ALE moving mesh tsunami simulation. Application to the case study of the Tohoku tsunami

L.Arpaia, M.Ricchiuto

Inria Bordeaux Sud-Ouest, Team CARDAMOM

SIAM GS 2017, September 14, 2017 • Erlangen, Germany

Increasing the accuracy of tsunami simulations

- For large scale tsunami simulations it is very hard to capture all flow scales in a single computation
- Static grids are inherently not efficient. To enhance the resolution of wave patterns during propagation and shoaling or runup stages in which fine scale flooding occurs ⇒ mesh adaptation
- *h*-refinement is the most widely used technique to refine mesh size. Cartesian grids: AMR [Berger and Colella, 1989]. Unstructured grids: local remeshing [Alauzet et al., 2007; Isola and Guardone, 2011]
- AMR already implemented in a few geophysical codes: GeoClaw [Berger et al., 2011], Gerris Flow [Popinet, 2011]

Moving mesh methods

- Although very powerful, remeshing techniques require much higher overheads and a complex data structure
- Focus on **r-adaptation** techniques. Nodes number is fixed and redistributed in the domain.
- Data structure does not change and nodal movement is obtained by solving efficiently an elliptic PDE [Huang and Russell, 1994]
- the potential shown to capture shocks, boundary layers and singularities [Ceniceros and Hou, 2001]
- efficient conservative/accurate remaps of flow variables: **Arbitrary Lagrangian Eulerian** (ALE) coupling [Donea, 1989; Cao et al., 1999] and rezoning [Tang and Tang, 2003]

Earth curvature effects

- Earth curvature affects large scale tsunami dynamics
- we set the **SWEs on a rotating sphere** (standard model for General Circulation Model)
 - SWEs in curvilinear coordinates
- extension of the ALE moving mesh method in curvilinear coordinates [Auber et al., 2008]

Example: numerical simulation against recorded data at a gauge station G804 for the Tohoku tsunami

・ロト・西ト・西ト・西ト・日・

Earth curvature effects

- Earth curvature affects large scale tsunami dynamics
- we set the **SWEs on a rotating sphere** (standard model for General Circulation Model)
 - SWEs in curvilinear coordinates
- extension of the ALE moving mesh method in curvilinear coordinates [Auber et al., 2008]

Example: numerical simulation against recorded data at a gauge station G804 for the Tohoku tsunami

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Illustrative example: circular hump on a sphere

RD	# POINTS	TIME[s]
FIX-COARSE	7122	34.58
FIX-FINE	39699	485.37
ADAPT-ALE	7122	201.05
Rossmanith	34680	-

% MMPDE of tot CPU = 37\%

SWEs in curvilinear coordinates

Consider covariant basis vectors $\mathbf{g}_1, \mathbf{g}_2$ with $G_{ij} = \mathbf{g}_i \cdot \mathbf{g}_j$ and $\sqrt{G} = \sqrt{\det(\mathbf{G})}$. SWEs in covariant Eulerian framework:

$$\frac{\partial u}{\partial t} + \frac{1}{\sqrt{G}} \frac{\partial F^{j}}{\partial x^{j}} = S(\mathbf{x}, \mathbf{u}), \quad \mathbf{u} = \begin{bmatrix} h \\ hu^{i} \end{bmatrix},$$
$$F^{j} = \sqrt{G} \begin{bmatrix} hu^{j} \\ T^{ij} \end{bmatrix}, \quad S = -\begin{bmatrix} 0 \\ G^{ij}gh\frac{\partial b}{\partial x^{i}} \end{bmatrix} - \begin{bmatrix} 0 \\ \Gamma^{i}_{jk}T^{jk} \end{bmatrix}$$

with $T^{ij} = hu^i u^j + \frac{1}{2}gh^2 G^{ij}$. It admits the lake at rest

$$\frac{1}{\sqrt{G}}\frac{\partial \mathsf{F}^{j}}{\partial x^{j}}=\mathsf{S}\quad\Rightarrow\quad\eta=h+b=const.$$

Property. We call **Well Balanced** a scheme which is able of preserving exactly the "lake at rest" state. [Ullrich et al., 2010]

ALE-SWEs in curvilinear coordinates

 $\mathcal{J}_{A} = \frac{\partial \mathbf{x}}{\partial \boldsymbol{\gamma}}, \ J_{A} = \det \mathcal{J}_{A}, \quad \frac{\partial x^{j}(t)}{\partial t} = \sigma^{j}(\mathbf{x}, t)$

Given the mapping $A(t):\mathcal{A}_0 o \mathcal{A}(t)$ with $\mathbf{x}=A(\boldsymbol{\chi},t)$ with

SWEs in ALE framework and curvilinear coords writes

$$\frac{\partial}{\partial t}\Big|_{\chi}\left(\sqrt{G}J_{A}\mathbf{u}\right) + J_{A}\frac{\partial}{\partial x^{j}}\left(\mathsf{F}^{j} - \sqrt{G}\sigma^{j}\mathbf{u}\right) = \sqrt{G}J_{A}\mathsf{S}$$

From continuum mechanics \Rightarrow Geometric Conserv. Law (GCL)

$$\frac{\partial \sqrt{G} J_A}{\partial t} \bigg|_{\chi} = J_A \frac{\partial \sqrt{G} \sigma^j}{\partial x^j} \quad \Rightarrow \quad \frac{\partial}{\partial t} \bigg|_{\chi} \int_V \sqrt{G} d\mathbf{x} = \int_{\partial V} \boldsymbol{\sigma} \cdot \mathbf{n} \sqrt{G} ds$$

Property. We call **DGCL** (Discrete GCL) a scheme which is able of verifying exactly the GCL. *[Mavripils and Yang, 2002]*

Well Balanced ALE form

Given the **ALE remap** equation for the function $b(\mathbf{x}(t))$

$$\frac{\partial b(\mathbf{x}(t))}{\partial t}\Big|_{\chi} = \frac{\partial b}{\partial x^{j}} \left. \frac{\partial x^{j}(t)}{\partial t} \right|_{\chi} \Rightarrow \left. \frac{\partial (\sqrt{G} J_{A} b)}{\partial t} \right|_{\chi} = J_{A} \frac{\partial}{\partial x^{j}} \left(\sqrt{G} b \sigma^{j} \right)$$

the balance law in ALE framework in the new variable $\mathsf{u}_\eta = [\eta \ h u^i]$

$$\frac{\partial}{\partial t}\Big|_{\chi}\left(\sqrt{G}J_{A}\mathbf{u}_{\eta}\right)+J_{A}\frac{\partial}{\partial x^{j}}\left(\mathsf{F}^{j}-\sqrt{G}\sigma^{j}\mathbf{u}_{\eta}\right)=\sqrt{G}J_{A}\mathsf{S}$$

In case of constant state η_0 , we have:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mass conservation issue

Solving numerically the ALE remap for \boldsymbol{b}

$$\frac{\partial_t (J_A b)}{\partial t}\Big|_{\chi} = J_A \nabla \cdot (b\sigma) \quad \Rightarrow \quad \frac{\partial}{\partial t}\Big|_{\chi} \int_{\Omega} b d\mathbf{x} = \int_{\partial \Omega} b\sigma \cdot \mathbf{n} = 0$$

introduce **large numerical errors** in the computation of nodal values b_i [Zhou et al., 2013]

Mass conservation issue

Recompute at each time step the nodal values by $b(\mathbf{x}(t)) = b(A(\mathbf{X}, t))$

$$\frac{\partial_t (J_A b)}{\partial t}\Big|_{\chi} \neq J_A \nabla \cdot (b\sigma) \quad \Rightarrow \quad \frac{\partial}{\partial t}\Big|_{\chi} \int_{\Omega} b d\mathbf{x} \neq \int_{\partial \Omega} b\sigma \cdot \mathbf{n} = 0$$

Remark. This choice computes accurate values of $b(\mathbf{x}(t))$ but does not conserve mass:

$$\frac{\partial}{\partial t}\Big|_{\chi}\int_{\Omega}\eta d\mathbf{x} + \int_{\partial\Omega}h\mathbf{u}\cdot\mathbf{n} = 0$$

We can drive this error to zero increasing the order of quadrature formula:

$$\int_{\Omega} b d\mathbf{x} pprox \sum_{K \in \mathcal{T}_h} \int_{\mathcal{K}} b_h d\mathbf{x} = \sum_{K \in \mathcal{T}_h} |\mathcal{K}^{n+1}| \sum_{q=1}^{N_q} \omega_q b_q$$
 $\mathbf{b}_i^{n+1} = rac{1}{|\mathcal{C}_i^{n+1}|} \sum_{K \in \mathcal{D}_i} |\mathcal{K}^{n+1}| \sum_{q=1}^{N_q} \omega_q b_q$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Mass conservation issue

Recompute at each time step the nodal values by $b(\mathbf{x}(t)) = b(A(\mathbf{X}, t))$

$$\frac{\partial_t (J_A b)}{\partial t}\Big|_{\chi} \neq J_A \nabla \cdot (b\sigma) \quad \Rightarrow \quad \frac{\partial}{\partial t}\Big|_{\chi} \int_{\Omega} b d\mathbf{x} \neq \int_{\partial \Omega} b\sigma \cdot \mathbf{n} = 0$$

Remark. This choice computes accurate values of $b(\mathbf{x}(t))$ but does not conserve mass:

$$\frac{\partial}{\partial t}\Big|_{\chi}\int_{\Omega}hd\mathbf{x}+\int_{\partial\Omega}h\mathbf{u}\cdot\mathbf{n}=-\left.\frac{\partial}{\partial t}\right|_{\chi}\int_{\Omega}bd\mathbf{x}\neq\mathbf{0}$$

We can drive this error to zero increasing the order of quadrature formula:

$$\int_{\Omega} b d\mathbf{x} pprox \sum_{K \in \mathcal{T}_h} \int_{K} b_h d\mathbf{x} = \sum_{K \in \mathcal{T}_h} |K^{n+1}| \sum_{q=1}^{N_q} \omega_q b_q$$

 $\mathbf{b}_i^{n+1} = rac{1}{|C_i^{n+1}|} \sum_{K \in \mathcal{D}_i} |K^{n+1}| \sum_{q=1}^{N_q} \omega_q b_q$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 æ

Mass conservation issue

$$E_{mass} = \int_{\Omega} h d\mathbf{x} - \int_{\Omega_{\chi}} h_0 d\boldsymbol{\chi} + \int_{\tau=0}^t \int_{\partial\Omega} h \mathbf{u} \cdot \mathbf{n} \, ds \, d\tau$$

Okushiri: RD

Conclusions

Tohoku-Honsu tsunami

- tsunami source: *[Satake, 2012]* with/without horizontal displacement
- bathymetry: resolution 120 m
- numerical solution recorded at 6 nearshore GPS gauges

Conclusions

Tohoku-Honsu tsunami

14:51:18 JST +1h

+2h +3h

Fixed mesh: comparison with other codes

Mesh: 1,080,181 triangles. $h_K = 120 \div 50000 \text{ m}$ **Source**: only vertical displacement

- RD - FV - Telemac-2D - Obs.Data

Fixed mesh: reference solution

Mesh: 1,379,054 triangles. $h_K = 120 \div 5000 \text{ m}$ **Source**: horizontal+vertical displacement

- 日本 - 1 日本 - 日本 - 日本

Conclusions

ALE simulation, t = 14 : 51 : 18 JST

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Conclusions

ALE simulation, t = +10'

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ALE simulation, t = +20'

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ALE simulation, t = +30'

Conclusions

ALE simulation against reference

Mesh: 728,874 triangles. $h_K = 360 \div 15000 \text{ m}$ **Source**: horizontal+vertical displacement

- Reference - ADAPT-ALE - Obs.Data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Limitations and future perspectives

ALE-moving mesh method can be effective for tsunami simulations.

- the MMPDE of [Ceniceros and Hou, 2001] is simple but poses strong limitations on the control on mesh quality, specially when refining along complex flow feature such as flooding on irregular coastlines or complex smooth wave patterns
 - \Rightarrow other MMPDE can be tested/used:
 - matrix monitor function [Huang, 2006],
 - elastic mesh model [Stein et al., 2004]
 - Monge-Ampere MMPDE [Budd and Williams, 2009]
- numerical treatment of wetting/drying in presence of moving mesh
- sensitivity to the moving mesh parameters