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SUMMARY

We are interested in the numerical approximation of steady scalar convection–diffusion problems by means
of high order schemes called Residual Distribution schemes. In the inviscid case, one can develop nonlinear
Residual Distribution schemes that are nonoscillatory, even in the case of very strong discontinuities, while
having the most possible compact stencil, on hybrid unstructured meshes. This paper proposes and compare
extensions of these schemes for the convection–diffusion problem. This methodology, in particular in terms
of accuracy, is evaluated on problem with exact solutions. Its nonoscillatory behavior is tested against the
Smith and Hutton problem. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We are interested in the approximation of convection–diffusion problems such as

div f .u/D div .Dru/, x 2�
uD gS on �S � @�
uD gW on �W � @�

(1)

where the function f is C 1 function and D is a d � d matrix, which symmetric part .DC DT /=2
is positive definite. The functions gS and gW used in the Dirichlet and Neuman conditions are
assumed regular enough so that the problem is well-posed.‡ In (1), @� is the boundary of ��Rd ,
�s [ �w D �. The ultimate goal is the approximation of the Navier–Stokes equations, but this is
out of the scope of this paper: we focus only on the scalar case.

The numerical setting is the following. The domain � is discretized by means of an unstructured
grid Th, and to fix ideas, we assume that��R2 and that the elements of the mesh Th are triangles.
None of these two assumptions is essential by any mean. In the setting of this paper, we seek for
an approximation to the values of the solution of (1) at the vertices of the mesh and at additional
points that correspond to the equispaced interpolation points associated to the standard Lagrange
approximation. For example, in the third-order case, in addition to the vertices, we also consider
the midpoints of the edges; in the fourth-order case, we consider vertices, plus (in 2D) cell centers
and two additional equispaced edge points, and so forth. Note that other type of degrees of freedom

*Correspondence to: R. Abgrall, Team Bacchus, INRIA and Institut de Mathématiques de Bordeaux, 351 cours de la
Libération, 33 405 Talence Cedex, France.
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‡That is, the measure of �D is strictly positive, and the Dirichlet and Newman conditions are inH 1=2.�S/ (respectively
H 1=2.�W /).
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can be considered (see e.g., [1]). The key point here is that one is able to reconstruct a continuous
interpolant uh from the degrees of freedom. Here, uh 2 V h, where

V h D
°
u 2H 1.�/,ujK 2 P

k.K/ for any element K
±

.

We focus on C 0 continuous approximations and on the steady problem (1). However, our discussion
can be generalized to discontinuous approximations, see [2,3], and to unsteady problems, see [4–6].

We are interested in the approximation of (1) using Residual Distribution (RD) schemes. If one
denotes by ¹�`º`D1,:::,ndof the set of degrees of freedom, a RD scheme writes as follows: for any �`,
find uh 2 V h such that X

K,�`2K

�K�`.u
h/D 0. (2a)

The residuals �K�`.u
h/ in the case D� 0 satisfy the following conservation relation:X

�2K

�K� .u
h/D

Z
@K

f h.uh/ � End@K (2b)

where f h.uh/ is a convergent interpolant of f .u/ (e.g., f .uh/ or the Lagrange interpolant of f .u/).
One of the key requirement is that the flux approximation f h.uh/ � En is continuous across the edges
of K, whatever the element K is.

The approximation of the nondiffusive problem D � 0 (with slightly modified boundary
conditions) is now a standard matter, even for high order of accuracy. In the inviscid case, the
schemes are formally high-order accurate, and the focus is on the L1 stability of the scheme. The
objective of the paper is to propose extensions of these approximations to the viscous problem (1), in
particular correct generalizations of the relations (2). We wish to keep the accuracy property without
sacrificing the convergence towards weak solutions and the L1 stability, that is, the shock capturing
capability of the numerical scheme, especially when the diffusion matrix tends to 0.

The numerical approximation of (1) has already been considered by several authors. It is not,
however, a completely trivial matter, and we believe there is still work to do. Indeed, the class of
RD schemes has originally been devised for (steady) transport problems, on the basis of a genuinely
multidimensional upwind approach. Among the very first contributions, one may quote the work of
P. L. Roe [7] and R.-H. Ni [8]. Some connections with more classical schemes, such as the stream-
line diffusion method by Hughes, Johnson, and co-authors, have soon been made [9]. However,
the main problem is that, even though some RD schemes can be recast as a particular class stabi-
lized finite elements with emphasis on L1 stability, there is no clear general framework allowing
to choose the test functions to recover a traditional variational statement. The main reason of this
problem is related to the underlying formulation: everything is seen from a discrete point of view,
and emphasis is put on the pointwise behavior of the residual. There is no surprise here since the
focus is on the L1 stability. Indeed, the same remark applies to variants of the method not aiming
at approximating point values of the solution, as in [1]. In this case, the local discrete pointwise
residuals are replaced by residuals for polynomial coefficient sets for which once again a maximum
principle is sought for.

There has been already many works on the approximation of (1) by means of RD. In addition
to early works where the RD scheme for the nonviscous (1) was coupled, for P1 elements, to the
Galerkin approximation of the viscous terms, one may quote the work of Caraeni [10], and more
recently that of Villedieu et al. [11,12] where this path has been explored further for scalar problems
and for the Navier–Stokes equations. A different approach is being pursued by Nishikawa [13–15],
for second order of accuracy, on the basis of a re-interpretation of the solution of (1) as the steady
solution of a hyperbolic relaxation system. The difference between our approach and [10] is that
our technique is probably simpler, and the memory footprint is probably less important. Caraeni’s
method relies on the use of a gradient reconstruction that has the flavor of what is carried out in high-
order finite volume methods and thus has a much wider stencil, especially when higher accuracy is
sought for. We believe our method to be more systematic. The difference between [11, 12] is that
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our method is able to handle very large gradients. In [13–15], only second-order accuracy is sought
for; nevertheless, this contribution has been a source of inspiration for the present work.

In this paper, we are interested in gaining a better understanding of the ideas discussed in the
aforementioned references to be able to handle (1) in a more general setting. In particular, we are
interested in a formal accuracy higher than second, and to discretizations that are L1 stable, at
least in the limit D ! 0. The key point of the analysis is a variational formulation of the inviscid
RD scheme that is then formally extended to the viscous case in the spirit of what is carried out
for the Discontinuous Galerkin schemes, although keeping the same degrees of freedom as for the
inviscid case.

The presentation is organized as follows. We first recall a remark of [16] in the P1 case (second
order of accuracy). This remark allows to explain why a simple coupling between the L1 stable
RD scheme and a simple Galerkin approximation of the viscous term is still a residual method.
Then, we show, by a counter example, that this remark cannot be generalized: it only works on
P1 elements. To overcome this drawback, we revisit the formulation of the nonviscous scheme and
propose a nonstandard variational formulation of these schemes that enables a generalization of the
relations (4), in particular the conservation relation (4a), and thus a formulation of the scheme in
the viscous case. Numerical tests are performed to check the numerical accuracy, in particular with
respect to variations of the values of the viscosity. We also investigate the nonoscillatory properties
of the method.

2. SOME BASIC INFORMATION ABOUT RESIDUAL DISTRIBUTION SCHEMES IN THE
CASE D� 0

The problem is to find an approximate solution of

div f .u/D 0, x 2� (3a)

where the boundary conditions, when D D 0, are

uD g on �� D ¹M 2 @�,ruf .u/ � En < 0º, (3b)

and En is the inward normal to @� at M 2�.
Let us denote by S the set of degrees of freedom � that are needed to represent

Vh D ¹v 2 L
2.�/, for any K 2 Th, vjK 2 P

r.K/º \ ¹v 2 L2.�/, vj�� D gº

the set of functions where we are looking for a solution. There is some abuse of notations in this
“definition”. Since the elements of v 2 Vh are polynomials of degree r in any triangle of Th, the
degrees of freedom are, in this paper, the solution values at Lagrange points: the vertices for P1, the
vertices and the edge midpoints for P2, and so forth.

Given any uh 2 V h, we define two types of residuals as follows:

1. For any K 2 Th and any � degree of freedom in K, the element residuals �K� .u
h/ must sum

up to the total residual �K.uh/,X
�2K

�K� .u
h/D �K.uh/ WD

Z
@K

f h.uh/ � End@K. (4a)

2. For any boundary edge � � �� and any � degree of freedom in � , the edge residuals ��� .u
h/

must sum up to the total edge residual ��.uh/,X
�2�

��� .u
h/D ��.uh/ WD

Z
�

h
f h.uh/ � En� Of .uh,g, En/

i
d@K. (4b)

In (4b), Of is a consistent numerical flux.

The two types of residuals must be continuous with respect to their arguments. The conditions (4),
in addition to the continuity requirement of f h.uh/ across the edges of the triangulation and the
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consistency of the numerical flux Of , enable to prove a Lax–Wendroff (LW) theorem, see [17]. In
practice, the total residuals and total edge residuals are evaluated by numerical quadratures.

The system (3) is approximated by the following: find uh 2 V h such that for any � 2 T h,P
K,�2K

�K� D 0 for the internal degrees of freedomP
K,�2K

�K� C
P

� ,�2�
��� D 0 if � 2 @�.

(5)

In general, this leads to very nonlinear systems that are solved by an iterative technique. In
this paper, we have used only a Jacobi-like iterative technique (i.e., simple forward Euler time
stepping), although more sophisticated and more efficient methods can be used and are used for
large scale problems.

The next question is how to define in practice the subresiduals. The first requirement is about
accuracy. In [17], it is shown that if

�†� DO.h
d†Cr/,

for any mesh entity † (element or edge), d† denoting its dimension§, then the scheme is r C 1
accurate, provided of course as usual that the mesh is regular in the finite element sense. We recall
later in the text how this can be achieved in practice.

The second question is about stability. To do that, the standard technique is to compare the sign
of the residuals with that of a monotone scheme. Following a path initiated by Roe and Abgrall[17],
we show how it is possible to obtain simultaneously monotonicity preservation and accuracy. Unfor-
tunately, in general, the technique proposed in [17] combined with an iterative scheme does not
converge to a steady state. The main reason is that the nonlinear mechanism at the basis of the con-
struction only involves the preservation of the signs of the discretization coefficients to guarantee
a discrete maximum principle and a priori; no physical principle is involved in the procedure. In
general, this leads to the appearance of mild spurious modes. A typical footprint of this behavior is
a staircase appearance of the numerical solution. These difficulties are analyzed and solved in [18]
for P1 elements and in [19, 20] for higher degree polynomials. The interested reader can consult
these references for details. The key element is to modify the residuals �Ki .u

h/ obtained following
the approach of [17] as follows

�K?i .uh/D �Ki .u
h/C

F‚ …„ ƒ
hK

NK

X
xq2K

�
ruf .u

h/.xq/ � r'i

�
�
�
ruf .u

h/.xq/ � ru
h.xq/

�
, (6)

with NK D #¹� , � 2Kº. The filter F in (6) has the flavor of

hK

Z
K

�
ruf .u

h/r'i

�
�
�
ruf .u

h/ � ruh
�

dK

evaluated via numerical quadrature. In [19], an analysis is conducted to understand what are
the relations between the last integral and the filter F . It is shown that the quadrature does not
need to be consistent, but, since the role of this term is to act as a dissipation that vanishes on
exact solutions, the paper gives a criterion to choose the points xq for triangular/tetrahedrons and
quadrangle/hexahedrons elements. In the linear case, the centroid of the cell K is fine for triangular
elements, whereas in the quadratic (triangle) case, the triangle vertices are fine. Other kind of ele-
ments are analyzed in that reference. The parameter � (a matrix in the system case) is also discussed,
but the quality of solution has no real dependency on � in practice: its role is mainly to satisfy some
dimensional consistency principle.

The modification in (6) looks very much with the stabilization term in the Streamline Upwind
Petrov Galerkin scheme, which itself has a lot to do with the artificial dissipation of the LW scheme.

§In 2D, d† D 1 for an edge � and d† D 2 for an element K.
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However, its role is very different: without this term, the scheme is perfectly stable in the L1 norm,
but if one implements an iterative method to solve the system (5), the method will not converge.
The role of F is to enable the iterative convergence, and hence to guaranty the accuracy. It is
an experimental fact that the non oscillatory properties of the original scheme are not degraded
in practice.

3. APPROXIMATION OF (1) IN THE P1 WITH TRIANGLE ELEMENTS CASE

In the P1 case, the degrees of freedom are simply the vertices of the mesh. To make things simpler,
we assume D D " Id. In the case, " D 0, the RD scheme (2a) for (1) would write: for any mesh
point i , X

K,i2K

�Ki .u
h/D 0 (7)

where the residuals satisfy the conservation condition (2b)X
i2K

�Ki .u
h/D �K WD

Z
@K

f h.uh/ � End@K. (8)

In the following, we shall assume that the flux is linear, that is, f .u/ D E�u. The analysis can be
generalized to nonlinear flux provided that f h.uh/ is the Lagrange interpolant of f .u/; this is what
we do in practice. In the second-order case, the residual have the form

�Ki D ˇ
K
i �

K (9)

where ¹ˇKi º is uniformly bounded and constructed by various means, see Section 4.
Using the standard P1 shape function 'i , we can rewrite �K in a Petrov Galerkin manner,

�Ki D

Z
K

'ir � f
h.uh/dK C

Z
K

�
ˇKi �

1

3

�
r � f h.uh/dK WD

Z
K

!Ki r � f
h.uh/dK

because f h.uh/ is a linear polynomial so that r �f h.uh/ is a constant and
R
K 'idK D jKj=3 in the

case of a triangle. In this formulation, !i is not continuous across edges and then cannot be used to
approximate (1).

In [16], it was noticed that the same scheme could be written differently. Denote bK the hat
function that is 0 on @K and 1 at the gravity center ofK. It is a piecewise linear function that satisfiesZ

@K

rbK � End@K D 0 and
Z
K

bKdK > 0.

We can write

�Ki D ˇ
K
i �

K D

Z
K

'ir � f
h.uh/dK C �Ki

Z
K

bKr � f h.uh/dK

with

�Ki

Z
K

bKdK D

�
ˇKi �

1

3

�
jKj

again because uh, and the flux is linear in K.
Now,

!i D 'i C

² P
K,i2K �

K
i b

K if x 2 support of '
0 else

(10)

is a continuous function so that it can be used in the variational formulation.
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Denoting byWh D span.!i / and Vh D span.'i /, the variational formulation of the problem is the
following (we omit the boundary conditions (BC) for short and use some abuses of language): find
uh 2 V h such that for all w 2Wh,

�

Z
�

f h.uh/ � rw dK C
Z
�

"ruh � rw dK D 0.

Setting w D !i the previous equation, and integrating by parts, the first term we obtain isX
K,i2K

Z
K

�
!ir � f

h.uh/C "ruh � r!i

�
dK.

The first term gives back ˇKi �
K . Let us have a look at the second one,Z

K

r!i � ru
h dK D

Z
K

r'i � ru
h dK C �Ki

Z
K

rbK � ruh dK.

Since ruh is constant, we see thatZ
K

rbK � ruh dK Druh �
Z
rbK dK,

and by the Green formula (which holds due to the continuity of bK),Z
K

rbK dK D
Z
@K

bK En dK D 0.

This shows that the variational formulation is the following: find uh such that for any i ,X
K3i

ˇKi �
K C "

Z
K

r'i � ru dK D 0,

that is, the RD scheme on the convection plus Galerkin on the diffusion. This is the argument used
in [16] to justify the consistency of the aforementioned scheme. The method, however, does not
show a uniform accuracy. This is a well-known problem of the Streamline Upwind Petrov Galerkin
scheme that is recovered here with ˇi D 1

3
C ki� . One has to blend the scheme with a Galerkin

approximation, the blending parameter depends on a cell Peclet number, see [11, 21] for details on
the streamline method and the RD schemes.

How can we extend this to higher orders? The key argument here was that the gradient or the
divergence of a linear field is constant, which is only true for linear triangular elements.

4. EXTENSION TO HIGHER DEGREES

The purpose of this section is to investigate whether or not the technique of the previous section
can be extended to higher than second-order accurate schemes, in other words, to see whether or
not the schemes described in [20] can be re-interpreted in a classical variational formulation with
continuous test functions. We shall see that the answer is no.

We still assume DD " Id. We want to find functions �Ki 2H
1.K/ such that

1. When we use a Pk Lagrange interpolant,Z
K

�
'i C �

K
i

�
r � f .uh/dK D ˇKi

Z
K

r � f .uh/ dK. (11a)

2. They enable to construct H 1 basis functions:�
�Ki
�
j@K
D 0. (11b)
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3. They play no role on the viscous terms:Z
K

�Ki 	u dK D
Z
K

div
�
�Ki ru

�
dK �

Z
K

r�Ki � ru dK D 0,

that is, because
�
�Ki
�
j@K
D 0, Z

K

r�Ki � ru dK D 0 (11c)

for any u 2 Pk.K/.

We can rephrase (11a) asZ
K

�Ki r � f .u
h/ dK D ˇKi

Z
K

r � f .uh/ dK �
Z
K

'ir � f .u
h/ dK. (12)

If the flux f is linear in uh, the conditions (12)-(11b)-(11c) are affine conditions of the type

`p
�
�Ki
�
D ap ,

where the linear functional `p are defined by the following:

1. From condition (12)

`1p.w/D

Z
K

wr � f .uh/ dK,

and

ap D ˇ
K
i

Z
K

r � f .uh/ dK �
Z
K

'ir � f .u
h/ dK,

2. From condition (11c)

`2p.w/D

Z
K

rw � ruh dK

and ap D 0.

Unfortunately, there is no solution to this problem, in general. Consider the simple 1D case, with
quadratic elements. Any element can be mapped onto Œ0, 1
, so we can assume K D Œ0, 1
. In the
case of quadratic and f .u/ D u elements, the Lagrange points are � D 0, 1=2, and 1, and thus the
Lagrange functions are

'0.x/D .1� 2x/.1� x/, '1=2.x/D 4x.1� x/, '1.x/D x.2x � 1/,

hence

'00.x/D 4x � 3, '01=2.x/D 4� 8x, '01.x/D 4x � 1.

By abuse of language, the functions �Ki and the coefficients ˇKi are now denoted by �� and ˇ� .
Since the second derivative of quadratic functions are constant, with the simplifications given

by (11c), we obtain
R 1
0 ��dK D 0. Using these expressions of '00, '01, and '0

1=2
and this relation,

(12) becomes

'00 W 4

Z 1

0

��xdx D�ˇ� �
Z 1

0

'�'
0
0.x/dK, (13a)

'01=2 W �8

Z 1

0

��xdx D�
Z 1

0

'�'
0
1=2.x/dx, (13b)

'01 W 4

Z 1

0

��xdx D ˇ� �
Z 1

0

'�'
0
1.x/dx. (13c)
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If one takes � D 1=2, we see (from (13b)) that
R 1
0 ��xdx D 0, that is, ˇ1=2 is a given fixed constant

and moreover independent of the scheme¶. This already suffices to show that we cannot, in general,
build �Ki for any given scheme.

Let us show that, in general, ˇ� can be arbitrary in Œ0, 1
. To show that, we consider the limited
scheme constructed from the Lax–Friedrichs scheme,

�� D
1

3
.u1 � u0/C ˛.u� � Nu/ with NuD

1

3
.u0C u1=2C u1/.

We introduce

p D
u1=2 � u0

u1 � u0
and q D

u1 � u1=2

u1 � u0
.

We have pC q D 1; p can be arbitrary in R. We define the ratios

x0 D
�0

�
D
1

3
� ˛

pC 1

3
, x1=2 D

�1=2

�
D
1

3
C ˛

p � q

3
, x1 D

�1=2

�
D
1

3
C ˛

qC 1

3
.

If ˛ D 1, we have some simplifications

x0 D�
p

3
, x1=2 D

2

3
p, x1 D

3� p

3
.

We see that if p 2 Œ0, 3
, we obtain

ˇ0 D 0, ˇ1=2 D
2p

3C p
ˇ1 D

3� p

3C p
.

We note that the image of Œ0, 3
 by p 7! 2p
3Cp

is Œ0, 1
; that is, the range of ˇ1=2 is at least Œ0, 1
,
which is in contradiction to the fact that ˇ1=2 is the fixed given constant.

This shows that there is no solution to the problem in general and that something else must be
carried out.

5. APPROXIMATION OF (1): VARIATIONAL METHODS BASED ON
GRADIENT RECONSTRUCTION

We start again from the formulation (7)-(9). Taking vh 2 V h, we have

X
i

vhi

 X
K3i

�Ki C
X
�3i

��i

!
D
X
K

0
@X
j2K

ˇKj v
h
j

1
AZ

@K

f .uh/ � End@K

C
X
�

0
@X
j2�

ˇKj v
h
j

1
AZ

�

�
f .uh/ � En� Of .uh,g, En/

�
d@K.

We introduce W h the space of the functions that are piecewise constant on the elements K and the
mapping

�hˇ W V
h!W h

vh 7! �hˇ .v
h/, for all K,�hˇ .v

h/jK D
X
j2K

ˇKj v
h
j .

In this definition, ˇ stands for the set
°
ˇKj

±
K,j2K

. In the following, ˇ may depend on uh, or more

generally on some element wh 2 V h because the coefficients ˇKj may depend on wh, so we write

¶In fact, the unique solution is ˇ1=2 D 1=4.
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ˇ.wh/ or simply ˇ if there is no ambiguity. The dependancy of ˇ with respect to wh is described
later in this section.

We can reformulate the RD scheme as finding uh 2 V h such as for any vh 2 V h,

a.uh, vhIuh/D 0

with

a.uh, vhIwh/ WD
X
K

�Z
@K

�h
ˇ.wh/

.vh/f .uh/ � End@K �
Z
K

r�h
ˇ.wh/

.vh/ � f .uh/dK

�
. (14)

We note that the exact solution u, if it is smooth enough, of (1) also satisfies the residual condition

a.u, vhIwh/D 0

for any vh,wh 2 V h. Indeed, in that case, we can also writeX
K

Z
K

�h
ˇ.wh/

.vh/div f .u/dK D 0.

To derive the formulation for the viscous problem (1), D 6� 0, we start from that relation. If u
is the solution of (1), it is known that it is a smooth function, and we can write for the continuous
problem X

K

Z
K

�h
ˇ.wh/

.vh/ Œdiv .f .u/�Dru/
 dK D 0.

By standard calculations, we obtainX
K

Z
@K

�h.w
h/f .u/ � EndK C

Z
@K

�h.w
h/ .Dru/ � End@K D 0.

Since .Dru/ � En is continuous across any edge of Th for a smooth enough solution, and using some
average operator,|| we can equivalently rewrite this relation asX

K

Z
@K

�h.v
h/f .u/ � EndK C

Z
@K

�h.w
h/¹.Dru/ � Enºd@K D 0** (15)

and consider the variational formulation that takes into account the boundary conditions as in (1)

X
K

²Z
@K

�hˇ .v
h/f .u/ � End@K C

Z
@K

�hˇ .v
h/¹.Dru/ � Enºd@K

ChK

Z
K

�
ruf .u

h/ � rvh �r � .Drvh/
� �
ruf .u

h/ � ruh �r � .Druh/
�

dK

³

C
X
���W

Z
�

�hˇ .v
h/
�
f .uh/ � En� Of .uh,gw , En/

�
d� D 0.

(16)

In (16), we have made the following assumptions:

1. The mesh is adapted to the boundary conditions. In particular, the union of the boundary edges
on �W is �W exactly. This also means that � has a polygonal shape. The more general case
can be handled via isoparametric approximation as in [20, 22].

||In fact, we can use any consistent average that is equal toDru � En when the normal fluxDru � n is continuous accross
that edge.

**The matrix D may depend on u, ru, and so forth.
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2. uh and the test functions vh are respectively sought for in the functional spaces

Vh D
°
uh continuous and defined on �,uhK 2 P

k.K/ for any element K and uh
j�S
D gS

±
V 0
h
D
°
vh continuous and defined on �, vhK 2 P

k.K/ for any element K and uh
j�S
D 0

±
The choice of ˇ is free, we choose it so that the convective operator, without the filtering opera-
tor, leads to a maximum principle satisfying scheme. To achieve this, in each K, we proceed as
follows:

1. We consider the Lax–Friedrichs residual. For any degree of freedom in K,

�LLF,K
� D

1

NK

Z
@K

�
f .uh/ � En� ¹Dru � Enº

�
d@K C ˛K.u� � uK/

where ˛K is a bound of jruf j on K, NK the number of degrees of freedom in K and

uK D
1

NK

X
�2K

u� , (17)

2. ˇK� is evaluated from

ˇK� D
max

�
�

LLF,K
�

�K
, 0
�

P
� 02K max

�
�

LLF,K
�0

�K
, 0

� , (18)

recall that

�K D

Z
@K

�
f .uh/ � En� ¹Dru � Enº

�
d@K.

3. The average operator ¹ . º has to be consistent. The next paragraph is devoted to the description
of the reconstructions we have employed in this work.

4. We have added a filtering term similar to (6) but adapted to (1), namely

ˆK,F
� D

Z
K

.rfu � r'� �r � .Dr'� // � .rfu � ru�r � .Dru// dK. (19)

The actual scheme writes

ˆLLFF
� D ˇK� �

K CˆK,F
� .

The acronym “LLFF” stands for “Local Lax–Friedrichs Filtered”.

Remark 5.1
We can easily extend this to the case of discontinuous RD scheme, see [2, 3, 23].

5.1. Gradient reconstruction methods

We have considered techniques that reconstruct gradients using a L2 projection and piecewise
continuous polynomials. There are many possible choices depending on how are defined the degrees
of freedom. An obvious choice is to project the gradient on the same space as the one we have used
to approximate the solution. Hence, we writeZ

�

'� ¹ruº d� D
X
K,�2K

Z
K

'� rujK dK, for any degree of freedom � (20)

where

¹ruº D
X
�2Th

'� ¹ruº� rujK D
X
�2K

u�r'� . (21)
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The linear system defined by (20) is not diagonal, so the solution, although not difficult to obtain,
is a bit expensive to proceed this way. It is possible to use mass lumping. To have an accuracy
of order k if k is the polynomial degree, the weights are 1=3 in the P1;

�
1
12

, 1
12

, 1
12

, 3
12

, 3
12

, 3
12

�
(weights for the 3 vertices and 3 midpoints) in the P2 case. In both cases, the maximal accuracy on
the gradient is met.

It is also possible to have exact mass lumping at the price of changing the approximation represen-
tation. Following [24, 25], we have tested enriched elements, initially built to allow mass lumping
in Galerkin discretizations of time-dependent problems. For example, the P2C triangle simply has
one additional (with respect to the standard P2 triangle) degree of freedom that is located in its
centroid (see Figure 1). Using the seven points of the enriched element, a quadrature formula exact
for polynomials of degree 2 can be constructed. We refer to [24, 25] for details.

From the implementation point of view, from (21), we obtain

¹ruº� D

P
K,�2K jKj!�ru

h.�/P
K,�2K jKj!�

(22)

where the !� s are the weight associated to the quadrature formula. We note that, since only a
maximal accuracy of order k can be met, we can also apply (22) with !� D 1 for any � .

Anticipating a bit of the numerical section, none of the reconstruction shows definite superiority
compared with the others; hence, we have privileged simplicity of implementation. This is why all
the numerical examples are obtained with (22) with !� D 1 for any � .

5.2. Dealing with the diffusion-dominated case

The LLFF scheme that used this reconstruction has the expected behavior for small values of the
diffusion coefficients. However, when the cell Reynolds number kruf k h= is moderate or small,
the (grid) convergence rate obtained is considerably less than the kC1 value we aim at. When diffu-
sion starts becoming important, the convergence curve suffers perturbations, and its rate decreases
drastically. In a diffusion-dominated configuration, the scheme completely fails to converge.

To cure this flaw, we have blended the current limited LLFF scheme with a LW scheme obtained
by rewriting the advection–diffusion problem as a system of first-order PDEs, as proposed in [13]
and then in [15, 26]. In the diffusion-dominated case, the LW scheme nodal residuals writes

ˆLW
� D

1

NK
ˆK CC

Z
K

r'�
�
ruK � ¹ruº

�
dK , with ˆK D�

Z
@K

®
Dru � En

¯
d@K

where we set CD 0.5 when working with triangles. As shown in [13], this term can be related to the
least-square stabilization associated to the first-order system form of the equation. The LW scheme
reaches respectively second and third order when solving the purely diffusive scalar equation using
a P1 (respectively P2) formulation.

When solving the advection–diffusion equation, we blend the LLFF scheme with the LW scheme.
The blending parameter is a function of the cell Reynolds number �.Re/. This function is computed

Figure 1. Standard P2 and enriched P2C triangles
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following again [15, 26]. In practice, first we define a modified Lax–Friedrichs scheme, by turning
off the Lax–Friedrichs dissipation in the purely diffusive regime, and apply the limiter as discussed
before so that we obtain

ˆK,LLF–LW
� D

1

NK
ˆK C �.Re/˛K .ui � u/ .

Then, we compute the limited residuals ˆK,LLF–LW�
� following the procedure (18). We then add

the least-squares term (19) in advection-dominated flows and the LW least-squares term in the
diffusion-dominated one. The resulting scheme reads

ˆK,LLFF–LW�
� DˆK,LLF–LW�

� C �.Re/ˆK,F
� C .1� �.Re//ˆK,LW

� . (23)

The parameter �.Re/ that we have used in effective calculations is

�.Re/Dmax

�
0, 1�

1

Re

�
. (24)

In terms of CPU cost, computing the LW integral term is not very demanding. The same quadra-
ture formula used for the reconstruction, using only the element’s degrees of freedom, has proven to
be enough to provide the best convergence rates achievable with this approach. In particular, on P2

elements, the blended scheme reaches third order at both limits but is still experiencing a precision
loss around Re � 1 (cf. Section 6). Similar conclusions are obtained when using both standard P2

and enriched P2C elements.
The choice (24) is such that the diffusive/advection limits of the scheme is reached much before

it is the case in the continuous system. This allows to get rid of the computation cost of one of the
stabilization terms. In particular, when facing a pure diffusive flow configuration, cutting out the
cost associated to the LLFF scheme results in a critical speed-up. In practice, when the Reynolds
based function comes close enough from its bounds (0 and 1), we force it to take the limit value.
This is obtained by defining the modified blending function.

6. NUMERICAL ILLUSTRATIONS

We present two test cases. The first one is an accuracy test. In the second case, we check the
nonoscillatory properties of the scheme.

6.1. Grid convergence on a truly 2D problem

We are solving (1) on �D Œ0, 1
2, with

f .u/D

p
2

2

�
1

�1

�
u and D D "Id.

The Dirichlet conditions are set such that the exact solution is

Uex.x,y/D� cos .2��/ exp

�
1

2"
�
�
1�

p
1C .4�"/2

�	
in Œ0, 1
2

� D cos
��
4

�
xC sin

��
4

�
y,

 D sin
��
4

�
x � cos

��
4

�
y,

that is, g is the restriction of Uex on @�.
For several values of the parameter ", we have conducted a convergence study that uses eight

triangulated meshes, with mesh sizes from h � 1=10 to h � 1=80. The study covers a wide range
of flow configurations: diffusion-dominated (log.Re/ 	 0), advection–diffusion (log.Re/ � 0),
and advection-dominated (log.Re/ 
 0). We compare three numerical schemes, all using the
reconstructed gradients approach. The first one is the P2 LLFF scheme, the second one is the P2
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Table I. Results obtained with the LLFF P2 scheme, then with the LLFF–LW? P2 scheme and finally
with the P2C enriched element version.

LLFF LLFF–LW? LLFF–LW? (P2C)

"D 1

log10.Re/ log10.h/ log10 of the L2 error Order log10 of the L2 error Order log10 of the L2 error Order
�1.01 �1.01 �2.58 – �3.76 – �3.66 –
�1.31 �1.31 �3.06 1.59 �4.73 3.22 �4.42 2.52
�1.49 �1.49 �3.33 1.58 �4.928 2.56 �4.80 2.38
�1.62 �1.62 �3.39 1.34 �5.37 2.66 �5.28 2.68
�1.71 �1.71 x x �5.65 2.70 �5.54 2.69
�1.79 �1.79 x x �5.99 2.87 �5.88 2.86
�1.86 �1.86 x x �6.23 2.92 �5.98 2.74
�1.92 �1.92 x x �6.36 2.88 �6.14 2.75

"D 0.01
log10.Re/ log10.h/ log10 of the L2 error Order log10 of the L2 error Order log10 of the L2 error Order
0.99 �1.01 �2.36 – �2.46 – �2.31 –
0.69 �1.31 �3.06 2.31 �3.13 2.21 �3.26 3.14
0.51 �1.49 �3.47 2.33 �3.49 2.16 �3.59 2.68
0.38 �1.62 �3.73 2.27 �3.73 2.10 �3.81 2.48
0.29 �1.71 �3.91 2.22 �3.93 2.09 �3.98 2.39
0.21 �1.79 �4.02 2.14 �4.07 2.07 �4.11 2.32
0.14 �1.86 �4.10 2.05 �4.20 2.06 �4.25 2.30
0.08 �1.92 �4.18 2.01 �4.32 2.06 �4.37 2.28

"D 0.0001
log10.Re/ log10.h/ log10 of the L2 error Order log10 of the L2 error Order log10 of the L2 error Order
2.99 �1.01 �2.90 – �2.94 – �2.85 –
2.69 �1.31 �3.81 3.00 �3.83 2.95 �3.72 2.89
2.51 �1.49 �4.36 3.05 �4.37 3.01 �4.26 2.96
2.38 �1.62 �4.70 2.98 �4.71 2.94 �4.62 2.93
2.29 �1.71 �4.99 2.99 �5.00 2.95 �4.91 2.94
2.21 �1.79 �5.21 2.97 �5.22 2.93 �5.12 2.92
2.14 �1.86 �5.40 2.96 �5.41 2.93 �5.30 2.90
2.08 �1.92 �5.58 2.96 �5.59 2.93 �5.48 2.91

LLFF, Local Lax–Friedrichs Filtered; LW, Lax–Wendroff

LLFF–LW?, and the last one is the P2C LLFF–LW?. The results of these mesh convergence studies
are presented in Table I.

We first note that the LLFF scheme experiences convergence problems in the case of the diffusion-
dominated configuration (" D 1). The test stops at the fourth mesh for this scheme. The achieved
order of accuracy is close to 3 in the advection-dominated configuration and decreases to 2 when
log.Re/� 0.

The LLFF–LW? formulation behaves exactly as the LLFF scheme for both advection–diffusion
and advection-dominated flows, respectively achieving a precision of 2 and 3. The LW blending
improves the convergence of the scheme in the diffusion-dominated case where third-order accuracy
is now achieved.

The P2C formulation of the LLFF–LW? scheme slightly improves the results in the advection–
diffusion case, in which we achieve convergence rates larger than 2 (between 2.3 and 3) but still far
from optimal and uniform. It is not clear that this minor improvement is worth the additional cost of
the extra degree of freedom.

6.2. Resolution of steep gradients

We are interested in solving the Smith and Hutton problem

div .E�u/� "	uD 0 x 2�
uD g on @�

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fld



R. ABGRALL ET AL.

= 10−4 = 10−2

Mesh (all the degrees of freedom are displayed)

Figure 2. Smith and Hutton case with ˛ D 100 for different viscosities.

with

E�D .2y.1� x2/,�2x.1� y2//T , �D Œ�1, 1
� Œ0, 1
,
f D 0 and g.x,y/D 1C tanh

�
ı.1� 2

p
 /
�

,

 .x,y/ D 1 � .1 � x2/.1 � y2/ and ı D 100. The usual choice for ı is 10, resulting is much less
steep gradients. This case enables to check the ability of the LLFF–LW? scheme to handle very
steep solution gradients. As shown in Figure 2, no particular problem are encountered. There is no
known analytical formula for this problem; hence, it is not possible to conduct a convergence study.

7. CONCLUSION, FUTURE WORK

We have explored several discretization of the steady convection–diffusion (1) by means of RD
schemes. These schemes degenerate to standard RD schemes when the diffusion effects vanish and
are nonoscillatory. We have first shown that the method used in the case of triangular linear ele-
ment cannot be extended to more general case. It can be shown that the scheme is still consistent
(see [27]), but one cannot reach optimal accuracy. Thanks to a reformulation of the inviscid RD
scheme as a variational formulation, we can rely on this reformulation to develop a class of
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schemes adapted to (1). They need a gradient reconstruction, and several options are studied. Sev-
eral numerical simulations are carried out and demonstrated the expected accuracy, at least from
moderate to high local Reynolds numbers.

These methods are being extended to the Navier–Stokes equations, see [28] for preliminary
results.

APPENDIX A: IMPLEMENTATION REMARK

One of the difficulty of the scheme using reconstruction is that one needs to evaluateZ
K

�
ruf .u

h/ � rvh �r.Drvh/
� �
ruf .u

h/ � ruh �r.Druh/
�

dx.

This is carried out by using the same trick as in [19] to reduce the number of arithmetic opera-
tions. The quadrature points are some of the Lagrange points. The second difficulty is to evaluate
r.Druh/. To do this, we notice that if uh 2 Pk.K/, then ruh 2 Pk�1.K/, so that

ruh D
X
�2K

ruh.�/'�

where the '� are the Lagrange basis functions. Then, Druh is approximated with the right order by

Druh �
X
�2K

�
Druh

�
.�/'� .

To evaluate pointwise r.Druh/, it is enough to apply twice the algorithm to evaluate the gradient.
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