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A Simple Random Graph Model 
Erdös-Renyi model

The Erdös-Renyi model is denoted 
G(n,p) and is one of the simplest 
random models. 

All graphs on n vertices.  

Every edge is formed with probability 
p ∈ (0, 1) independently of every 
other edge.



A Simple Random Graph Model 
Erdös-Renyi model

Given a vertex v what is the probability v has 
degree d? 

P[deg(v)=d] = binom(n-1,d)pd(1-p)n-1—d 

What is the expected mean degree of a vertex? 

E[d] = np 

We can use a poisson approximation to compute 
an expected degree distribution of G(n, p) for 
sparse graphs.



Degree distribution in the 
Erdös-Renyi model

The poison distribution has mean and 
variance c. 

Many realistic networks show a heavy-tail 
distribution.(A distribution with a “tail” 
that is “heavier” than an exponential)



Individual clustering 
coefficient

The clustering coefficient measures the degree of clustering of a 
typical node’s neighborhood. It is defined as the likelihood that 
any two nodes with a common neighbor are themselves connected. 
The individual clustering coefficient for a vertex v is given by: 

#triangles that contain v 
CC(G,v)=

(1/2)d(v)[d(v)-1]

Claim: The expectation of the individual  
clustering clustering coefficient in G(n, p) is p.



Individual clustering 
coefficient

n
average 
degree cc

cc in 
G(n,p)

Actors 
network

225226 61 0.79 0.00027

power 
grid

4941 2.67 0.08 0,005

C. 
elegans

282 14 0.28 0.05

Example from paper Watts and Strogatz Nature, 1998



Configuration models 

A particularly unrealistic aspect of the Erdös-Renyi model G(n, p) 
is its degree distribution, which we showed follows a Poisson 
distribution when the graph is sparse. In contrast, most real-world 
graphs exhibit heavy-tailed degree distributions. 

We can improve this aspect of our random graph model by using a 
generalization called the configuration model. We can define the 
random graph models based on the distribution of their degrees. 

G(n,k) where k=(k1,…kn) is a degree sequence. 

k can be any sequence. Can be fixed or a sequence of 
values drawn i.i.d. from some degree distribution 
Pr(k). If k ~ Poisson(c/n) then the model produces 
something very near to the Erdös-Renyi model.



Configuration models 

Fixed degrees: Given a degree 
sequence k=(k1,…kn) generate a 
graph uniformly at random from 
the set of graphs on n vertices 
having exactly k as a degree 
sequence. 

Is it always possible?



Configuration models 

Fixed degrees: Given a degree sequence 
k=(k1,…kn) generate a graph uniformly at 
random from the set of graphs on n 
vertices having exactly k as a degree 
sequence. 

Is it always possible?  

(5,3,1,1,1) ? 

(5,3,1,1,1,2)



Degree sequences 

Theorem [Erdös-Gallai] 
A non negative sequence of integers d1 ≧  d2 ≧… ≧ dn is graphical  
i.e. can be represented as the degree sequence of a finite 
simple graph on n vertices if and only if d1 + d2 + … + dn  is 
even and for every 1 ≦  k ≦ n it holds:

Havel–Hakimi algorithm 
A non negative sequence of integers d1 ≧  d2 ≧ …  ≧ dn is 

graphical on n vertices if and only if  the sequence d2 -1 ≧ d3 
-1 ≧… ≧ dd1+1 -1 ≧  dd1+2 ≧… ≧ dn  is graphical. 



Configuration models 

Fixed degrees: Given a degree 
sequence k=(k1,…kn) generate a graph 
uniformly at random from the set of 
graphs on n vertices having exactly k 
as a degree sequence. 

Matching algorithm 

Switching algorithm



Matching algorithm 

//INPUT: d=(d1, … , dn) 
//OUTPUT: list of edges 
//Initialization 
Edge.List<-(); 
Node.List<-(); 
//Create fake Node.List: 
For i in {1, … , n} do 

While di >= 1 do 
Node.list <- concatenate(Node.list,i) 
di <- di -1 

Endwhile 
EndFor 
//Create Edge.List 
while Node.List is not empty do 

Choose randomly i, j in Node.List without replacement 
Edge.List <- concatenate(Edge.List, {i,j}) 

End while 

If Edge.List contains loops or multipledges repeat.

Idea



Matching algorithm 

//INPUT: d=(d1, … , dn) 
//OUTPUT: list of edges 
//Initialization 
Edge.List<-(); 
Node.List<-(); 
//Create fake Node.List: 
For i in {1, … , n} do 

While di >= 1 do 
Node.list <- concatenate(Node.list,i) 
di <- di -1 

Endwhile 
EndFor 
//Create Edge.List 
while Node.List is not empty do 

Choose randomly i, j in Node.List without replacement 
Edge.List <- concatenate(Edge.List, {i,j}) 

End while 

If Edge.List contains loops or multipledges repeat.

Problem: 
- May introduce graphs 

with loops and 
double edges, and if 
we have a graph with 
higher vertex degrees, 
we may fail to come 
up with a simple 
generalized random 
graph within a 
reasonable amount of 
trials.



Switching algorithm 

Idea: This method starts by considering any graph which satisfies the 
required degree distribution (i.e. node i has degree di and change it 
by performing a long series of random edge crosses, until it becomes 
a generalized random graph.

x

y

u

v

x

y

u

v

x

y

u

v

50%

50%



Switching algorithm 

//INPUT: Edge.List satisfying d=(d1, … , dn) and Nr_iterations 
//OUTPUT: Edge.List of the random graph 
While Nr_iterations >= 1 do 

Choose e1= {x,y} and e2={u,v} uniformly at random inside Edge.List 
//Cross the edges randomly for example {x,u} and {y,v} 
Switch(e1, e2) 
If no loop or multiple edge is created then replace e1, e2 with the new edges. 
Nr_iterations <- Nr_iterations - 1   

EndWhile 

Idea: This method starts by considering any graph which satisfies the 
required degree distribution (i.e. node i has degree di and change it 
by performing a long series of random edge crosses, until it becomes 
a generalized random graph.

Empirically Nr_Iterations=100


