

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

Network-wide Thermodynamic Constraints Shape NAD(P)H Cofactor Specificity of Metabolic Reactions

Steffen Klamt and Pavlos Stephanos Bekiaris

Max Planck Institute for Dynamics of Complex Technical Systems Research Group "Analysis and Redesign of Biological Networks"

11/15/2023

NADH / NADPH: Two ubiquitous redox cofactors

E. coli (iML1515): 128 reactions use NAD(H), 110 reactions use NADP(H), 6 reactions use both.

Nicotinamide adenine dinucleotide (NAD⁺)

Nicotinamide adenine dinucleotide phoshpate (NADP+)

NAD⁺ + 2 e⁻ + H⁺ \leftrightarrow NADH (Δ E'°= -320 mV) NADP⁺ + 2 e⁻ + H⁺ \leftrightarrow NADPH (Δ E'°= -320 mV)

NADH / NADPH: Two ubiquitous redox cofactors

Why two pools of (very similar) redox cofactors?

Simultaneous operation of oxidation and reduction reactions!

- Are two pools of redox cofactors really advantageous?
- What shapes the NAD(P)(H) reaction specificities in the network?

→ <u>Hypothesis</u>: NAD(H) and NADP(H) reaction specificities are distributed such that the network-wide thermodynamic driving force for growth is optimized.

Driving Forces of Reactions and Pathways

Example network with (given) standard Gibbs free energies of reactions:

Driving force of a specific pathway: minimum driving force of all reactions of the pathway

 $f_{Pathway} = \min(f_{R1}, f_{R2}, f_{R3}, f_{R4}, f_{R8})$ with fixed concentrations

Max-min Driving Force (MDF) of a Pathway and Network

(Noor et al., 2014)

MDF of network (also called OptMDF): find flux distribution r maximizing MDF of active reactions

 $MDF_{Network} = \max(MDF(\mathbf{r}))$ with given concentration ranges and flux constraints

(Hädicke et al., 2018)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

Max-min Driving Force (MDF) in a Network

MDF in a network (Hädicke et al., 2018)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

 $\begin{aligned} & Maximize \quad B \\ & s.t. \\ & \mathbf{Nr} = \mathbf{0} \\ & \alpha_i \leq r_i \leq \beta_i \\ & \ln(\mathbf{c_{min}}) \leq \mathbf{x} \leq \ln(\mathbf{c_{max}}) \\ & r_i \leq z_i \cdot \beta_i \\ & z_i \in \{0,1\} \end{aligned}$ $f_i = -\Delta_r G'_i = -\Delta_r G'^\circ - RT \cdot (\mathbf{N}_{*,i})^T \cdot \mathbf{x} \\ & B \leq f_i + M \cdot (1 - z_i), \qquad (M \text{ very large}) \end{aligned}$

Max-min Driving Force (MDF) of a Pathway and Network

Max-min driving force (MDF) of a pathway: maximal achievable driving force of the pathway $MDF_{Pathway} = \max(f_{Pathway}) = \max(\min(f_{R1}, f_{R2}, f_{R3}, f_{R4}, f_{R8}))$ within given concentration ranges

MDF of network (also called OptMDF): find flux distribution ${f r}$ maximizing MDF of active reactions

 $MDF_{Network} = \max(MDF(\mathbf{r}))$ with given concentration ranges and flux constraints

MDF of subnetwork (SubMDF): find flux distribution r maximizing MDF of selected set of reactions

e.g., SubMDF = $MDF(R_1, R_8)$ with given concentration ranges and flux constraints and demanded minimal MDF (e.g., >0 kJ/mol) of other active reactions

(Noor et al., 2013)

Metabolite concentrations under MDF minimize enzyme costs (neglecting saturation effects)

(Hädicke et al., 2018)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

(This work, 2023)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

Here: SubMDF with respect to NAD(P)(H)-dependent reactions

Max-min Driving Force in a Subnetwork (SubMDF)

MDF in a network (Hädicke et al., 2018)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

SubMDF in a network (Bekiaris and Klamt, 2023)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

Maximize MDF for selected reactions $\longrightarrow Maximize B_{sub}$ Maximize B s.t. s.t. Nr = 0Nr = 0 $\alpha_i \leq r_i \leq \beta_i$ $\alpha_i \leq r_i \leq \beta_i$ $\ln(\mathbf{c_{min}}) \leq \mathbf{x} \leq \ln(\mathbf{c_{max}})$ $\ln(\mathbf{c_{min}}) \leq \mathbf{x} \leq \ln(\mathbf{c_{max}})$ $r_i \leq z_i \cdot \beta_i$ $r_i \leq z_i \cdot \beta_i$ $z_i \in \{0,1\}$ $z_i \in \{0,1\}$ $f_i = -\Delta_r G'_i = -\Delta_r G'^\circ - RT \cdot (\mathbf{N}_{*,i})^T \cdot \mathbf{x}$ $f_i = -\Delta_r G'_i = -\Delta_r G'^\circ - RT \cdot (\mathbf{N}_{*i})^T \cdot \mathbf{x}$ $B \leq f_i + M \cdot (1 - z_i), \qquad (M \text{ very large})$ $B \leq f_i + M \cdot (1 - z_i), \qquad (M \text{ very large})$ Thermodynamic feasibility of entire flux vector $\longrightarrow B \ge 0.1$ Minimum Driving force of the subset S of selected reactions $\longrightarrow B_{sub} \leq f_i + M \cdot (1 - z_i)$, $\forall i \in S$

Max-min Driving Force (MDF) of a Pathway and Network

Max-min driving force (MDF) of a pathway: maximal achievable driving force of the pathway $MDF_{Pathway} = \max(f_{Pathway}) = \max(\min(f_{R1}, f_{R2}, f_{R3}, f_{R4}, f_{R8}))$ within given concentration ranges

MDF of network (also called OptMDF): find flux distribution **r** maximizing MDF of active reactions $MDF_{Network} = \max(MDF(\mathbf{r}))$ with given concentration ranges and flux constraints

MDF of subnetwork (SubMDF): find flux distribution r maximizing MDF of selected set of reactions

e.g., $SubMDF = MDF(R_1, R_8)$ with given concentration ranges and flux constraints and demanded minimal MDF (e.g., >0 kJ/mol) of other active reactions

(Noor et al., 2013)

Metabolite concentrations under MDF minimize enzyme costs (neglecting saturation effects)

(Hädicke et al., 2018)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

What NAD(P)(H) specificities maximize the MDF/SubMDF for growth-related flux distributions and how close is the wild-type specificity to this optimal specificty?

(This work, 2023)

→ Mixed-Integer Linear Program (MILP) within constraint-based metabolic model

Here: SubMDF with respect to NAD(P)(H)-dependent reactions

TCOSA: <u>T</u>hermodynamic <u>C</u>ofactor <u>S</u>wapping <u>A</u>nalysis

Reconfiguration of a given (stoichiometric) metabolic model for TCOSA:

Application to E. coli

Resulting model: iML1515_TCOSA (derived from genome-scale *E. coli* model *i*ML1515; Monk *et al.*, 2017).

- Substrate: glucose. Aerobic $(+O_2)$ and anaerobic $(-O_2)$ conditions.
- Metabolite concentration ranges: [10⁻⁶... 0.02 M]
- $\Delta_r G^{\circ}$ values: from eQuilibrator (Flamholz *et al.*, 2012) via its Python API (Beber *et al.*, 2021)

Wild-type specificity: Use original NAD(P)(H) specificity for the NAD(P)(H)-dependent reactions

Flexible specificity: NAD(P)(H) specificity can be freely selected for each reaction (but only one at a time for each reaction)

Single cofactor pool: Only NAD(H)-dependent reactions can be used (NADP(H) not allowed)

Random specificity: 1'000 random specificities (stochastic coin flip to select NAD(H) or NADP(H) specificity for each redox-cofactor-dependent reaction)

Analysis 1: (Sub)MDF Results for the Different Specificity Scenarios

<u>Conclusion #1: The wild-type NAD(P)H specificity enables</u> <u>high thermodynamic potentials that are (a) close to the theoretical</u> <u>maximum and (b) significantly better than random specificities</u> <u>or using a single redox cofactor pool.</u>

Analysis 2: Necessary Swaps in Wild-type Specificity to Reach the Theoretical Maximal (Sub)MDF of the Flexible Specificity

Oxygen availability	Growth rate [h⁻¹]	Number of necessary swaps in wild type to reach (Sub)MDF of flexible specificity	
		MDF	SubMDF
Aerobic	0.868	6	2
Aerobic	0.818	0	3
Aerobic	0.768	0	2
Aerobic	0.718	0	2
Aerobic	0.668	0	0
Aerobic	0.618	0	0
Aerobic	0.5680.518	0	0
Aerobic	0.4680.118	0	0
Aerobic	0.068	0	0
Aerobic	0.05	0	0
Anaerobic	0.371	1	1
Anaerobic	0.321	0	0
Anaerobic	0.271	9	14
Anaerobic	0.221	0	2
Anaerobic	0.171	0	5
Anaerobic	0.121	0	4
Anaerobic	0.071	0	3
Anaerobic	0.05	0	3

Analysis 2: Necessary Swaps in Wild-type Specificity to Reach the Theoretical Maximal (Sub)MDF of the Flexible Specificity

Two frequently suggested cofactor swaps to increase (Sub)MDF:

1) Pyruvate dehydrogenase

CoA + pyruvate + NAD⁺ \rightarrow acetyl-CoA + CO₂ + NADH (Δ G'° of -34.37 kJ/mol)

 \implies CoA + pyruvate + NADP⁺ \rightarrow acetyl-CoA + CO₂ + NADPH

Synthesis of NADPH (thermodynamically unfavorable) in a reaction that has very negative ΔG° .

2) Isocitrate dehydrogenase

isocitrate + NADP⁺ \rightarrow 2-oxoglutarate + CO₂ + NADPH (Δ G'° of +5.13 kJ/mol)

isocitrate + NAD⁺ \rightarrow 2-oxoglutarate + CO₂ + NADH

Use NAD⁺ (thermodynamically favorable) instead of NADP⁺ to overcome the positive $\Delta G^{\prime \circ}$ of this reaction.

(But: unfavorable when using acetate as substrate!).

Analysis 3: Trends of NAD(P)(H) Concentration Ratios

Observed trends in E. coli:

Analysis 3: Minimal/Maximal Concentration Ratios at Optimal (Sub)MDF (Wildtype Specificity)

Analysis 4: Effect of a Third Redox Cofactor Pool (Flexible Specificity)

3 redox potential scenarios:

Analysis 4: (Sub)MDF Results with 3 Cofactors (Flexible Specificity)

Conclusion #3: A third redox cofactor pool could be advantageous if it has a low standard redox potential!

Analysis 4: (Sub)MDF Results with 3 Cofactors (Flexible Specificity)

4HMoorella thermoacetica 4H⁴ HyfE HyfF EchA EchB HyfD ATPase Ech EchF EchC complex 2Fd HydABC +Pi NfnAB 40, + 2CO, Acetate + 0.5 ATP 2NADH NADE **2NADPH** NAD 2NADP NADPH NADP* 2NADH 2NAD ADP+Pi NADPH CHO-THE - CH-THE CH.-THE H THE- Formate Acetyl-CoA Acetyl-P 1196 1195 Moth 1194 1193 1192 1191 Met -ADP+Pi ATP HdrA HdrC HdrB Fd MetV MetF IdrC Acetate like

Schuchmann et al. Nat Rev Microbiol 12, 809-821 (2014).

Several autotrophic organisms like acetogens use ferredoxin (ΔE° of -420 mV) as a third major redox cofactor in many redox reactions.

 \rightarrow Additional degree of freedom to maintain high thermodynamic driving forces in their complicated redox metabolism.

Model for acetogenesis in Moorella thermoacetica.

Analysis 5: Robustness of the Results

A) Robustness against random variations of $\Delta_{\underline{r}}G^{\circ\circ}$

(implemented by random variations of the $\Delta_{\underline{f}}$ G'° of each metabolite)

B) Robustness against assumed metabolite concentration ranges

 \rightarrow in vivo concentration values from Bennett et al., 2009 (aerobic conditions)

For MDF: single bottleneck (independent of NAD(P(H) specificities)

Analysis 5: Robustness of the Results

C) Changing the substrate: acetate instead of glucose

(aerobic conditions only)

Conclusion #4: Results are robust against different variations

Conclusion

✓ TCOSA framework for analyzing the thermodynamic effects of (redox) cofactor swaps.

- Our analysis indicates that evolution shaped the NAD(P)(H) specificity of reactions to enable high thermodynamic potentials in the metabolic network.
 - minimizes enzyme demand for redox reactions (cf. also Goldford et al., 2022)

✓ We used MDF as a measure for the (network-wide) thermodynamic potential:

<u>Caveat:</u> A cell is likely not in a state close to a computed MDF (e.g., enzyme kinetics affects feasible metabolite concentrations and thus the MDF).

<u>But</u> the higher the (theoretical) MDF, the larger the thermodynamic flexibility of the network (broader ranges of feasible metabolite concentration)!

✓ TCOSA can be used for other species and/or other cofactor pairs (e.g., ATP/GTP) and even for predicting optimal cofactor specificities (e.g. metabolic engineering).

Acknowledgements

<u>MPI Magdeburg</u> Research Group Analysis and Redesign of Biological Networks

Thank you for your attention!

Bekiaris PS, Klamt S (2023) Network-wide Thermodynamic Constraints Shape NAD(P)H Cofactor Specificity of Biochemical Reactions. Nature Communications **14**:4660.