetic flow  single ELM crash 

 Resistivity in simulation: 5x10-6 Ω.m = 10 x experimental value 
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Collapse of the edge pressure profile 

[Orain, Lessig 

et al, EPS2016] 
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Low-n structure observed in experiments : 

explained in modeling by non-linear coupling 

 Dominant magnetic components 

in TCV discharges = low n modes 

[Wenninger NF 2013] 

François Orain et al.    Séminaire, Université de Nice, 27 Avril 2017 

 Low-n numbers driven by 

non-linear coupling 

 well reproduced in simple 

mode-coupling model 

[Krebs et al, PoP 2013] 
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Diamagnetic rotation ω* instrumental to get ELM cycle 
Without diamagnetic rotation: single ELM 

ω*=0: single ELM: 
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Diamagnetic rotation ω* instrumental to get ELM cycle 
Without diamagnetic rotation: single ELM 

ω*=0: single ELM: 

-crash: large ergodic layer 

-modes keep unstable after ELM 
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Diamagnetic rotation ω* instrumental to get ELM cycle 

Destabilize Ballooning modes 

 

Stabilizing through ω*∝ 𝛻𝑃 

𝛁𝐏 Ambivalent role 
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Later after crash:  

heat source ↑↑𝛻P 

→ destabilization 

dominant  

Just after ELM crash: 

reduced 𝛻P 

→ ω* stabilization 
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Destabilize Ballooning modes 

 

Stabilizing through ω*∝ 𝛻𝑃 

Competition between stabilization and destabilization 

 → cyclic dynamics 

𝛁𝐏 Ambivalent role 

Later after crash:  

heat source ↑↑𝛻P 

→ destabilization 

dominant  

Just after ELM crash: 

reduced 𝛻P 

→ ω* stabilization 

dominant 

Diamagnetic rotation ω* instrumental to get ELM cycle 

François Orain et al.    Séminaire, Université de Nice, 27 Avril 2017 26/48 



JET case with ω*: ELM cycle: 

 Transient ELMs before quasiperiodic ELMy regime  

CYCLE:  

1st transient ELMs:  

- most unstable high-n 

mode dominate 

- depends on initial 

conditions 

Quasiperiodic ELMy regime  

- modes non-linearly 

coupled 

- self-organized 

27/48 

[Orain et al, PPCF2015, PRL 2015] 
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 Each ELM: relaxation of the 

pressure profile 

 Peeling-Ballooning diagram: 

ELM crashes occur at same Plimit  

1 

2 

3 

Quasiperiodic regime: ELM crashes occur at 

~same Plimit + ~same power deposition 
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 ~Same power deposition for all 

ELMs in quasiperiodic regime 
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pressure profile 
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Discussion: simulation on ELM dynamics 

→ Improved validation against experiment: exponential growth of 

instabilities, filamentation, non-linear coupling → low-n structures, heat 

power deposition on divertor targets, qualitatively similar as experiments 

 

→ Cyclic ELM dynamics: first time modeled. 

 → Two-fluid diamagnetic rotation: key ingredient 

 → Results from competition between stabilization and  

      destabilization by pressure gradient 

 → Similar behaviour for all ELMs in quasiperiodic ELMy regime 

 → Determined by intrinsic parameters rather than initial conditions 

 → Limitations: small ELMs, high frequency, large resistivity 

  

→ Directions to overcome limitations:  

 - more realistic sources 

 - more realistic bootstrap current 

 - improvement of numerical scheme needed to reduce resistivity 

 - simulations with turbulence → model self-consistent  

   transport barrier (long term) 
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Boundary conditions for RMPs 

1/ RMP field calculated in vacuum  

(VACFIELD code [Strumberger 05])  

 

 

 

2/ Applied at the boundary of JOREK domain  

    and increased in 1000 tA 

→ penetration takes into account plasma response 
 

 RMP spectrum applied as boundary condition 

AUG:  

RMP n=2,  

Icoil= 5-6 kAt 



JET case: RMP ON → n=2 driven mode  

→ current perturbations on resonant surfaces 

Penetration of the 

magn. flux perturbation 

Current profile 

q 

= 

3/2 

q 

= 

2 

q 

= 

5/2 

Response currents 

Jmn on q=m/n 
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 Without RMPs:  

n=2 mode → stable 

 

 With RMPs:  growth of the 

n=2 mode driven by RMPs 

Penetration of the 

magn. flux perturbation 

Current profile 

q 

= 

3/2 

q 

= 

2 

q 

= 

5/2 

Response currents 

Jmn on q=m/n 
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JET case: RMP ON → n=2 driven mode  

→ current perturbations on resonant surfaces 
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RMP screening by plasma  

perpendicular rotation (ExB + diamagnetic)  

 

with flows w/o flows 

JET #77329 

No flows: RMP generate magnetic 

islands on rational surfaces q= m/n 

→ large ergodic layer 

→ lobe structure near X-point 

 

[Orain PoP 2013]  
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With flows: RMP screening: 

→ Smaller islands in the bulk plasma 

→ Smaller edge ergodic layer 

(r/a>0.95) 

→ Shorter lobes near the X-point 
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Other effects of RMPs:  

 3D-corrugation of plasma profiles 

  Edge ergodization → enhanced transport 

MAST: → 3D corrugation of Te, ne profiles 

   → small degradation of the pedestal  

  (transport ++ by ergodization) 

w/o flows with flows 

→ 3D-displacement 

of the separatrix 

→ Maximal distortion  

near the X-point: lobes 
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MAST: → 3D corrugation of Te, ne profiles 

   → small degradation of the pedestal  

  (transport ++ by ergodization) 

Edge ergodization by RMPs 

→ increased particle and 

heat transport near the X-

point + strike-point splitting 

w/o flows with flows 

→ 3D-displacement 

of the separatrix 

→ Maximal distortion  

near the X-point: lobes 

 

[Orain PoP2013] 
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Other effects of RMPs:  

 3D-corrugation of plasma profiles 

  Edge ergodization → enhanced transport 
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Close comparison to experimental results in 

AUG 

Rotation of differential phase   

between upper and lower coil currents 

→ change applied RMP spectrum 

→ change plasma response to RMP 

 Input from exp:  

- H-mode plasma at low collisionality  

- n=2 RMPs applied  

 In this part, only n=2 and n=0 modes included in modeling. 

 



 RMP-induced magnetic topology: 

- Edge ergodic layer 

- Lobe structures near X-point 
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Typical plasma response: RMP screening except at very edge 



 RMP-induced magnetic topology: 

- Edge ergodic layer 

- Lobe structures near X-point 
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 Magnetic islands on resonant surfaces 

Perpendicular 

electron 

velocity 
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q
 

q=4/2        5/2   6/2   7/2 8/2 9/2 

-
 


 

Typical plasma response: RMP screening except at very edge 



Magnetic topology at the edge depends on applied spectrum 
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Larger ergodic layer for strong mitigation case =+90° 

=+90°: kinking max near X-point ; =-90°: kinking max at midplane  

q
 

-
 


 

0.9                       1 0.9                       1 0.9                       1 

 =+90° 

 

 =-90° 

 

Even ( =0°) 

 

Exp: strongest ELM mitig.  smaller ELM mitig.  No mitigation 

[F.Orain, NF2016] 



Resonant component very similar at pedestal top (q7/2). 

config  =60 to 90° most resonant at very edge (>0.97) 
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Magnetic flux perturbation on resonant surfaces 



Footprints on divertor largest for strong mitigation case 
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0 0 

 =+90° 

 

 =-90° 

 

Even ( =0°) 

 



Density profile displacement around X-point  
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Strong 

ELM mitigation  No mitigation 
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Largest edge kink response for strong mitigation case 

Radial perturbation of magnetic field 



40/48 Séminaire, Université de Nice, 27 Avril 2017 François Orain et al.    

 Edge kink response: modes m > nq amplified by RMPs 

 

 Poloidal coupling of m>nq kink modes with m resonant component     

     amplification of resonant response 

 

Largest edge kink response for strong mitigation case 

Radial perturbation of magnetic field 

[Orain et al, NF2016] 
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ELM mitigation by RMPs (n=2). Harmonics n=2,4,6,8.  

 

Without RMP → large crash due to n=8. 
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ELM mitigation by RMPs (n=2). Harmonics n=2,4,6,8.  

 

Without RMP → large crash due to n=8. 

 

 

 

  

With RMP→ small relaxations due to n=2,4,6,8. 

JET: n=2 RMP  

Icoil=20-80kAt 
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ELM mitigation by RMPs (n=2). Harmonics n=2,4,6,8.  

 

Without RMP → large crash due to n=8. 

 

 

 

  

With RMP→ small relaxations due to n=2,4,6,8. 
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JET: n=2 RMP  

Icoil=20-80kAt 
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ELM mitigation by RMPs (n=2). Harmonics n=2,4,6,8.  

 

Without RMP → large crash due to n=8. 

 

 

 

  

With RMP→ small relaxations due to n=2,4,6,8. 

Power deposition divided 

by ~10 with RMPs 
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JET: n=2 RMP  

Icoil=20-80kAt 
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ELM/RMP coupling → redistribution of energy from n=8 

to even n modes→ more continuous MHD activity 

 Mitigated ELMs = even modes 

n=2,4,6,8 non-linearly driven  

by n=2 RMPs 

 

 

 

 

 

 

 

 

 Initial magnetic energy of even 

modes (coupled with RMP)  

>>> odd modes  

(~remain at noise level) 
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n 0.8 1. n 0.8 1. 

 -π 

π 

q 

n 0.8 1. 

No RMP, ELM(n=2-8) Mainly n=8  RMP(n=2) w/o ELMs RMP(n=2) + ELMs (n=2-8) 

9/4; 14/6;15/6 

Magnetic topology "transformed" by RMPs: 

from n=8 ballooning to n=4-6 islands (tearing parity)  

n=8 n=2 + →n=4-6 
[Bécoulet, Orain et al, PRL2014] 
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Preliminary results on ELM/RMP interaction in AUG:  

Depending on plasma response, no effect on ELM or stabilization 

44/48 Séminaire, Université de Nice, 27 Avril 2017 François Orain et al.    

All modes from n=0-8 included 
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No RMP:  

ELM grow and crash,  

n=8 dominant 

 Magnetic energy: All modes from n=0-8 included 

Preliminary results on ELM/RMP interaction in AUG:  

Depending on plasma response, no effect on ELM or stabilization 
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Weak RMP penetration: 

no toroidal coupling 

ELM/RMP 

→ ELM crash  

No RMP:  

ELM grow and crash,  

n=8 dominant 

 Magnetic energy: All modes from n=0-8 included 

Preliminary results on ELM/RMP interaction in AUG:  

Depending on plasma response, no effect on ELM or stabilization 
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Large RMP penetration: 

Medium-n even modes 

coupled to n=2 RMP  

→ ELM stabilization  

Weak RMP penetration: 

no toroidal coupling 

ELM/RMP 

→ ELM crash  

No RMP:  

ELM grow and crash,  

n=8 dominant 

 Magnetic energy: 

[F.Orain et al, IAEA2016] 

All modes from n=0-8 included 

Preliminary results on ELM/RMP interaction in AUG:  

Depending on plasma response, no effect on ELM or stabilization 



Strong ELM mitigation case: ELM coupled to RMPs → 

structure and dynamics of medium-n driven by RMPs 
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 Growth rates of modes: 

=+90°: growth rates coupled =-90°: growth rates not coupled 
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Now: 1/ Apply RMPs (3D equilibrium) then 2/ include ELMs 

 Increasing ω* (and shear): 

→ Larger perpendicular rotation stabilizes mitigated ELMs. 

1/RMP on 
2/ add ELMs 

“resonant” 

“non-

resonant” 
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Other important parameters 

 Viscosity  / resistivity η: 

 

→ η ++: destabilizing since  

makes ELMs more unstable 

 

→  ++: stabilizing since 

increase RMP penetration 

 

ELM mitigation/suppression=f(, η, ω) 

+ RMP amplitude +other parameters?  
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Conclusion/discussion on ELM control by RMPs 
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 Plasma response and ELM/RMP interaction modeled for experimental parameters 

of H-mode AUG discharges: 
 

 Strongest ELM mitigation related to largest kink response near X-point.  

Mechanism: coupling between m>nq edge kink component with m resonant 

component  amplification of resonant perturbation at the edge. 
 

 For small RMP penetration, no coupling of ELMs and RMPs → ELM crash 

similar to no RMP case. For large RMP penetration, coupling of medium-n 

modes with n=2 RMP → mitigation or stabilization of ELMs. 

Mitigated ELMs more easily stabilized at large viscosity, small resistivity and 

large poloidal rotation. 

 Ongoing and future work: 

 Ongoing modeling to further understand ELM mitigation VS suppression. 

 Continue to investigate density pumpout. 

 Improved RMP model using JOREK-STARWALL. 

 ELM cycles with/without RMPs. 

 1st simulation of the ELM mitigation/ suppression by RMPs in JET-like study case: 
 

 Mechanism:  energy cascade from high n to the non-linearly coupled n modes 

→ more continuous MHD activity instead of a violent ELM crash 
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Plasma response to RMPs: mechanism 
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 Linearization on resonant surface q=m/n (steady state): 
 

 

 

 V,e  → induce response current to RMPs on resonant surfaces 

 → magnetic field opposite to RMPs → screening of RMPs 
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ω*>0: near-symmetric power deposition in 

inner/outer divertor targets 

Experimentally: ELM power deposition: 

either symmetry inner/outer divertor, either 2x more power on INNER divertor 

[Pitts NF 2007, Eich PRL 2003] 

Modeling without ω*: 

Deposition mainly in OUTER divertor 

 

ω*>0: Near-symmetric deposition 

in inner/outer divertor plates 

→ Closer to experiments 
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AUG experiments: ELM mitigation by n=2 RMP at low densitylow * 

Differential phase scan: study penetration = f(coils) 
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[Suttrop, Kirk et al, IAEA 2014]  Modeled coil configurations: 

•coils = +90°  

(shot #31128) 

            = +60°  

            = +30°  

 

•coils = -30° 

            = -60° 

            = -90° 

•coils = 0°  

(even parity) 


