
Random graph models for
analysing real networks

blerina sinaimeri

A Simple Random Graph Model
Erdös-Renyi model

The Erdös-Renyi model is denoted
G(n,p) and is one of the simplest
random models.

All graphs on n vertices.

Every edge is formed with probability
p ∈ (0, 1) independently of every
other edge.

A Simple Random Graph Model
Erdös-Renyi model

Given a vertex v what is the probability v has
degree d?

P[deg(v)=d] = binom(n-1,d)pd(1-p)n-1—d

What is the expected mean degree of a vertex?

E[d] = np

We can use a poisson approximation to compute
an expected degree distribution of G(n, p) for
sparse graphs.

Degree distribution in the
Erdös-Renyi model

The poison distribution has mean and
variance c.

Many realistic networks show a heavy-tail
distribution.(A distribution with a “tail”
that is “heavier” than an exponential)

Individual clustering
coefficient

The clustering coefficient measures the degree of clustering of a
typical node’s neighborhood. It is defined as the likelihood that
any two nodes with a common neighbor are themselves connected.
The individual clustering coefficient for a vertex v is given by:

#triangles that contain v
CC(G,v)=

(1/2)d(v)[d(v)-1]

Claim: The expectation of the individual
clustering clustering coefficient in G(n, p) is p.

Individual clustering
coefficient

n
average
degree cc

cc in
G(n,p)

Actors
network

225226 61 0.79 0.00027

power
grid

4941 2.67 0.08 0,005

C.
elegans

282 14 0.28 0.05

Example from paper Watts and Strogatz Nature, 1998

Configuration models

A particularly unrealistic aspect of the Erdös-Renyi model G(n, p)
is its degree distribution, which we showed follows a Poisson
distribution when the graph is sparse. In contrast, most real-world
graphs exhibit heavy-tailed degree distributions.

We can improve this aspect of our random graph model by using a
generalization called the configuration model. We can define the
random graph models based on the distribution of their degrees.

G(n,k) where k=(k1,…kn) is a degree sequence.

k can be any sequence. Can be fixed or a sequence of
values drawn i.i.d. from some degree distribution
Pr(k). If k ~ Poisson(c/n) then the model produces
something very near to the Erdös-Renyi model.

Configuration models

Fixed degrees: Given a degree
sequence k=(k1,…kn) generate a
graph uniformly at random from
the set of graphs on n vertices
having exactly k as a degree
sequence.

Is it always possible?

Configuration models

Fixed degrees: Given a degree sequence
k=(k1,…kn) generate a graph uniformly at
random from the set of graphs on n
vertices having exactly k as a degree
sequence.

Is it always possible?

(5,3,1,1,1) ?

(5,3,1,1,1,2)

Degree sequences

Theorem [Erdös-Gallai]
A non negative sequence of integers d1 ≧ d2 ≧… ≧ dn is graphical
i.e. can be represented as the degree sequence of a finite
simple graph on n vertices if and only if d1 + d2 + … + dn is
even and for every 1 ≦ k ≦ n it holds:

Havel–Hakimi algorithm
A non negative sequence of integers d1 ≧ d2 ≧ … ≧ dn is

graphical on n vertices if and only if the sequence d2 -1 ≧ d3
-1 ≧… ≧ dd1+1 -1 ≧ dd1+2 ≧… ≧ dn is graphical.

Configuration models

Fixed degrees: Given a degree
sequence k=(k1,…kn) generate a graph
uniformly at random from the set of
graphs on n vertices having exactly k
as a degree sequence.

Matching algorithm

Switching algorithm

Matching algorithm

//INPUT: d=(d1, … , dn)
//OUTPUT: list of edges
//Initialization
Edge.List<-();
Node.List<-();
//Create fake Node.List:
For i in {1, … , n} do

While di >= 1 do
Node.list <- concatenate(Node.list,i)
di <- di -1

Endwhile
EndFor
//Create Edge.List
while Node.List is not empty do

Choose randomly i, j in Node.List without replacement
Edge.List <- concatenate(Edge.List, {i,j})

End while

If Edge.List contains loops or multipledges repeat.

Idea

Matching algorithm

//INPUT: d=(d1, … , dn)
//OUTPUT: list of edges
//Initialization
Edge.List<-();
Node.List<-();
//Create fake Node.List:
For i in {1, … , n} do

While di >= 1 do
Node.list <- concatenate(Node.list,i)
di <- di -1

Endwhile
EndFor
//Create Edge.List
while Node.List is not empty do

Choose randomly i, j in Node.List without replacement
Edge.List <- concatenate(Edge.List, {i,j})

End while

If Edge.List contains loops or multipledges repeat.

Problem:
- May introduce graphs

with loops and
double edges, and if
we have a graph with
higher vertex degrees,
we may fail to come
up with a simple
generalized random
graph within a
reasonable amount of
trials.

Switching algorithm

Idea: This method starts by considering any graph which satisfies the
required degree distribution (i.e. node i has degree di and change it
by performing a long series of random edge crosses, until it becomes
a generalized random graph.

x

y

u

v

x

y

u

v

x

y

u

v

50%

50%

Switching algorithm

//INPUT: Edge.List satisfying d=(d1, … , dn) and Nr_iterations
//OUTPUT: Edge.List of the random graph
While Nr_iterations >= 1 do

Choose e1= {x,y} and e2={u,v} uniformly at random inside Edge.List
//Cross the edges randomly for example {x,u} and {y,v}
Switch(e1, e2)
If no loop or multiple edge is created then replace e1, e2 with the new edges.
Nr_iterations <- Nr_iterations - 1

EndWhile

Idea: This method starts by considering any graph which satisfies the
required degree distribution (i.e. node i has degree di and change it
by performing a long series of random edge crosses, until it becomes
a generalized random graph.

Empirically Nr_Iterations=100

