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Part 1

Trading off Error and Regret

Crowdsourcing is a cheap and efficient method to provide solutions to simple tasks
that are difficult for computers but possible for humans. A crowdsourcing platform
gathers requesters, who need to have their tasks done, and workers who are ready
to perform these tasks in exchange of payment. The interactive feature of crowd-
sourcing markets attracts researchers in order to design adaptive algorithms able to
optimize various aspects of these markets, such as the pricing and the assignment
of tasks. The later is a motivation of the present work. Indeed, the crowdsourcing
platform values the skills and the preferences of the workers and the expectations
and the goals of the requesters in order to assign the right task to the most “ap-
propriate” worker. This work stands as an attempt of fitting a Multi-armed Bandit
setting to a Crowdsourcing context.

Multi-armed Bandit problem (MAB) is the classical setting of an agent that aims
at optimizing his choice (or strategy) among a set of decisions. These decisions are
associated to the arms of the problem. Each arm is characterized by a distribution
and pulling the arm means drawing a sample from that distribution. This sample
is considered as an observed reward (or loss). Formally, a MAB problem of size K
consists of K probability distributions D1, ..., DK with expected values µ1, ..., µK .
The Di and µi are not known at the start. These distributions are classically viewed
as wins or losses (1 or 0) from various arms of a slot machine, but in continuous
formulations can be any (bounded) user-defined function.

In the context of a crowdsourcing platform, we can think of the arms as different
workers and the reward as the quality of the job assigned to the worker. Obviously,
from a task category to another the arm distributions may change since a worker that
performs bad for category A may perform well for category B. However, the platform
must also keep the worker busy (and thus earning money) otherwise he leaves the
market and this one shrinks. One can imagine that the platform shouldn’t always
assign a task to the worker with the best recorded performance. It may prefer to
give it to a worker that is closer to the best one but that performs bad for other
tasks. Thus, in order to keep the worker in the market, the platform will provide
the requester with a close to optimal quality work.

The subtlety here is that it’s neither about selecting the best arm for which
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some algorithms were suggested in [2, 6] nor about a pure exploration to estimate
of the arms means (see [5, 1]). The goal is to identify good arms (high means) while
guaranteeing enough estimation precision for less interesting ones. Our research
led us to a comparable approach used for curriculum design or more precisely for
user learning in a MOOC1 context where teaching techniques have to be evaluated
without impeding the user’s learning experience (see [7]). In this part, we present
our attempt to design a solution inspired by the work in [7]. Then we describe
some approaches (algorithms) that have been derived for this task. We focus our
empirical analysis on the UCB-REGERR algorithm that we suggest through this
work, in order to evaluate its behavior in different contexts. These results turn out
to be satisfying enough as they prove the empirical consistency of the algorithm and
thus invite us to derive theoretical analysis to confirm the algorithm performance.

1.1 Setting

A mixed objective function

Brunskill et al. considered, in [7], an objective function that mixes the (cumulative)
reward and the estimation error of the arms means as in the following:

Let’s assume that we dispose of an horizon of T steps and K arms, µ and σ
are vectors of arms’ means and standard deviation. We denote It the arm pulled at
time t, rIt,t the reward generated from this pull, ∆T

i the size of the 95% confidence
interval of arm i at time T . For every weight w ∈ [0, 1], we define the objective
function as

fw(λ;µ, σ) = w
T∑
t=1

rIt,t − (1− w)
K∑
i=1

∆T
i (1.1)

That is, we want to maximize the total reward received, but minimize the sizes of
the 95% confidence intervals size with some weight w between both goals. w helps
the experimenter to balance arbitrary the importance of the estimation precision
with respect to reward.

Let Li,t = E
[
(µ̂i,t − µi)2

]
the expected squared estimation error of the arm i up

to time step t. µ̂i,t is the empirical mean of arm i up to time t. We first decided
to change the precision measure to the expected square loss and rescale the sums
in order to deal with reduced quantities. By taking the expectation of the reward
term, we get

fw(λ;µ, σ) = w E

[
1

T

T∑
t=1

rIt,t

]
− (1− w)

T

K

K∑
i=1

Li,T (1.2)

Moreover, we denote Ti,t the number of pulls of arm i up to time t and λi =
Ti,T
T . If

we suppose Ti,T is known for every i, we can write Li,T =
σ2
i

Ti,T
which allows writing

1Massive Open Online Course
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the optimization problem as

max
λ

w
K∑
i=1

λiµi − (1− w)
1

K

K∑
i=1

σ2i
λi

= fw(λ;µ, σ)

s.t
K∑
i=1

λi = 1, λi ≥ 0

(1.3)

Let λ = (λ1, · · · , λK). The optimal solution corresponds to an allocation of the

pulls over the arms. Note that since λi =
Ti,T
T we have that λ ∈ QK . The previous

problem formulation could be then considered as the relaxed version of the actual
optimization problem. In the rest of the chapter, we will focus on that relaxed
version.

Solutions of extreme cases

Taking the constraint λ>1 = 1 into consideration, the first order condition can be
written for an associated Lagrangian multiplier η as follows

∀i, (wµi − η) +
1− w
K

σ2i
λ2i

= 0 (1.4)

• Case 1: w = 0

∀i, σ2i
λ2i

= cte

so
∀i λi =

σi∑
j σj

.

• Case 2: w = 1
The problem is

max
λ

K∑
i=1

λiµi s.t
K∑
i=1

λi = 1, λi ≥ 0 (1.5)

λi = 1i=argmaxjµj

When 0 < w < 1, no explicit formula can be provided to the allocation λ. Figure
1.1 gives the shape of that objective function with respect to w and λ in the case of
two gaussian arms K = 2 , where λ = λ1 = 1− λ2. The setting is the following:

µ = (1, 2) σ = (1, 1)

For every w, the optimal allocation is located in red. Note that the extreme
cases solutions are verifying the previous formula since when w → 0 we see that
λ1 = 0 since µ2 > µ1 and for w = 1 we have λ1 = 1

2 since σ1 = σ2.
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Figure 1.1: The shape of the objective function

1.2 Some learning algorithms

In this section, we present some learning algorithms that could be used for the
present problem.

1.2.1 An explore/exploit approach

Let τ ∈ [0, T ] be a time parameter (τ = τ(T )). The exploration and exploitation
phases are separate. Up to time step τ , we pull an underpulled arm if it exists. At
time step t ≤ τ , we say that an arm i is underpulled with respect to the exploration
horizon τ , if:

Ti,t ≤
c
√
τ

K

where c is a parameter of the algorithm. (τ and c are parameters that may need
some tuning.)

Algorithm 1 Explore/Exploit for Regret-Error Trade off

Parameters: τ , c, w, n, K.

Exploration Phase:
For the first τ steps: if there is still an underpulled arm, pull that one. If not,

solve λt = arg maxλ f(λ, µ̂t, σ̂2t ) and draw It ∼ λt
Exploitation Phase:

λτ = arg maxλ fw(λ, µ̂τ , σ̂2τ )
for t = τ(T ) + 1 · · ·T do

Draw It ∼ λτ and pull arm It

Update µ̂t and σ̂2t
end for
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1.2.2 Forcing algorithm & Regularization

The idea of a forcing algorithm consist in forcing the algorithm to explore during the
first steps by constraining the optimization problem to more exploratory solution.
Then progressively relax the constraint and follow the natural path of the algorithm
till the horizon T . This method helps avoiding to fall in a side solution from where
the algorithm may not be able to escape.

The algorithm consists then in solving the optimization problem by plugging
the empirical estimates of the parameters i.e the forcing algorithm considers at each
time step t the following optimization problem:

max
λ

fw(λ; µ̂t, σ̂2t ) = w

K∑
i=1

λiµ̂i,t − (1− w)
1

K

K∑
i=1

σ̂2i,t
λi

s.t
K∑
i=1

λi = 1 , λi ∈ [c(t), d(t)]

(1.6)

where c(t) → 0 and d(t) → 1. At each time step, we draw the arm to be pulled
according to the strategy λ solution of 1.6 that defines a distribution over the arms.
The estimates are updated as new rewards are observed.

How should c(t) and d(t) converge ?

• Why shouldn’t they converge exponentially fast? If the bounds c(t) and d(t)
converge exponentially fast the forcing wouldn’t be efficient when it could make
the difference. The problem converges quickly to an unconstrained one.

• Why shouldn’t they converge logarithmically? Here the convergence is very
slow and will result in a higher regret.

The polynomial convergence 1√
t

of the means and variances estimates may suggest

the natural choice of c(t) = 1− d(t) = 1√
t
.

1.2.3 Thompson Sampling

Here the estimation of the arms parameters µ and σ2 is performed through a Thomp-
son Sampling algorithm that consists in sampling these parameters from their pos-
teriors. The latter are continuously updated while new observations are collected.
Thompson sampling main effect is to push the posteriors to get more and more
peaky around the true parameters value.

If we assume that (i) the rewards from a single arm, say arm i, are normally
distributed xi ∼ N (µ, σ2), (ii) the mean µ ∼ N (µ0, n0σ

2) and (iii) the variance
σ2 ∼ Ga(α, γ), then the posterior distributions for arm i can be updated, after each
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new sample xi observed at the arm nth pull, according to the following:

µ | σ2, xi ∼ N
(

n

n+ n0
x̄i +

n0
n+ n0

µ0, (n+ n0)σ
2

)
(1.7)

σ2 | xi ∼ Ga

(
α+

n

2
, γ +

1

2

∑
k

(xik − x̄i)2 +
nn0

2(n+ n0)
(x̄i − µ0)2

)
(1.8)

Algorithm 2 Thompson Sampling

for t = 1 · · ·T do
Sample the variances σ2i,t from their posterior according to 1.8
Sample the means µi,t according to 1.7
Solve (numerically) the following problem

max
λ

fw(λ;µt, σ
2
t ) = w

K∑
i=1

λiµi,t − (1− w)
1

K

K∑
i=1

σ2i,t
λi

s.t

K∑
i=1

λi = 1 , λi ≥ 0

(1.9)

The solution λt defines a probability distribution over the arms.
Draw It ∼ λt
Pull the arm It, observe xItt and update the posterior distributions of arm i as

in 1.7 and 1.8.
end for

where x̄i is the average reward of arm i up to the current time step.

1.2.4 A UCB-like algorithm

An overview of the UCB algorithm

Here we give a short overview of the classical UCB-like algorithms for finite-time
multiarmed bandit problem (for details refer to [4]). The goal is to share the intuition
behind such strategies. Thus, for clarity, we limit the presentation to UCB-1 which
is the simplest version of such methods.

Let’s consider a K-armed bandit problem. Successive plays of arm i generate
the sequence Xi,1, Xi,2, Xi,3, ... which are i.i.d according to an unknown distribution
with an unknown mean µi. These random observations (also called rewards) are
independent across the arms as well, i.e Xi,t and Xj,t′ are independent for 1 ≤ i, j ≤
K and t, t′ ≥ 1.

Such algorithms work by associating to each arm a quantity called upper confi-
dence bound which is the sum of two terms. The first one is simply the empirical
average reward of the arm. The second, also called the exploration term, is related
to the width of a confidence interval. This results in a high probability upper bound,
usually derived from Chernoff-Hoeffding concentration inequality. UCB-1 strategy
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consists in playing at time t the arm i that maximizes µi,t +
√

α log(t)
Ti,t

, where µi,t is

the average reward obtained from arm i. Ti,t is the number of times arm i has been
played so far. usually when the horizon is fixed the term log(t) may be replaced by
log(T ), where T is the time horizon.

Inspired by UCB’s approach we suggest Algorithm 3 that we have called UCB-
REGERR.

First steps towards UCB-REGERR

The first attempt was to use means and variances high probability bounds to derive
an upper bound for the objective function. This means plugging upper bounds of the
means and a lower bounds of the variances in the objective function of the problem
1.3 and solve it. The resulting λ is then considered as a distribution over the arms
from which the next draw will be sampled. This version turned out to be unstable
and thus not practical. Here follows a discussion of its weak points.

• Why isn’t it practical to use variances’ lower bounds? The problem is
that the variance (high confidence) lower bound may be negative (when only
few samples are available) which changes the problem from a concave one to
a convex one. Thus the maximization problem doesn’t make sense anymore.

• Why is capping variances’ negative bounds to 0 not a good idea? A
solution would have been to cap the the negative lower bounds to 0 until they
go positive. The problem in doing so is that for a simple case of 2 arms where
µ1 and µ2 are very different, say µ1 > µ2 (with a big gap), and similar variances
σ21 ' σ22 the initial negative lower bound of σ22 causes that the solution of the
problem with plugged bounds is deterministic i.e λ = (1, 0). This is explained
by the big gap between the means. Indeed, as soon as the upper bound of the
second arm is of the order of µ1 the solution would also recommend to draw
arm 1 (as in classical UCB). This means that we keep on drawing the first
arm without exploring the second one, the lower bound of which preserves its
negative sign and the algorithm got stuck in the allocation λ = (1, 0).

To preserve the concavity of the problem, we switch from lower bound to upper
bound of the variances. This final version is presented in Algorithm 3.

1.3 Empirical Analysis of UCB-REGERR the case of 2 gaus-
sian arms

We first define a set of experiments on which we evaluate empirically UCB-REGERR.
Table 1.1 details the parameters defining each experiment. Note that we distinguish
2 categories according to how balanced (i.e close to 1

K = 0.5) the allocation λ is. The
arms here are gaussian and thus defined by their mean and variance parameters.
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Algorithm 3 UCB-REGERR

Parameters: n, w.
Initialization

Draw each arm twice to initialize the means µ̂i and variances σ̂2i estimates.
Define high probability upper bounds

µi < Bmean
i,t σ2i < Bvar

i,t

for t = 1 · · ·n do
Solve (numerically) the following problem

max
λ

fw(λ;Bmean
t , Bvar

t ) = w
K∑
i=1

λiB
mean
i,t − (1− w)

1

K

K∑
i=1

Bvar
i,t

λi

s.t
K∑
i=1

λi = 1 , λi ≥ 0

(1.10)

The solution λt defines a probability distribution over the arms.
Draw It ∼ λt
Pull the arm It and update µ̂It , B

mean
It,t

and σ̂2It , B
var
It,t

end for

1.3.1 Curse of unbalanced allocation for UCB-REGERR

UCB-REGERR is behaving better for “balanced” values of λ than for “unbalanced”
ones. On Figure 1.4 (b) and (d), one can see that the allocation the algorithm
suggests at each time step converges to the optimal one λoptim for the balanced
experiment o2, while for the unbalanced experiment o3, no convincing convergence
can be stated. However, one may suspect a slow convergence from the shape of the
curves.

To understand this behavior, let’s focus on the experiment no3. The optimal
allocation for arm 1 is λ1 = λ = 0.18. This means that when our draws allocation
tends to the optimal one, we tend to pull arm 1 much less often than arm 2 (which
is not the case for a balanced allocation λ). In this case, the upper bound of the
small variance σ1 = 0.1 happens to be higher than expected, because of the small
number of draws of arm 1 which results in a high exploration term.

Bvar
1,t = σ̂21,t +

√
β log(n)

T1,t

This bound being higher than the actual value (0.1) makes the algorithm fall in
a very different allocation especially when the actual value is very small. Indeed,
according to Figure 1.2, λoptim(σ1) varies faster when σ1 is close to 0. Then, if we
wish having a good approximation of λoptim(=0.1 in this case), we should draw arm
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experiment
no

λ µ σ2

1 0.53 (balanced) (2,1) (1,1)

2 0.54 (balanced) (8,1) (1,2)

3 0.18 (unbalanced) (1.1, 1) (0.1, 2)

4 0.77 (unbalanced) (3,1) (0.1,0.1)

Table 1.1: Experiments settings
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Figure 1.2: Left: Curve of λoptim for σ1 ∈ [0.05, 2]. Right: Curve of λoptim for
σ1 ∈ [1.05, 3]

1 enough times so that the exploration term is very small, but this doesn’t seem
feasible since the closer we get to this small λ1 the less we should pull arm 1.

To overcome this “slow convergence”, we can suggest 2 solutions. The first
one is a naive one that consist in ignoring the exploration term when the variance
estimate is under a certain threshold. This is not surprising when we realize that
plugging only the empirical estimates and not their upper bounds seems to provide
the convergence already (see Figure 1.3). The second one is to consider Bernstein
upper bounds that are used for UCB-V (see [3]). In this case the variance upper
bound can be written as

Bvar
1,t = σ̂21,t +

√
σ̂21,t

β log(n)

T1,t
+ η

log(n)

T1,t

This time the amplitude of the exploration term (1) is controlled by variance esti-
mate directly which makes it vanish faster when the variances are very small. The
exploration term (2) vanishes as 1

t , which means faster than Chernoff-Hoeffding
exploration term that converges only as O( 1√

t
).

1.3.2 Regret Empirical Analysis

Here, we define a regret measure and analyze its behavior in some of the relevant
experiment defined earlier.
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Figure 1.3: Left: Convergence of λt in the case of a unbalanced λoptim (experiment
no3) with a truncated variance upper bound (no exploration term for small vari-
ances). Right: Convergence of λt in the case of a balanced λoptim (experiment no3)
with empirical estimate instead of upper bounds

Let λ̃t the draws allocation that the learning algorithm actually realized up to
time step t, i.e for arm i the algorithm allocated λ̃i,t = 1

t

∑t
i=1 1It=i. We measure

the regret Rt at each time step t as the objective function gap between the optimal
allocation λoptim and λ̃t.

Rt = fw(λoptim)− fw(λ̃t)

One may expect that Rt decays like 1√
t
. On Figure 1.4, we plotted the rescaled

regret
√
tRt for experiments 2 and 3 when using the UCB-REGERR algorithm and

the baseline algorithm ε-greedy, where ε = 0.05.
The results confirms the expected convergence rate of the regret. We can see

on Figure 1.4 (c), which corresponds to a low convergence of λ, that the rescaled
regret tends to some constant value which means that the regret converges as 1√

t
.

However, when λ converges faster as in experiment 2, the rescaled regret looks like
its converging to a very small constant. If in some cases, this constant is 0, the
rate would be faster than 1√

t
, then one may consider these cases as the “easy” ones.

This proves empirically that UCB-REGERR brings a solution to the regret-error
trade off with an interesting convergence rate, which opens the way to the analysis
of theoretical guarantees and consistency of the algorithm.

Discussion and future work

We have formulated a multiarmed problem that gathers two different subproblems
that are usually studied and solved separately. This conciliation effort between two
extreme problems happens to find applications in modern collaborative technologies
such as educational platforms (MOOC) or crowdsourcing markets.

The empirical results stand as a strong justification of the algorithm as a promis-
ing track towards an interesting answer to the formulated problem. Our ambition
now is to investigate more in the theoretical path to figure out more precisely the
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convergence rate under different conditions. Thus, the next steps will focus mainly
on understanding the limits of the algorithm by designing few cases that constrain
its performance, and eventually providing theoretical guarantees for the algorithm
convergence and its regret rate.
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(c) Scaled regret,UCB-REGERR, exp no3
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(d) λ̃t convergence, UCB-REGERR, exp no3

time

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

√

tR
t
=

√

t(
f
(λ

o
p
ti
m
)
−

f
(λ

t)
)

-1

0

1

2

3

4

5

6

experiment 3

(e) Scaled regret, 0.05-greedy, exp no3
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Figure 1.4: Scaled regret and λ̃t convergence for UCB-REGERR and ε-greedy, 20
runs and T = 5000
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tion in multi-armed bandits. In COLT 2010 - The 23rd Conference on Learning
Theory, Haifa, Israel, June 27-29, 2010, pages 41–53, 2010.
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