
Exercises to practice

Advanced Algorithms

Blerina Sinaimeri

Mars 2018
For this class we will implement some basic algorithms on graphs. You

are allowed to use the programming language you feel more comfortable.
The examples will however be given in python.

Exercice 1.
— Implement a function that takes in input a graph given with an ad-

jacency matrix and outputs the adjacency list of the graph.
— Implement a function that takes in input a graph given with an ad-

jacency list and outputs the adjacency matrix of the graph.

Solution : I am providing the pseudocode in python style of the first
case. The second is similar.

def matrix2list(matrix)

adjList = list()

rows,columns =matrix.shape

For in range(0, rows-1):

For j in range(i+1, columns-1)

if matrix[i,j]=1 :

adjList[i].append(j)

return adjList

Exercice 2. Implement a function that takes in input a graph (that is either
an adjacency matrix or an adjacency list) and gives in output the degree of
each vertex. What do you think is better to use, an adjacency matrix or an
adjacency list ?

Solution : Here you could use an adjacency list.

Exercice 3. Implement an algorithm that given a graph G = (V,E), outputs
”yes if the graph is a tree and no if the graph is not a tree.

1

Solution : You can use a BFS or a DFS and if you reach a vertex that
you have already visited, then the graph has a cycle (why ?).

Exercice 4. The distance between two vertices in a graph is the length (the
number of edges of the shortest path connecting them. The diameter of a
connected graph G is the maximum distance between all the pairs of vertices
of the graph. The height of a rooted tree T is the length of a longest path
from the root to a leaf (or equivalently the maximum level of any vertex in
the tree).

(a) Describe an algorithm of complexity O(nm), that given a connected
graph G = (V,E) determines its diameter.

(b) Implement your algorithm.
(c) Prove or give a counterexample to the following claim : “There exists

a connected graph whose diameter is equal to 10 and has a BFS tree
of height 4”.
If a graph G has a BFS tree of height h, what is the largest value for
its diameter ?

(d*) Given a connected graph G = (V,E) prove that for any vertex
s ∈ V the height of DFS(G, s) tree is always larger than or equal to
the height of BFS(G, s).

Solution : (a) Given a graph G = (V,E) and a vertex r the BFS visit
starting from r creates a tree T such that for each vertex v ∈ V the unique
path from v to r in T is the shortest path (i.e. the path of the shortest length)
from v to r in G. The idea of the algorithm in Fig. 1 is to run a BFS from
each vertex of the graph keeping track of the length of the maximum distance
found so far. The running time of the algorithm is |V |× Running time of
the BFS visit, i.e. O(n(n + m)) and as the graph is connected m ≥ n − 1
then we have O(nm).

(b) HINT : Prove that the diameter of a graph is always at most twice
the height of the BFS tree of that graph.

Exercice 5. In class we have seen to problems : (a) Finding the maximum
matching in a graph and (b) finding a minimum vertex cover. Do you see a
relation between these two problems ?

Exercice 6. Suppose we have n songs of memory size s1, . . . , sn and we
have a disk of capacity C. We would like to find an algorithm that helps
us to store the songs in the way the remaining space (that is the space not
used) is minimized. Formally, we want to find a subset F of the files such
that : (a) Space(F) ≤ C and (b) for any subset of files X for which X ≤ C
we have Space(X) ≤ Space(F).

2

Algorithm Diameter(G)

Require: A connected graph G = (V,E).
Ensure: Returns the value of the diameter of the graph.

1: /* Initialization part */
2: for all u ∈ V do
3: /* will contain the distance of u from the current root of the tree*/
4: dist[u]← −1 ; /
5: end for
6: /*the variable max will contain the maximum value.*/
7: max← 0 ;
8: /*Run a BFS visit from each vertex s in V .*/
9: for all s ∈ V do

10: dist[s]← 0 ; /
11: ADD(Q, s)
12: while Q is NOT EMPTY do
13: u← Head(Q) ;
14: for all v ∈ Adjacent(u) do
15: /*check whether the vertex is undiscovered*/
16: if dist[v] < 0 then
17: /* update the distance of v from s.*/
18: dist[v]← dist[u] + 1 ; /
19: if dist[v] > max then
20: max← dist[v]
21: end if
22: ADD(Q, v)
23: end if
24: end for
25: Remove(Q, u)
26: end while
27: end for
28: return max ;

Figure 1 – Algorithm Diameter(G)

A simple greedy algorithm will choose to store each time the song of
smaller size. The pseudocode of the algorithm is given below.

FILE MIN(S,C) INPUT an array S containing s1, . . . , sn ; an
integer C of the capacity
SOL← ∅

3

Order S in a non decreasing way
R← C
FOR i := 1 TO n DO

IF S[i] ≤ R THEN
SOL← SOL ∪ {i}
R← R− S[i]

ENDFOR
OUTPUT SOL.

(a) Show that the algorithm produces the correct answer or provide a
counterexample.

(b) Modify the algorithm by ordering S in a non increasing order. Call
this algorithm File Max. Does this algorithm provide the optimal
solution ?

(c) Implement both of the algorithms and try some instances. What can
you tell about the approximation factor of the algorithms ? According
to you which one approximates better ?

(d)* Find the approximation factor of FileMax and FileM in.

Solution : (a) The algorithm does not produce the optimum. Indeed
consider the instance where we have only two files of size 1 and 10 and
C = 10. The optimal solution will store the file of size 10 and thus using
all the space possible on the disk. The greedy algorithm proposed will order
the files as 1,10 and then will store the file of size 1 leaving a space of size
9 that would not be possible to use afterward.

(b) Even with this modification the algorithm will not produce the op-
timal solution. Indeed, consider the example where we have 3 files of size
8,4,6 and C = 10. The optimal solution will store the files of size 6 and 4
leaving no space. The algorithm will order the files as 8,6,4 and will store
the file of size 8 leaving a space of size 2 that would not be possible to use
afterward.

(c) If you implement and run both algorithms with various instances you
may notice that the first algorithm can make an error that can be as large
as the capacity C, indeed if you have only two files 1, C and the capacity
is C, then the algorithm will store only 1 and leave C − 1 wasted. The
optimal solution will use all the space. The second algorithm however, finds
a solution that is not so far from the optimal value.

Exercice 7.
Consider the problem : we are a seller and a client just bought an item in

the shop and now we need to give the rest of R euros to the client. Suppose
we only have coins of 1, 5, 10 e 20 euros. Describe a greedy algorithm that

4

gives the an amount of R euros using the minimum number of coins. Show
how it will apply on some instances of the problem.

5

