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Microbial communities

The most pervasive life form on the planet 

❑ ~1030 prokaryotic cells on earth vs. ~1024 stars in the universe
(Whitman et al, Proc Natl Acad Sci U S A, 1998) 

❑ Oceans, soil, plants, human body

Amaral-Zettler, 2010 Haichar et al, Soil Biol. Biochem., 2014 Morgan et al, Trends Genet., 2013 

❑ Volcanoes, Great Salt Lake, hot springs, acid mine drainage 



Applications
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Gut Microbiota Manipulation for Colorectal Cancer Management

Ubando et al., 2020, Bioresource Tech.

❑ Chemical production

Natural products produced from E. coli

Yang et al., 2020, Trends in Biotech.

Oil spill bioremediation

Balan et al., 2021, Archives of Microbiology

Ubando et al., 2020, Bioresource Tech.

❑Bioremediation

❑Biorefinery

❑Biomedical

To name a few…
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Metabolic reactions 
identified from 

genome sequence 

Biomass composition 
derived from experimental 

data in terms of 

macromolecules

Genome-scale 

metabolic model
that can describe 

cell growth

GEnome-scale metabolic Models (GEMs)

Lewis et al., Nat Rev 

Microb, 2012

https://www.nature.com/articles/nrmicro2737
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Flux Balance Analysis (FBA)

Lewis et al., Nat Rev 

Microb, 2012

for all metabolite i

𝑑𝑥𝑖
𝑑𝑡

= ෍

all reaction 𝑗

𝑆𝑖𝑗𝑣𝑗 = 0

Steady state assumption:

Balance of D:

1 v1 + −1 v2 + 1 v4 = 0

1

Reaction directionality:

𝑣𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 ≥ 0

Substrate available:

𝑏𝐴 ≤ 1

https://www.nature.com/articles/nrmicro2737
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Flux Balance Analysis (FBA)

Predict the max. biomass yield and metabolite productions using:

❑ Reaction stoichiometry and reversibility

❑Macromolecular composition of the biomass

for all metabolite i

for all reaction j

(Steady state assumption)

(Thermodynamic feasibility, 

nutrient availability)

(Biological objective function)

(Orth et al., Nat. Biotechnol., 2010)

Maximize vbiomass

subject to

https://www.nature.com/articles/nbt.1614
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Constraint-Based modeling techniques

(Price et al., Nat. Rev. Microb., 2004)

FBA-based modeling 

techniques have been 

developed and 

become a toolbox for 

simulating cellular 

metabolism and 

predicting engineering 

strategies.

http://dx.doi.org/10.1038/nrmicro1023
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Metabolic modeling of microbial communities

❑Goal: describe and predict community metabolism and 

interactions using genome-scale metabolic models (GEMs)

❑ Supraorganism model:

The microbiome as 

a single organism

❑Multi-organism model:

Model compartmentalized 

by taxa or representative 

species

GSM community model

Metagenome MetaGEM

Metagenome-assembled 

genomes/
representative genomes

Community GEM
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Direct extension of FBA (Joint-FBA)

❑ FBA when applied to microbial communities simply maximizes the sum 

of all biomass production rate as one large compartmentalized model

(Chan et al., 2017)

Intracellular steady state

෍

𝑗

𝑆𝑖𝑗
𝑘𝑣𝑗

𝑘 = 0

∀𝑖 ∈ 𝐈𝑘, 𝑘 ∈ 𝐊

Community exchange

෍

𝑘

𝑣𝑒𝑥,𝑖
𝑘 ≥ 𝑙𝑏𝑖

𝑢𝑝𝑡𝑎𝑘𝑒

∀𝑖 ∈ 𝐈𝑒𝑥

https://books.google.com/books?id=f-94DgAAQBAJ&lpg=PR8&ots=qcylFRkF7o&dq=computational%20modeling%20of%20microbial%20communities%20chan%20maranas%20google%20book&pg=PA163


Testing hypotheses about microbiome metabolism

❑ Test predicted production of short-chain fatty acids (SCFAs) and AAs if the 

following conditions are imposed in a ten-species gut community model:

1. Bile salt hydrolase (BSH) activity proportional to Clostridia and Lactobacillus

2. Community growth inhibited in the presence of a drug (glycine-β-muricholic acid )

❑ Taurine released by BSH 

activity becomes additional 

carbon and nitrogen sources 

for microbes

Sonomoto, et al., 2011

Low 

correlation

High 

correlation

Condition 1 Only

Condition 2 Only

Conditions 1 + 2

Comparing Community Exported Metabolites to Experimental Measurements

(Zhang et al, mSystems, 2016)
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Issues of Joint-FBA

❑ Forced altruism: bias toward organisms with higher 

biomass yields through unrealistic cross feeding

❑ Partially mitigated by imposing an equal specific growth 

rate for all community members as a consequence of 

steady-state composition:

➔ replicator equation:

A

A

2 B

B

BBiomass

Biomass
0

4 4

4

2

2

Joint-FBA: maximizes the sum of 

all biomass production rate

𝑑𝑋𝑘
𝑑𝑡

= 𝜇𝑘 −𝐷 𝑋𝑘 𝑥𝑘 =
𝑋𝑘

σ𝑘𝑋𝑘

𝑑𝑥𝑘
𝑑𝑡

= 𝑥𝑘 𝜇𝑘 −෍

𝑘

𝜇𝑘𝑥𝑘
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Improvement: steady-state composition

❑ Community FBA 

(cFBA, 

Khandelwal, 2013)

❑ SteadyCom

(Chan, 2017)

B

➔

➔

➔

➔
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Turnbaugh 2009
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Joint FBA

A

B

Bacteroidetes

Clostridia Bacilli

Firmicutes Actinobacteria Proteobacteria

(experimental)
(experimental)

❑ Dominance by 
Bacteroidetes and
Firmicutes

❑ Low but non-zero 
abundance 
Actinobacteria and 
Proteobacteria
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Assessing the impact of diet

Varying the nutrients available 

to the gut microbiome model:

❑ Cross-feeding (e.g., fiber-

derived carbonhydrates, 

acetate, H2S) and Short-chain 

fatty acids (SCFAs) are observed 

only when Bacteroidetes and

Clostridia are interacting.

❑ SCFA productions generally 

increase with fiber 

consumption, consistent with 

experimental observations .
(de Filippo et al., PNAS, 2010,  

Shen et al., Eur J Nutr, 2012)
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(proper scaling of fluxes)

k = 1,…,K Organisms 
i = 1,…,M Metabolites
j = 1,…,N Reactions

μ: Community growth rate
Xk: Biomass of organism k
Sij
k: Stoich. Coefficient of 

met i in rxn j for org. k
LBj

k: Lower bound
UBj

k: Upper bound
rkNGAM: Non-growth associated 

maintenance

s.t.

Joint FBA

s.t.

Xk Xk

Xk

Xk

Units

Vk
j: mmol hr-1

Vk
biomass: gDW hr-1

Xk: gDW

μ: hr-1

max   µ

SteadyCom (Chan et al., PLOS Comput Biol, 2017)

(steady-state composition)

(relative to 1 gDW

of community 

biomass)

µ

Xk
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❑ dynamic extracellular environment

❑ Solve FBA-embedded diff. eqns. to update biomass and metabolite levels

Predict growth rate and metabolite 

conversion rate given extracellular 

metabolite concentrations using FBA:

𝜇𝑘, 𝑟𝑖
𝑘 = 𝐹𝐵𝐴 𝐺𝐸𝑀𝑘 , 𝑣𝑖,𝑢𝑝𝑡𝑎𝑘𝑒

𝑘 𝑋𝑘 , 𝑐𝑖

At each time step t: Update extracellular metabolite 

concentrations and biomasses using 

the differential population and 

metabolite balances:

𝑑𝑋𝑘

𝑑𝑡
= 𝜇𝑘𝑋𝑘

𝑑𝑐𝑖
𝑑𝑡

= ෍

𝑘

𝑋𝑘𝑟𝑖
𝑘

𝜇𝑘, 𝑟𝑖
𝑘

𝑋𝑘, 𝑐𝑖

Dynamic simulations - dynamic FBA (dFBA)
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Integrating steady-state and dynamic FBA

𝑋𝑙𝑢𝑚
𝑘,𝑠 0 = 𝑋𝑙𝑢𝑚

𝑘,𝑠−1 𝑇𝑠−1

𝑐𝑖
𝑠 0 = 𝑐𝑖

𝑠−1 𝑇𝑠−1

dFBA 𝑋𝑙𝑢𝑚
𝑘,𝑠 t , 𝑐𝑖

𝑠 𝑡 , 𝑟𝑜𝑥𝑦𝑔𝑒𝑛
𝑡𝑜𝑡𝑎𝑙,𝑠 , 𝛼𝑜𝑥𝑦𝑔𝑒𝑛

𝑙𝑢𝑚,𝑠

SteadyCom(𝑋𝑚𝑢𝑐
𝑡𝑜𝑡𝑎𝑙,𝑠, 𝑐𝑖

𝑠 𝑡 , 𝑟𝑜𝑥𝑦𝑔𝑒𝑛
𝑡𝑜𝑡𝑎𝑙,𝑠 , 𝛼𝑜𝑥𝑦𝑔𝑒𝑛

𝑙𝑢𝑚,𝑠 )

𝑑𝑋𝑙𝑢𝑚
𝑘,𝑠

𝑑𝑡𝑠
= 𝜇𝑚𝑢𝑐

𝑠 𝑋𝑚𝑢𝑐
𝑘,𝑠 + 𝜇𝑙𝑢𝑚

𝑘,𝑠 𝑋𝑙𝑢𝑚
𝑘,𝑠

𝑑𝑐𝑖
𝑠

𝑑𝑡𝑠
=෍

𝑘∈𝐊

𝑉
𝑒𝑥𝑘 𝑖
𝑘,𝑠 +𝑋𝑙𝑢𝑚

𝑘,𝑠 𝑣
𝑒𝑥𝑘 𝑖
𝑘,𝑠

𝜇𝑙𝑢𝑚
𝑘,𝑠

, 𝑣
𝑒𝑥𝑘 𝑖
𝑘,𝑠

𝜇𝑚𝑢𝑐
𝑘,𝑠 , 𝑉

𝑒𝑥𝑘 𝑖
𝑘,𝑠

For 𝑡𝑠 ∈ 0,𝑇𝑠 , 𝑠 = 1, … , 7

(Chan et al., 2019)
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Integrating steady-state and dynamic FBA
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❑ Capture strict vs. facultative anaerobes and luminal biomass accumulation

❑ Oxygen-to-biomass ratio on the mucus layer appears to be an important 

force shaping the spatial organization of aerobes vs. anaerobes
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Issues of dynamic FBA

No way for each organism to ‘sense and respond’ to the metabolic 

potential of other organisms to, e.g., choose a mutualistic phenotype, 

which could be selected by adaptation
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Motivating examples

What will happen if two species, one more efficient in synthesizing one biomass 

precursor? Will they share resource to maximize yield?

S

S

B

Biomass

A

S

S

B

Biomass
A

Cross feeding A?

Cross feeding B?

Species 1 Species 2

ATP

3 ATP

3 ATP

ATP

What will happen if each of them can synthesize only one? Will they share 

resource to maximize yield?

S

S

B

Biomass

A

S

S

B

Biomass
A

Cross feeding A?

Cross feeding B?

Species 1 Species 2

ATP

ATP
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Evolutionary Game Theory

❑ Game theory applied to ecology: 

natural selection determines what 

strategies will thrive

❑ Nash equilibrium (NE): 
No player can do better by unilaterally 

changing its strategy

E(s1*,s2*) ≥ E(s1*,s) for any s

E(s2*,s1*) ≥ E(s2*,s) for any s

❑ Prisoners’ dilemma: 

Confession is the only (strict) NE

Confess Slient

Confess (-5, -5) (0, -20)

Silent (-20, 0) (-1, -1)

E(confess, confess)

E(silent, confess)

E(confess, silent)
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Motivating example 1

What will happen if two species, one more efficient in synthesizing one biomass 

precursor? Will they share resource to maximize yield?

S

S

B

Biomass

A

S

S

B

Biomass
A

Cross feeding A?

Cross feeding B?

Species 1 Species 2

ATP

3 ATP

3 ATP

ATP

0 1.39 2.78 4.17

0 (1.18, 1.18) (1.42, 1.09) (1.67, 1.01) (1.91, 0.93)

1.39 (1.09, 1.42) (1.34, 1.34) (1.58, 1.26) (1.83, 1.18)

2.78 (1.01, 1.67) (1.26, 1.58) (1.5, 1.5) (1.75, 1.42)

4.17 (0.93, 1.91) (1.18, 1.83) (1.42, 1.75) (1.67, 1.67)

Secretion rate 

of B by 

species 1

Secretion rate of A by species 2

❑ Prisoners’ 

dilemma!



24

Motivating example 2

What will happen if each of them can synthesize only one? Will they share 

resource to maximize yield?

S

S

B

Biomass

A

S

S

B

Biomass
A

Cross feeding A?

Cross feeding B?

Species 1 Species 2

ATP

ATP

0 1.67 3.33 5

0 (0, 0) (0.56, 0) (1.11, 0) (1.67, 0)

1.67 (0, 0.56) (0.56, 0.56) (1.11, 0.56) (1.67, 0.56)

3.33 (0, 1.11) (0.56, 1.11) (1.11, 1.11) (1.67, 1.11)

5 (0, 1.67) (0.56, 1.67) (1.11, 1.67) (1.67, 1.67)

Secretion rate 

of B by 

species 1

Secretion rate of A by species 2

❑ All are (weak) NE!

❑ No incentive to 

cheat/cooperate

❑ But cooperating 

has a higher 
fitness
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How to find Nash Equilibria in general?

❑ Zomorrodi and Segre 2017, Nature 

Comm. 

❑ Construct payoff matrices using 

FBA

❑ Find NE
❑ Simulate replicator dynamics

❑ Need to pre-define metabolic strategies
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Microbial metabolic interactions as games

A unique class of games where the continuous strategy space of one microbe 

depends on the strategies of other microbes

Not simple matrix games where strategies can be enumerated and have well 

established techniques to analyze.
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(Optional, 

more likely to be stable)

Bilevel optimization model
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Bilevel optimization model

max෍

𝑘

𝑣𝑘
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

subject to

(optional; find NE with

higher overall growth)

max 𝑣𝑘
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

subject to

(max fitness constrained 

by the actions of other 

members; NE)

෍

𝑗

𝑆𝑖,𝑗,𝑘𝑣𝑗 ,𝑘 = 0,

for each metabolite 𝑖

(intracellular mass balance)

𝐿𝐵𝑗,𝑘 ≤ 𝑣𝑗 ,𝑘 ≤ 𝑈𝐵𝑗,𝑘 ,

for each reaction 𝑗

(reaction directionality, uptake capacity)

𝑋𝑘𝑣𝑗,𝑘
𝑒𝑥 + max ෍

𝑛,𝑛≠𝑘

𝑋𝑛𝑣𝑗 ,𝑛
𝑒𝑥 + 𝑉𝑗

𝑢𝑡 , 0 ≥ 0

for each exchange reaction 𝑗

(constrain max. uptake only, 

avoid imposing min. production)

𝑣𝑗,𝑘, 𝑣𝑗 ,𝑘
𝑒𝑥 ∈ ℝ for all members k

S

𝑣𝑆 ,2
𝑒𝑥

𝑣𝑆 ,1
𝑒𝑥

𝑉𝑆
𝑢𝑡
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Capturing Example 1

Two species, one more 

efficient in synthesizing one 

biomass precursor

❑ dFBA and NECom predict 
the prisoners’ dilemma

correctly.

❑ Joint-FBA and OptCom

predict mutualism

dFBA



30

One only produces A, 

the other only B:

❑ NECom, Joint-FBA, and 

OptCom predict mutualistic 
crossfeeding.

❑ Non-cooperating is also 

predicted as a feasible 

solution

❑ dFBA predicts no growth

(also tested on multiple 

auxotrophic E. coli mutants)

❑ Though export is still costly, 
there is no impact on fitness 

as growth is limited by the 

other precursor.

Capturing Example 2

dFBA
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Parasitism

S

A
A

A

2 Biomass Biomass
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Exoenzyme production

❑ Gore et al., 2009 initially 

analyzed this with cost of 

enzyme production c and 

capture efficiency of producer 
ε as parameters

❑ Reproduce the same trend 

when tested with 2 – 5 copies 

of the same member
mutually beneficial

prisoners’ dilemma

coexistence
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Exoenzyme production

Cost < benefit

capture efficiency ε = 0

Cost < benefit

capture efficiency ε > 0

(mutually beneficial)
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Exoenzyme production

Cost = benefit

ε ≥ 0

(coexistence)

Cost > benefit

ε ≥ 0
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Application to algae-yeast coculture

Saccharomyces

cerevisiae

Chlamydomonas 

reinhardtii

Glucose

Nitrite

CO2

NH4

O2

Organic 

acids
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Analysis of 3,221 experimental data points
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Analysis of 3,221 experimental data points

In order to maximize 

total biomass, direct 

FBA forces the algae 

to convert low energy

metabolite (e.g CO2 ) 
to high energy 

metabolites (amino 

acids) to enhance 

growth of the yeast
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❑ Flux balance analysis (FBA) and dynamic flux balance analysis 

(dFBA) are important and fundamental frameworks for predicting 

microbial metabolism

❑ However, they have insufficiencies when directly applied to modeling 

microbial communities. Integrating new principles and new algorithms 

can improve metabolic modeling predictions. 

❑ Artifact of FBA as a single-objective single-level optimization problem: 

forced altruism

➢ Implement steady-state composition

➢ Incorporate the concept of Nash equilibrium

Summary
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Q & A


