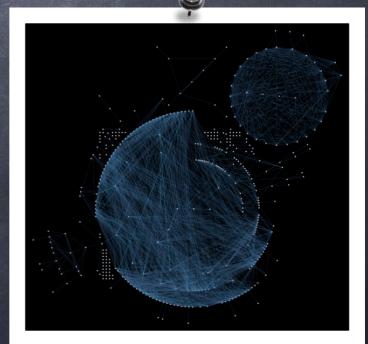
Random graph models for analysing real networks

blerina sinaimeri



A Simple Random Graph Model Erdös-Renyi model

The Erdös-Renyi model is denoted
G(n,p) and is one of the simplest
random models.

@ All graphs on n vertices.

A Simple Random Graph Model Erdös-Renyi model

Siven a vertex v what is the probability v has degree d?

• $P[deg(v)=d] = binom(n-1,d)p^{d}(1-p)^{n-1-d}$

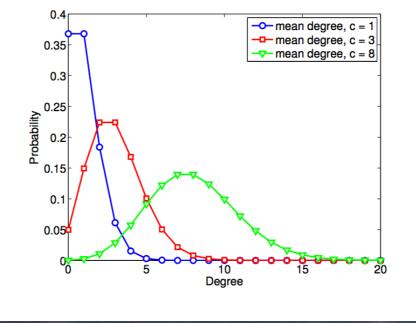
what is the expected mean degree of a vertex?

$$o E[d] = np$$

 We can use a poisson approximation to compute an expected degree distribution of G(n, p) for sparse graphs.

Degree distribution in the Erdös-Renyi model

The poison distribution has mean and variance c.



 Many realistic networks show a heavy-tail distribution.(A distribution with a "tail" that is "heavier" than an exponential)

Individual clustering coefficient

The clustering coefficient measures the degree of clustering of a typical node's neighborhood. It is defined as the likelihood that any two nodes with a common neighbor are themselves connected. The individual clustering coefficient for a vertex v is given by:

#triangles that contain v CC(G,v) = (1/2)d(v)[d(v)-1]

Claim: The expectation of the individual clustering clustering coefficient in G(n, p) is p.

Individual clustering coefficient

	N	average degree	cc	cc in G(n,p)
Actors network	225226	61	0.79	0,00027
power grid	4941	2.67	0,08	0,005
C. elegans	282	14	0.28	0,05

Example from paper Watts and Strogatz Nature, 1998

- A particularly unrealistic aspect of the Erdös-Renyi model G(n, p) is its degree distribution, which we showed follows a Poisson distribution when the graph is sparse. In contrast, most real-world graphs exhibit heavy-tailed degree distributions.
- We can improve this aspect of our random graph model by using a generalization called the <u>configuration model</u>. We can define the random graph models based on the distribution of their degrees.
 - o G(n,k) where $k = (k_1, \dots, k_n)$ is a degree sequence.
 - <u>k</u> can be any sequence. Can be fixed or a sequence of values drawn i.i.d. from some degree distribution Pr(k). If <u>k</u> ~ Poisson(c/n) then the model produces something very near to the Erdös-Renyi model.

Fixed degrees: Given a degree sequence <u>k</u>=(k₁,...k_n) generate a graph uniformly at random from the set of graphs on n vertices having exactly <u>k</u> as a degree sequence.

@ Is it always possible?

- Fixed degrees: Given a degree sequence <u>k</u>=(k₁,...k_n) generate a graph uniformly at random from the set of graphs on n vertices having exactly <u>k</u> as a degree sequence.
- Is it always possible?

 - 0 (5,3,1,1,1,2)

Degree sequences

Theorem [Erdös-Gallai]

A non negative sequence of integers $d_1 \ge d_2 \ge ... \ge d_n$ is graphical i.e. can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + d_2 + ... + d_n$ is even and for every $1 \le k \le n$ it holds:

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

Havel-Hakimi algorithm A non negative sequence of integers $d_1 \ge d_2 \ge ... \ge d_n$ is graphical on n vertices if and only if the sequence $d_2 - 1 \ge d_2$ $-1 \ge ... \ge d_{d_{1+1}} - 1 \ge d_{d_{1+2}} \ge ... \ge d_n$ is graphical.

Fixed degrees: Given a degree sequence <u>k</u>=(k₁,...k_n) generate a graph uniformly at random from the set of graphs on n vertices having exactly <u>k</u> as a degree sequence.

Matching algorithm

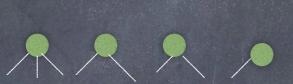
@ Switching algorithm

Matching algorithm

 $//INPUT: d=(d_1, ..., d_n)$ //OUTPUT: List of edges //Initialization Edge.List<-(); Node.List<-(); //Create fake Node.List: For i in $\{1, \ldots, n\}$ do While di >= 1 do Node.list <- concatenate(Node.list,i) $d_i \leftarrow d_i - 1$ Endwhile EndFor //Create Edge.List while Node. List is not empty do Choose randomly i, j in Node.List without replacement Edge.List <- concatenate(Edge.List, {i,j}) End while

If Edge.List contains loops or multipledges repeat.

Idea



Matching algorithm

with loops and

double edges, and if

we have a graph with

higher vertex degrees,

we may fail to come

generalized random

reasonable amount of

up with a simple

graph within a

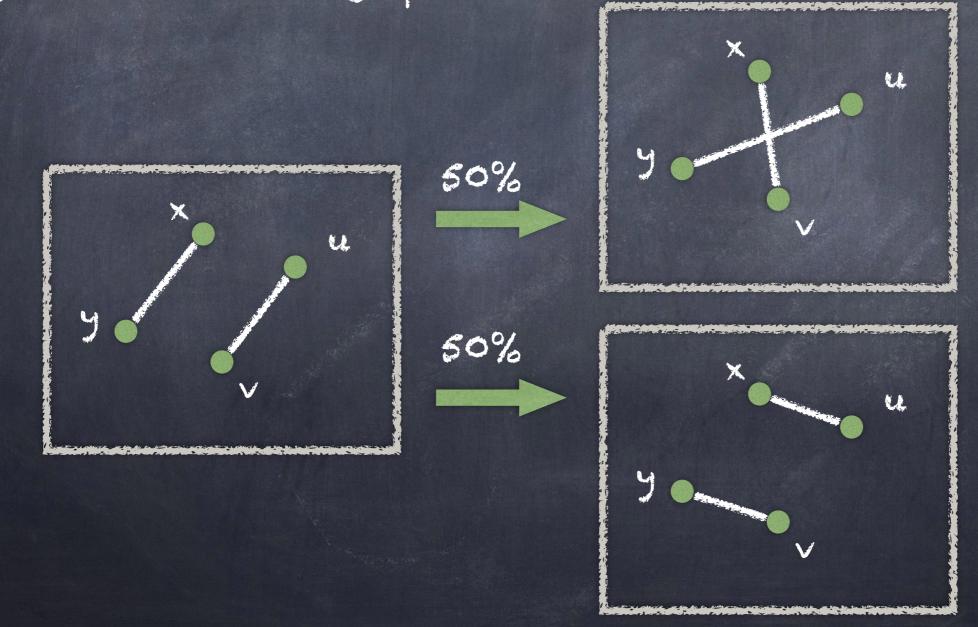
trials.

Problem: $//INPUT: d=(d_1, ..., d_n)$ - May introduce graphs //OUTPUT: List of edges //Initialization Edge.List<-(); Node.List<-(); //Create fake Node.List: For i in $\{1, ..., n\}$ do While di >= 1 do Node.list <- concatenate(Node.list,i) $d_i \leftarrow d_i - 1$ Endwhile EndFor //Create Edge.List while Node. List is not empty do Choose randomly i, j in Node.List without replacement Edge.List <- concatenate(Edge.List, {i,j}) End while

If Edge.List contains loops or multipledges repeat.

Switching algorithm

<u>Idea</u>: This method starts by considering any graph which satisfies the required degree distribution (i.e. node i has degree d_i and change it by performing a long series of random edge crosses, until it becomes a generalized random graph.



Switching algorithm

<u>Idea</u>: This method starts by considering any graph which satisfies the required degree distribution (i.e. node i has degree d_i and change it by performing a long series of random edge crosses, until it becomes a generalized random graph.

//INPUT: Edge.List satisfying d=(d1, ..., dn) and Nr_iterations //OUTPUT: Edge.List of the random graph While Nr_iterations >= 1 do Choose e1= {x,y} and e2={u,v} uniformly at random inside Edge.List //Cross the edges randomly for example {x,u} and {y,v} Switch(e1, e2) If no loop or multiple edge is created then replace e1, e2 with the new edges. Nr_iterations <- Nr_iterations - 1 EndWhile

Empirically Nr_Iterations=100