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Abstract

We study a hybrid approach combining a FV and FE method to solve a fully nonlinear and weakly-dispersive

depth averaged wave propagation model. The FV method is used to solve the underlying hyperbolic shallow

water system, while a standard P1 finite element method is used to solve the elliptic system associated to the

dispersive correction. We study the impact of several numerical aspects: the impact of the reconstruction

used in the hyperbolic phase; the representation of the FV data in the FE method used in the elliptic phase

and their impact on the theoretical accuracy of the method; the well-posedness of the overall method. For the

first element we proposed a systematic implementation of an iterative reconstruction providing on arbitrary

meshes up to third order solutions, full second order first derivatives, as well as a consistent approximation

of the second derivatives. These properties are exploited to improve the assembly of the elliptic solver,

showing dramatic improvement of the finale accuracy, if the FV representation is correctly accounted for.

Concerning the elliptic step, the original problem is usually better suited for an approximation in H(div)

spaces. However, it has been shown that perturbed problems involving similar operators with a small Laplace

perturbation are well behaved in H1. We show, based on both heuristic and strong numerical evidence, that

numerical dissipation plays a major role in stabilizing the coupled method, and not only providing convergent

results, but also providing the expected convergence rates. Finally, the full mode, coupling a wave breaking

closure previously developed by the authors, is thoroughly tested on standard benchmarks using unstructured

grids with sizes comparable or coarser than those usually proposed in literature.

Keywords: Green-Naghdi equations, hybrid scheme, Finite Volumes, Finite Elements, high order, wave

breaking

Email addresses: maria.kazolea@inria.fr (M. Kazolea), a.filippini@brgm.fr (A. G. Filippini),
mario.ricchiuto@inria.fr (M. Ricchiuto)

Preprint submitted to Elsevier October 25, 2022



Contents

1 Introduction 3

2 The fully-nonlinear/weakly-dispersive model 4

3 Solution strategy and geometrical notation 6

4 Hyperbolic step: third order FV scheme and derivatives recovery via successive corrections 8

4.1 Polynomial expansion and derivative reconstruction via successive corrections . . . . . . . . 9

4.1.1 First derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.2 Second derivatives and second order corrected gradients . . . . . . . . . . . . . . . 11

4.1.3 Capturing of non-smooth solutions and limiting . . . . . . . . . . . . . . . . . . . . 13

4.2 Numerical verification for smooth and non-smooth flows . . . . . . . . . . . . . . . . . . . 13

5 Finite element solver for dispersive effects 15

6 Finite element/volume coupling: consistency and well-posedness considerations 16

6.1 Consistency: using FV data in the FE solver and vice-versa . . . . . . . . . . . . . . . . . . 17

6.2 A comment on well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Time continuous spectral analysis: dispersion error and stability 23

7.1 Stability and dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Boundary conditions, wave generation, and wave breaking closure 26

8.1 Wave breaking detection and closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.2 Wave generation and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Numerical validation and benchmarking 28

9.1 Grid convergence for the solitary wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.2 Circular shoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.3 Elliptic shoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9.4 Solitary interacting with a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.5 Solitary wave breaking on a 3D reef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2



9.6 The seaside experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 Conclusions 38

Appendix A 39

Appendix B 40

1. Introduction

Accurate simulations of water wave’s propagation and non-linear wave transformations is of fundamental

importance to marine and coastal engineering. Over the last decades, significant efforts in the development

of depth averaged models have been made in order to provide the means of accurately predicting near-shore

wave processes.

One of the most applied depth averaged models is the Non-linear Shallow Water Equations (NSWE).They

are applied to describe long wave hydrodynamics when the vertical acceleration of water particles can be

neglected assuming the flow to be nearly horizontal. They are able to model important aspects of wave prop-

agation phenomena, the general characteristics of the run-up process, and the wave breaking with broken

waves represented as shocks. However they are not appropriate for deeper waters and shoaling since they

neglect all the dispersive effects that play a very important role. Taking dispersive effects in to account is

of critical importance if we want to study the nearshore wave propagation and transformation. The main

tool for performing studies including also dispersion have been pioneered by Boussinesq [12], who derived

a system of equations under the assumption that non-linearity and disperion are week and in the same order

of magnitude. Peregrine [59] was the first to derive a Boussinesq-type (BT) system of equations with topog-

raphy terms. During the 1990s researchers focused on improving the dispersive properties of the original

model of Peregrine and push the range of validity of the equations towards deeper waters, leading mainly to

BT models restricted to situations with weakly non-linear interactions. Some famous models among them

are [56, 50, 6]. However in many practical applications the effects of the non-linearity are too large to be

treated using weakly non-linear BT models. Green and Naghdi [32] derived a fully non-linear weakly dis-

persive model (GN model) which gained a lot of attention the last two decades. The range of validity of this

last model requires only the dispersion parameter to be small, but it does not impose any restriction to the

non-linearity. However, linear dispersion properties of the GN model are the same as those of Peregrine. In
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[18] and [11] an enhanced model with an improved dispersion relationship is proposed. This model is used

in our work.

For the numerical discretization of the GN equations in 1DH all the common techniques like Finite

Elements (FE), Finite Volumes(FV) and Finite Differences (FD) have been used, see for example [31, 18,

11, 55] and references therein. In less studied two horizontal dimensions (2D) cases, and only in Cartesian

meshes, the numerical techniques that have been used are again FD [24, 77, 79], combinations of FV and FD

methods [61, 69, 46] and Discontinuous Galerkin (DG) methods [47]. Up to the authors knowledge, the only

works on general unstructured meshes are [26], where a new form of the GN equations is solved using a DG

method, and the very recent work of [51], where a combined Hybridizable Discontinus Galerkin and Runge-

Kutta DG formulation is used for the same set of equations. In this work we extended the idea presented by

the authors in [31] and [29]. We solve the enhanced GN equations, first introduced in [45], using a flexible

combination of FV and the standard C0 Galerkin FE method on unstructured meshes. We would like to stress

that the methodology discussed in the paper can be applied to other dispersive free surface models using a

similar formulation in which a dispersive source is added to the shallow water equations, and independent

discretizations are written for the hyperbolic component and for the dispersive forcing. See for example

[71, 17] for some examples.

The manuscript is organized as follows. In section 2 we present the model equations while in section

3 we describe the solution strategy which we follow in this work. Section 4 presents a higher order solver

for the hyperbolic part of the equations, i.e the shallow water equations and the next section shows how to

incorporate the elliptic part in to the system using the FE technique. A discussion on the well-posedness of

the coupled method is following while section 7 presents a time-continues dispersion error analysis. Section

8 is devoted to implementation details and finally in section 9 the numerical results justify and verify our

choices. The paper is concluded by a discussion and outlook on future work.

2. The fully-nonlinear/weakly-dispersive model

In this work we use the enhanced GN (eGN) system of equations in the form proposed in [10]. This

formulation provides an order O(µ) depth averaged approximation of the nonlinear wave equations, being µ

the dispersion parameter defined as µ = h2
0/λ

2, where h0 is the reference water depth and λ the wavelength.

The two dimensional form of the system can be written in the following form:
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ht + ∇ · (hu) = 0 (1)

(I + αT )
(
qt + ∇ ·

(q ⊗ q
h

)
+ gh∇η

)
+

g
α

h∇η + hQ(u) = 0

where the operators T (·) and Q(·) are:

T (·) = −
1
3
∇

(
h3∇ ·

(·)
h

)
−

h2

2

(
∇ ·

(·)
h

)
∇b +

1
2
∇

(
h2∇b ·

(·)
h

)
+ h

(
∇b ·

(·)
h

)
∇b, (2)

Q(·) =
2
3h
∇

(
h3

(
∇(·)1 · ∇

⊥(·)2 + (∇ · (·))2
))

+ h2
(
∇(·)1 · ∇

⊥(·)2 + (∇ · (·))2
)
∇b +

+
1
2h
∇

(
h2

(
(·) ·

(
(·) · ∇

)
∇b

))
+

(
(·) ·

(
(·) · ∇

)
∇b

)
∇b. (3)

We denote h(x, t) = h0 + η(x, t) − b(x) the total water depth, where η(x, t) the free surface elevation with

respect to the water rest state h0, b(x) the topography variation and u(x, t) = (u, v) the flow velocity as shown

in figure 1. (·)1 and (·)2 indicates respectively the first and second component of the vector (·) and ∇⊥ states

for the normal gradient operator.

Figure 1: Description of the free surface flow problem and main notation.

The operator T (·) plays a key role, as its inversion is necessary to be able to obtain evolution equations

for the physical variables. T (·) can be written in compact form involving two operators S 1(·), S 2(·) and their

adjoints S ?
1 (·), S ?

2 (·), as:

T (·) = S ?
1

(
hS 1

(
(·)
h

))
+ S ?

2

(
hS 2

(
(·)
h

))
(4)

where

S 1(·) =
h
√

3
∇ · (·) −

√
3

2
∇b · (·), S 2 =

1
2
∇b · (·). (5)
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Note that this formulation is essential to show the coercivity of the operator (I +αT ), see [31] and referenced

therein for further details. In the above expressions α is a parameter which is used to improve the dispersion

properties of the model in order to be close to the those of the full Euler equations. The interested reader cen

be refereed to [44] . Note also that when α = 1 we retrieve the original GN equations.

The linear dispersion and shoaling properties of the fully nonlinear GN and eGN models are comparable

to those of the weakly nonlinear models of Peregrine and Madsen and Sorensen respectively, extensively

described in [29]. On the other hand, the nonlinear shoaling properties of a weakly/strongly nonlinear

model is not easy to be examined analytically. As discussed in [29], one way to test the nonlinear shoaling

properties of a model is by performing the test of Grilli et al. [33]. The test consists of a solitary wave

with relative amplitude α/h0 = 0.2m, propagating on a water depth of 0.44m and shoaling on to a constant

slope of 1 : 35. Ten wave gauges have been placed along the flume to measure the free surface elevation.

All of them are placed before the breaking point with the last one being the closest to the breaking point.

Figure 2 compares the experimental wave’s envelope with the result performed by four weakly non-linear

models: Peregrine (P) [59], Abbott (A) [1], Madsen and Sorensen (MS) [50] and the MSP system. The last

one is a modified system of Peregrine’s equations written in a wave amplitude-velocity form, see [29, 30]

for further details. In this work, we performed the same test on the fully nonlinear GN and eGN models and

we added the computed results on the figure. Our result has been obtained using the discretization method

presented in this work and it is a grid convergent solution, such that the plotted curve can be seen as genuine

representations of the behaviour of the model. We can observe that as soon as the nonlinear effects dominate

(this happens close the breaking region) the phenomenon is better reproduced by the fully nonlinear models

and even better by the eGN equations used in this work.

3. Solution strategy and geometrical notation

To numerically solve (1), we rewrite the system of two dimensional enhanced GN equations as:

ht + ∇ · q = 0, (6)

qt + ∇ ·

(q ⊗ q
h

)
+ gh∇η = Φ (7)

(I + αT ) Ψ = W − R, (8)

Φ = Ψ +
gh
α
∇η (9)

by splitting the original system in its elliptic and hyperbolic parts, through the definition of the new variable

Φ = [φx, φy]T . Φ accounts for the dispersive effects and has the role of a non-hydrostatic pressure gradient
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Figure 2: Wave envelope on the 9 gauges along the domain. Comparison between different weakly nonlinear models, GN, eGN and the

experimental data. A-Abbot model, P-Peregrin model, MS-Madsen and Sorensen, MSP-Madsen and Sorensen in velocity form.

in the Shallow water equations. We define

W = −
gh
α
∇η

R = hQ
(q

h

) (10)

where the operators T (·) and Q(·) are (2) and (3) respectively. In this work we solve (6)-(9) using a hy-

brid Finite Element (FE)- Finite volume (FV) scheme where the elliptic part of the system is discretized by

means of the continuous Galerkin FE method. The hyperbolic part of the system is discretized by the two

dimensional formulation of the finite volume scheme inspired by the works [41, 42]. We refer to the work

[41], which has been proven to be a robust scheme, capable of simulating wave transformations providing

accurate results in complex scenarios and over two dimensional unstructured triangular meshes.

So we consider a triangulation of the spatial domain which we denote by Ωh, with the roman h denoting

the largest element diameter. In the approach developed here, we will both make use of elements defined by

each of the non-overlapping triangles of the mesh, as well as of a median-dual partition in oder to generate

non-overlapping nodal control volumes. Let us denote by K the generic triangular element, and by Ki the

set of elements sharing node i. We then denote by Ci the median dual cell obtained by joining the gravity

centers of the triangles in Ki with the midpoints of the edges meeting in i. Simple geometry shows that

|Ci| =
∑

K∈Ki

|K|
3

. We also define Di as the set of nodes connected to i. For any j ∈ Di, the shared portion
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of boundary of Ci and C j is named ∂Ci j, and it is composed by the union of two segments connecting the

barycenters of the two triangles sharing the edge i j with the edge midpoint (see figure 3). The boundary

of the median dual cell of i can thus be defined as: ∂Ci =
∑

j∈Ki

∂Ci j. Moreover, we define ri j the vector

connecting nodes i and j Note finally, that the intersection of Ci intersects each element K ∈ Ki can be split

into two half cells associated to the two edges stemming from i. The half cell containing node j is denoted

by CK
i j , and we set Ci j =

⋃
K∈Ki

⋂
K j

CK
i j so that Ci =

⋃
j∈Di

Ci j.

4. Hyperbolic step: third order FV scheme and derivatives recovery via successive corrections

For simplicity we rewrite the system of conservation laws (6)-(7) as

Ut + ∇ · F(U) = Sb + Φi. (11)

with U = [h, q]T , F = [q, q⊗q/h + gh2I2]T , with I2 the rank 2 identity matrix, and with Sb = −[0, gh∇b]T .

The FV integration over each computational cell Ci leads to the semi-discrete form of the scheme as:

∂Ui

∂t
+

1
|Ci|

∑
j∈Di

∫
∂Ci j

F̂ · n =
1
|Ci|

∑
j∈Di

∫
Ci j

Sb + Φi , (12)

where Ui is the volume averaged value of U over Ci, n is the unitary outward vector normal to ∂Ci, and

with Φi =
∫

Ci
Φ evaluated using numerical quadrature (cf. section §5). In the above expression, F̂ is the nu-

merical flux defined here using the approximate Riemann solver of [66]. The method used here is relatively

standard and we will not provide much details. It is based on a well balanced formulation of the integrals of

the fluxes and of the bathymetry source, as well as a robust modification of the reconstruction and numerical

flux to cope with the wet/dry transition. We refer the interested reader to e.g. [8, 15, 16], and to [41, 43] for

some details on our implementation.

To reach high-order spatial accuracy, we have to reconstruct each component of the physical variables

and bed topography. Following the classical strategy by [76] (cf also [69, 41] and [31]), to reduce the

introduction of spurious numerical dispersion we avoid second order approximations for the hyperbolic

terms, and look into the design of a fully third order method. This is achieved in this paper by means of

a successive correction method which iteratively improves derivatives computed by means of the standard

Green-Gauss formula. This allows to construct k-exact polynomials with all local operations, requiring

only the exchange of information between adjacent cells. In particular for a third order method we need a

quadratic polynomial requiring the knowledge of gradient and Hessian of the variables in the dual cell. The
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standard Green-Gauss formula is unfortunately not well suited for general unstructured meshes on which

it provides first order derivatives which are at most consitent (1st order accurate), and second derivatives

which may event be inconsistent. There are many methods to overcome this: from the classical least square

method used in k-exact method by Barth in [4, 2, 3], to more recent ones used in [73, 74, 80] and [19]. The

basic limitation most of the above methods is the computational cost, related to the need of solving a more

or less large linear system, and the complexity of the implementation, related to the need of assembling and

using an enlarged stencil.

We follow here the method first proposed by [13, 37, 36] and more recently in [60]. In the references

the authors constructed a generalized hybridization of Green-Gauss and Least square methods, called quasi-

Green method, which results in a first-order accurate gradient on unstructured meshes. A successive correc-

tion method allows the construction of consistent gradient and Hessian on unstructured meshes. The idea

of the corrections is to impose exact consistency with the monomials of appropriate degree. A thorough

discussion and the general derivation of the method can be found in [60, 53] to which we refer for details.

All the above works are using cell centered methods. In our work we have extended the approach to node

centered finite volumes. Very recently (and independently on this work) [68] and [67] also provided a similar

re-formulation for the linear advection equation and of the incompressible Euler equations.

In our work, we develop a node centered successive correction method for the hyperbolic nonlinear

shallow water system, and appropriately combine it with a slope limiter to handle bores and hydraulic jumps.

To our knowledge this is the first time that a nodal variant of the successive reconstruction technique is used

for a hyperbolic system and combined with a limiter. We recall hereafer the basic steps to obtain a third

order reconstruction. Most of the formulas allowing the implementation are provided in an appendix.

4.1. Polynomial expansion and derivative reconstruction via successive corrections

The reconstruction problem consists in defining a piece-wise polynomial of degree k that approximates

f (x) to the (k + 1)th order of accuracy. Our aim is to calculate approximations of the solution to the faces

of the cells. To do this, we use high order polynomials obtained by Taylor expansions. Let us introduce the

vector and tensor moments

δ(1)
Gi

(x) = (x − xGi ) ,

δ(2)
Gi

(x) = δ(1)
Gi
⊗ δ(1)

Gi
= (x − xGi ) ⊗ (x − xGi )

(13)

For a third order scheme (k = 2) a conservative approximation is of the form [5, 57]

fi(x) = f̄ |Gi + D(1)
f |Gi · (x − xGi ) +

1
2

D(2)
f |Gi :

(
δ(2)

Gi
(x) − M(2)

i

)
, (14)
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Figure 3: Notation and volume area used in the successive correction method

where where Dk
f |Gi represents the order k spatial derivative of f (gradient, Hessian, etc) at the gravity center

xGi , and where the A : B operator denotes the element by element lumped matrix product

A : B =
∑
i, j

Ai jBi j .

The matrix Mi contains the geometric moments:

M(2)
i =

∫
Ci

δ(2)
Gi

Note that these geometric moments are mesh dependent quantities that can be pre-computed via numerical

quadrature and stored (cf. Appendix A for mode details). The cell polynomials thus defined guarantee the

conservation property
1
|C|i

∫
Ci

fi(x)dS = f̄ |Gi .

The crucial step is to computation of the spatial derivatives with the desired accuracy.

4.1.1. First derivatives

To get the first derivative at the gravity center of Ci, we apply the quasi-Green gradient approximation.

This consists in a Green-Gauss reconstruction with a correction restoring the consistency of the operator

on general meshes [53]. We end up with an operator approximating the gradient to first order accuracy on

general meshes as (cf again figure 3 for the notation):

D(1,o1)
f |Gi = M−1

1

∑
j∈Di

[
wK2

i j f̄i + (1 − wK1
i j ) f̄ j

]
nK1

i j . (15)
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where the superscript o1 denotes that the approximation is first order accurate, and with the weights wi j

computed based on the relative distance of the cell center’s xi to its face:

wK1
i j =

sK1
i j · n

K1
i j

ri j · nK1
i j

, sK1
i j =

1
2

xK1
G +

1
4

(xi + x j) (16)

and similarly for wK2
i j . The 2 × 2 matrix (M1)i corrects the gradient to ensure its consistency. It is computed

by imposing that for f = x we have D(1,o1)
x |Gi = (1, 0), and similarly for f = y we have D(1,o1)

y |Gi = (0, 1).

This leads to:

M1i = [
∑
j∈Di

wK1
i j (xG j − xGi ) ⊗ nK1

i j + wK2
i j (xG j − xGi ) ⊗ nK2

i j ]T (17)

As the geometrical moments, this correction matrix is mesh dependent, but can be pre-computed and stored

before the simulations. The first order gradient D(1,o1)
f |Gi allows to construct polynomials with second order

of accuracy at most.

4.1.2. Second derivatives and second order corrected gradients

Once consistent first derivatives are available in all cells, we can proceed to a second iteration which will

provide consistent second derivatives and improved gradients. As previously stated, a first order approxima-

tion of the second derivatives is enough to guarantee third order of accuracy for the overall polynomial (14).

Unfortunately, unless the mesh presents special symmetries, applying (15) twice results in an inconsistent

approximation of D(2)
f |Gi . We denote hereafter this approximation as

D(2,o0)
f |Gi = D(1,o1)(D(1,o1)

f )|Gi

The idea is to correct this quantity as done for the gradient

D(2,o1)
f |Gi = M−1

2i
D(2,o0)

f |Gi = M−1
2i

D(1,o1)(D(1,o1)
f )|Gi (18)

As for the gradient, the correction matrix M2i can be computed component by component by requiring the

approximation to be consistent when applied to x⊗x, so that for example (D(2,o1)
x2 |Gi )11 = 2, (D(2,o1)

y2 |Gi )22 = 2,

(D(2,o1)
yx |Gi )12 = 1, etc. It can be shown [35] that M2i ca be obtained by a double application of the first

derivative of first order derivative to (x− xGi )⊗ (x− xGi ). For brevity we omit here the expressions obtained,

which are reported in detail in appendix A.

The computation of a first order accurate second order derivative is not enough to achieve third order

accuracy in the reconstruction. We also have to correct the approximation of the first derivative for it to be
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at least second order. To obtain a correction strategy, we can compare the Taylor series development of the

exact gradient with the one obtained using the available reconstructed derivatives :

∇ f exact = ∇ f
∣∣∣
Gi

+ ∇(∇ f )
∣∣∣
Gi
· (x − xGi ) + O(h2)

= D(1),(o1)
x |Gi + O(h) + D(2),(o1)

f |Gi · (x − xGi ) + O(h2)
(19)

The first order remainder on the second line, is due to the poor accuracy of the available gradient. For the

gradient to be second order the second line should provide an exact answer for f = (x−xGi )⊗ (x−xGi ). This

is precisely the strategy suggested in [53, 60] to correct the gradient. So in practice we set

D(1,o2)|Gi = D(1, f o)|Gi + Mo2
1i

D(2,o1)|Gi , (20)

where Mo2
1i

is obtained by requiring the errors in the second line of (19) to vanish when f = (x−xGi )⊗(x−xGi ).

For our 2D case Mo2
1i

is a 2 × 3 matrix of the form (full expressions available in appendix A):

Mo2
1 = −

(αi)x − xGi (βi)x (γi)x − yGi

(αi)y (βi)y − yGi (γi)y − xGi

 .
Note that all of the above matrices are only involved in local operations (involving nearest neighbours),

they can all be pre-computed and stored during a pre-proccesing step, and then used to update the gradients

by simple matrix-vector multiplications. There is no need of solving multiple linear systems. These are the

main advantages of this method.

Unfortunately, the correction matrices seem to have no theoretical property guaranteeing their invert-

ibility. However in all the cases that we examined here and in the references using the same approach, no

problem was ever observed even in quite irregular meshes. Another issue is how to preserve the accuracy

near boundaries. In this paper we have been only concerned with two conditions: symmetry or periodic con-

ditions along straight lines. In both cases we have used ghost cells. For the symmetry/slip wall conditions we

have defined the ghost values on a locally mirrored mesh on which scalar quantities (depth and bathymetry)

have been copied, and vectors rotated by 180◦ wrt normal. In this framework, third order of accuracy can be

obtained easily only for straight boundaries for which two layers of elements are mirrored in order to have

enough stencil to compute the successive correction derivatives. Periodic conditions are imposed simply by

extending the connectivity of the mesh to include the correspondence of the periodic boundaries so that all

the geometrical quantities, as well as the residuals account for periodicity.
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4.1.3. Capturing of non-smooth solutions and limiting

In order to prevent oscillations from developing in the numerical solution we use the slope limiter pro-

posed by Michalak and Ollivier-Gooch in [54], for higher order MUSCL numerical schemes on unstructured

meshes using a cell centered fv scheme for the Euler equations. Following the spirit of the above work we

write the limited form of the higher order reconstruction in the middle point M of an edge connecting the

nodes i and j, as

fi(xM) = f̄ |Gi + LimM

(
D(1)

f |Gi · (xM − xGi ) +
1
2

D(2)
f |Gi :

(
δ(2)

Gi
(xM) − M(2)

i

))
. (21)

The design of the slope limiter requires three steps. First we have to find the minimum (δ f )i
minand the

maximum values (δ f )i
max of the difference f̄ |G j − f̄ |Gi . in the stencil formed by the cell i and all the di-

rect neighbors j. Then we compute the unlimited reconstructed value f (x)M and finally we compute the

maximum allowable value for Limi as:

LimM =


g
(
(δ f )i

min

)
if f (x)M − f̄i > 0,

g
(
(δ f )i

max

)
if f (x)M − f̄i < 0,

1 if f (x)M − f̄i = 0

(22)

where g(x) = x2+2x
x2+x+2 .

4.2. Numerical verification for smooth and non-smooth flows

We provide here a quick verification of the hyperbolic step. First we consider the smooth travelling vortex

solution proposed by [63], and widely used in literature to mesure the accuracy of discretizations for the

shallow water equations. Please refer to [63] for the precise definition of the test. We compute the solution at

finite time as prescribed in the reference on a series of regular and irregular unstructured grids. The reference

size of the coarsest mesh is h = 0.107573, which is reduced to half at each refinement step. The convergence

of the depth error is reported on figure 4. Following the discussion in section 4 we performed the test in

both structured and unstructured meshes confirming that the Green-Gauss reconstruction on unstructured

meshes, spoils the convergence since is not able to produce consisted gradients. The picture confirms that

the nominal accuracy is measured in practice in third order case when the derivatives are recovered via the

successive correction approach. For the second order case the Green-Gauss is consisted with the gradient so

the order of convergence is 2 interdependently of the mesh. The results are omitted for brevity.

We then consider the Monai valley benchmark [49], a classical test inspired by a flume experiment

reproducing a scaled down version of the 1993 the Hokkaido-Nansei-Oki tsunami impact on the Monai
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Figure 4: Error decay for the third order scheme. Representative structure and unstructure meshes.

valley. The test involves bore formation, propagation, and reflection, as well runup. Following [62], we have

run the experiment on an unstructured grid adapted to the bathymetry variations, and we show the wave

patterns obtained at time 16.5s (see figure 5) with the second and third order scheme, as well as the water

height times series in two of the gauges of the experiment (figure 6).

Figure 5: Monai valley: 3d view at time t=14.5 and t=16.5 s using the third order scheme.
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Figure 6: Monai valley: Free surface elevation at gauges 5 and 7.
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5. Finite element solver for dispersive effects

Following the classical strategy [76], we now couple the non-dispersive hyperbolic solver to a second

order solver for the physical weakly-dispersive effects. To this end, we propose to compute the auxiliary

variable Ψ in (8) by means of a standard nodal P1 (continuous) finite element (FE) method. Note that there

is a notable change now in the meaning of the data associated to a mesh node i. The FV method evolves

median dual cell averages which are in general different from the values of the variables at the nodes, used

in the FE method. Similarly, we need to transfer from one representation to the other the derivatives of the

depth and of the velocity appearing both in the coefficients in the operator T (equation (2) and equations

(4)-(5)), and the right hand side where derivatives appear both in the definition of W and of R (cf. (10) and

(3)). We will get back to this point in the next subsection.

The definitions of the operator T , S 1(·) and S 2(·), from (4) and (5) respectively, lead to the following

variational form of the elliptic equation (8)∫
Ω

ν ·Ψ + α

∫
Ω

S 1(ν) h S 1

(Ψ

h

)
+ α

∫
Ω

S 2(ν) h S 2

(Ψ

h

)
= RHS + BCs , (23)

or equivalently using (5)∫
Ω

{
1
3

(
h∇ · ν −

3
2
∇b · ν

) (
h2∇ ·

(Ψ

h

)
−

3
2
∇b ·Ψ

)
+

1
4

(∇b · ν)(∇b ·Ψ)
}

= RHS + BCs , (24)

with RHS a variational approximation of the term W − R, and BCs the boundary condition terms which we

briefly discuss below. The value of Φ, required in the hyperbolic step, is recovered nodally from (9).

To obtain a fully discrete approximation of (24) we now consider the finite element approximation

Ψh =
∑

K∈Ωh

∑
j∈K

ϕ jΨ j (25)

where span{ϕ j} j∈Ωh is the classical continuous P1 finite element space. We similarly introduce discrete

approximations hh, bh, ηh, and uh for the elevations and velocity, as well as elemental discrete approximations

of their first and second derivatives. Some options to provide these definitions and the solution we propose

are discussed in the next subsection. The fully discrete variational form is expressed in terms of the array of

the nodal values {Ψ j} j∈Ωh , which by abuse of notation we also label Ψ.

(M + αT(hh, bh))Ψ =W(hh, bh) − R(hh, bh,uh) (26)
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where the matrices on the left hand side are sparse 2 × 2 block matrices. In particular,M is the mass matrix

with entries

[M]mn
i j = δmn

∑
K∈Ki

⋂
K j

∫
K

ϕi ϕ j , (27)

while the entries of T(hh, bh) are evaluated using the relation h2∇ · (Ψ/h) = h∇ ·Ψ −Ψ · ∇h as

[T(hh, bh)]mn
i j =

∑
K∈Ki

⋂
K j

∫
K

{
1
3

(
hh∂Xmϕi −

3
2
ϕi (∂Xm b)h

) (
hh∂Xnϕ j −

3
2
ϕ j (∂Xn b)h − ϕ j(∂Xn h)h

)

+
1
4
ϕi (∂Xm b)h ϕ j (∂Xn b)h

} (28)

Note that in the above expression the mn indices run over the spatial components of the unknown, while i j

run over the mesh nodes.

Finally the right hand side terms are defined as

W(hh, bh) = −
g
α

∑
K∈Ki

∫
K

ϕi hh(∇η)h (29)

and

R(hh, bh,uh) =
∑
K∈Ki

RK

RK = −
2
3

∫
Ωh

∇ϕi h3
h

(
(∇u)h · (∇⊥v)h + (∇ · u)2

h

)
+

∫
Ωh

ϕi h2
h

(
(∇u)h · (∇⊥v)h + (∇ · u)2

h

)
(∇b)h

−
1
2

∫
Ωh

∇ϕi h2
h

(
(D(2)

b )h : (uh ⊗ uh)
)

+

∫
Ωh

ϕi hh

(
(D(2)

b )h : (uh ⊗ uh)
)

(∇b)h .

(30)

having used the notation of section §4.1.1 for the Hessian of the bathymetry D(2)
b , and for its term by term

product with the tesorized velocity.

Once the local polynomials representing h, b, u and their derivatives are defined over the element, all the

above formulas can be evaluated by means of a sufficiently accurate quadrature formula. In practice we have

used here a 6 points symmetric formula exact for polynomials of degree 4 taken from [25]. This definition

is the objective of the next section.

6. Finite element/volume coupling: consistency and well-posedness considerations

This section provides some additional constraints on some of the numerical choices possible with the

method proposed. These are justified by means of some theoretical (albeit heuristic) arguments, as well as
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by strong numerical evidence. We consider first the issue of ensuring a compatible data representation in

the two phases of the computation. This will give an indication on how to use FV data in the FE solver (and

vice-versa). We then provide a few comments on the well-posedness of the overall procedure which show

the importance of using dissipative numerical fluxes.

6.1. Consistency: using FV data in the FE solver and vice-versa

We start by recalling that the two approaches being used to solve the equations are based on different

representation of the data. The FV scheme evolves the solution averages Ui over the dual cells Ci, and local

polynomials within the cells are reconstructed using essentially all the neighbouring information. The FE

method uses a collocated nodal representation, and within each element the polynomial variation is obtained

by interpolating the data available at the nodes.

Although both methods used unknowns associated to nodes, their meaning is substantially different.

More importantly, the approximation of the derivatives has an impact on the accuracy of the right hand sides

of the elliptic problem. For this reason we have chosen here to proceed as follows:

• when passing the FV solution to the elliptic solver we sample the reconstructed polynomials and their

derivatives at the nodes:

fi = f̄ |Gi + D(1)
f |Gi · (xi − xGi ) +

1
2

D(2)
f |Gi :

(
δ(2)

Gi
(xi) − M(2)

i

)
.

(∇ f )i = D(1,o2)
f |Gi + D(2,o1)

f |Gi · (xi − xGi )

(D(2)
f )i = D(2,o1)

f |Gi

(31)

We then use these nodal values as a basis for a linear finite element approximation, so within any

element K ∈ Ωh we set:

fh =
∑
j∈K

ϕ j f j , (∇ f )h =
∑
j∈K

ϕ j(∇ f ) j , (D(2)
f )h =

∑
j∈K

ϕ j(D(2)
f ) j .

This, combined with the successive corrections method, allows to ensure on general meshes the second

order of accuracy of all the first derivative terms (of h, b, and u) appearing in (29), (30), and (28), and

at least first order for the second derivatives of the bathymetry in (30). For configurations with high

curvature in the topography, this is not enough and this value should be improved. A possible solution

in relative simple cases, as those considered here, is to use the point-wise analytical value.
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• The nodal finite element values Ψi are used to compote the post-processd average non-hydrostatic

term

Φi :=
∫
Ci

Ψh +
g
α

∫
Ci

hh(∇η)h

this formula are evaluated by splitting the integral in local contributions over the quadrangular shapes

Ci
⋂

K, then further splitting the quadrangles in triangles by joining the node i to the the gravity center

of K, and then by using numerical quadrature on each sub-triangle.

Note that these choices have a direct impact on the theoretical accuracy attainable by the method. To see

this, let us write an estimate on the local truncation error, for simplicity in the case of flat bathymetry.

We start by recasting (1) in dimensionless form. Using the standard fully nonlinear scaling leading to

the Green-Naghdi system (see e.g.[45, 46] as well as [23] section §5) one easily shows that (6)-(9) can be

written in dimensionless form as

∂th+ ∇ · q = 0

∂tq+ ∇ ·
(q ⊗ q

h

)
+ h∇h = µ

(
Ψ +

h
α
∇h

)
(I+µαT )Ψ = −

h
α
∇h + hQ(u)

(32)

where we recall that µ = h2
0/λ

2 is the ratio of the reference depth on reference wavelength, and measures

the shallowness and importance of dispersion. More importantly, as already recalled in the introduction, the

above model is an approximation of the full non-linear free surface potential equations within an asymptotic

error of O(µ2) [45]. We now consider an exact smooth solution, and combine(32) with (11) to write the

following local error:

T Ei =
1
|Ci|

∫
Ci

(
Uex

i (x) − Uex(x)
)
+

1
|Ci|

∫
Ci

∑
j∈Di

∫
∂Ci j

(
F̂(Uex

i (x),Uex
j (x)) − F(Uex(x))

)
+
µ

|Ci|

∫
Ci

(
Ψex

h +
hex

h

α
∇hex

h − Ψex −
hex

α
∇hex

) (33)

having denoted by Uex
i (x) the reconstructed polynomial obtained starting from the averages of a smooth ex-

act solution Uex(x), and similarly by hex
h the finite element approximation of exact nodal data. We can now

proceed to a term by term estimation of the right hand side. The first one is by construction zero for quadratic

polynomials, giving a rest of order O(h3), and a similar result is easily proven for the second term (see e.g.

[75] §2). The last one needs an estimate on the error of the solution of the elliptic step. Standard finite
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element error estimates for elliptic equations (see e.g. [20, 27, 14]) rely firstly on a consistency estimates

involving two main components: an estimate of the interpolation error for the solution, an estimate of the

residual error, related to the approximation of the right hand side of the problem. For linear finite elements,

the approximation error in L2 norm is of an order O(h2). Concerning the right and side, and inspection of

(30) reveals that the limiting factor, for constant bathymetry, is the accuracy in the approximation of the

derivatives of the velocity. This indicates that, provided that the gradient approximation is second order

accurate on general meshes the consistency of the scheme is of order O(µh2), which is within the modelling

error as soon as h = O(µ). The scheme is thus second order accurate wrt the mesh size. However when the

shallow water sub-system is approximated to third order, we gain a factor µ in error without any increase

in the cost of approximation of the elliptic problem which is the most computational intensive part of the

model. Since µ is small in all applications for which the model is relevant, this gain is in principle non-

negligible. This is essentially the same rationale behind the method of [76], extended to unstructured grids.

To confirm numerically the impact of these choices, we consider a travelling solitary wave which is an

exact solution of the GN equations for α = 1. Depth and velocity are known analytically and given by:

h(x, y, t) = h0 + α0sech2(k(x − c ∗ t)) , u(x, y, t) = c
(
1 −

h0

h(x, y)

)
(34)

with h0 the still water depth, α0 the wave’s amplitude, and with k =

√
3α0/4h2

0(h0 + α0), and c =
√

g(h0 + α0).

Although this is essentially a 1d solution, we have run it on 2D unstructured triangulations (rightmost picture

on figure 4) to perform a grid convergence. We compare the results obtained by using the correctly sampled

values of the solution and of its derivatives at the nodes, as discussed above (orange curve), against the re-

sult (blue curve) obtained by passing the nodal average as it is, and using it to construct the finite element

approximation, including the elemental derivatives computed on each element as (∇u)h =
∑

j∈K ∇ϕ ju j. The

result shows the importance of accounting for the meaning of the data in the FE/FV coupling. Concerning

the impact of using the extra correction in the polynomial reconstruction in the hyperbolic phase, we see that

this relatively inexpensive extra iteration allows an error reduction roughly of a factor 5.

6.2. A comment on well-posedness

The choice of the numerical fluxes plays a fundamental for the robustness of the hyperbolic step in

presence of irregular solutions for which the use of dissipative/upwind fluxes is necessary (cf. sections

§4.1.3 and §4.2). When considering the propagation of smooth dispersive waves one may think that non-

dissipative fluxes could be more appropriate. It turns out that for the method propose here this is not case,
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Figure 7: Error decay for the solitary wave. Left: hyperbolic step with second order successive correction. Right: hyperbolic step with

third order successive correction. Orange: consistently sampled FV data used in the FE step. Blue: nodal averages in the FE step.

and numerical dissipation plays a major role also in the propagation region. To show this we will consider

the simplified setting of the linearized dimensionless equations without bathymetry, which can be written as

(
I − αµ(∇∇·)

)
Ψ = −

∇η

α

∂tη + ∇ · u = 0

∂tu + ∇η = µΨ + µ
∇η

α

(35)

Despite the scheme having been derived and coded for the above form, for the discussion of this section it is

more appropriate to start from the more classical formulation

∂tη = − ∇ · u(
I − αµ(∇∇·)

)
∂tu = −

(
I − (1 − α)µ(∇∇·)

)
∇η

(36)

The operator to be inverted to evolve the velocity u (as well as to pre-compute Ψ) is a grad-div operator quite

common in the modelling of e.g. electromagnetic waves. The important aspect of this type of equation is

that if is naturally formulated in the functional space of vectors H(div), as its variational form involves the

scalar product

(v,u)Ω :=
∫
Ω

v · u + αµ

∫
Ω

∇ · v · ∇ · u (37)

which readily generates the equivalent squared H(div) norm u2 +αµ(∇·u)2. It is well known that, despite the

symmetry of the bilinear form induced by the equation, H1 finite elements as the one used here to solve the
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elliptic problem are not well posed as prone to spurious modes related to the rotational of the solution. For

electromagnetic waves this is a long time known fact [21, 22, 34]. Divergence conforming elements allow

of course to side-step this issue.

To use H1 elements, which are easier to implement, and better suited to be coupled with a hyperbolic

solver something needs to be done. Usually, this is achieved by introducing, at the PDE level or in the

scheme, a regularizing operator that stabilizes the spurious modes otherwise not controlled by the incom-

plete norm generated by the variational formulation (or equivalently (37)). In our method this is essentially

the case. However, we do not modify the elliptic solver. The stabilization is embedded in the hyperbolic

evolution step, and associated to the form of the upwind finite volume numerical fluxes which embed a

discrete Laplacian which plays a crucial role.

To provide some heuristics into this mechanism, we consider the following regularized explicit discrete

in time linear equivalent of the GN system

ηn+1 − ηn

∆t
− ∇ · (εηh∇η)n = − ∇ · un

(
I − αµ(∇∇·)

)un+1 − un

∆t
− ∇ · (εu

h∇u)n = −
(
I − (1 − α)µ(∇∇·)

)
∇ηn

(38)

The regularization here is explicitly added in the form of artificial diffusion terms, which in reality stems

from the use of upwind numerical fluxes. The above system can be seen as some space continuous equiva-

lent of the fully discrete scheme, somewhat similarly to the modified equation in finite difference methods

[? ]. In particular, the coefficients εηh and εu
h depend on the numerical flux. For the dimensionless linearized

problem under consideration, these can be both approximated by εηh = εu
h ≈ C h for some mesh dependent

constant C which we assume for simplicity to be diagonal. Note that this implies that the divergence acting

in the second term in each equation is applied line by line.

To show the impact of numerical dissipation we proceed as follows. We start by introducing at each time

step the Helmholtz/Hodge decomposition of the velocity vector [38, 39, 9]

un = ∇φn
1 + ∇⊥φn

2 (39)

where the orthogonal nabla operator ∇⊥ = (∂y,−∂x) being the equivalent of the rotational in the 2D plane.

We then introduce this decomposition into the second in (38), and look for closure equations for the two

potentials. Using the div-free property of the second component of the decomposition, the first relation we
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can write is that

∇⊥φn+1
2 − ∇⊥φn

2

∆t
+

(
I − αµ(∇∇·)

)∇φn+1
1 − ∇φn

1

∆t
− ∇ · (εu∇u)n = −

(
I − (1 − α)µ(∇∇·)

)
∇ηn (40)

We now apply the −∇⊥· operator, and use the identity ∇⊥ · ∇ = 0. This allows to write

−∇⊥ ·
∇⊥φn+1

2 − ∇⊥φn
2

∆t
+ ∇⊥∇ · (εu

h∇u)n = 0 (41)

The first conclusion we can draw is that for εu
h = 0 then an admissible solution is that φ2 is constant in time.

In other words, at any time step the velocity field is defined up to an and arbitrary rotational component

∇⊥φ2 not seen by the scheme. This is essentially a spurious mode, which is not controlled and may prevent

the discrete solution to converge.

We now consider the case in which the numerical dissipation is present. With the hypothesis that εu
h is

diagonal and that the ∇· is applied line by line, simple manipulations show that

−∇⊥ · ∇⊥φ2 = − ∆φ2

∇⊥∇ · (εu
h∇u)n = − ∆2φ2

(42)

with ∆ the usual Laplace operator. This allows to write (40) as

−∆

φn+1
2 − φn

2

∆t
− εu

h ∆φn
2

 = 0 (43)

For uniform and homogeneous boundary conditions, we may deduce that

φn+1
2 − φn

2

∆t
− εu

h ∆φn
2 = 0 . (44)

This shows that in presence of numerical dissipation spurious rotational effects are smoothed according to

a parabolic operator with a smoothing rate proportional to the numerical dissipation.

We propose some numerical evidence to confirm the above observations by studying again the grid

convergence of the solitary wave solution (34). We perform the following experiment. On one hand we solve

the nonlinear shallow water equations forced with Φ = Φexact obtained by replacing (34) in the momentum

equation. This corresponds to imposing the solitary wave as a manufactured solution (cf [65]). On the other

we solve the full system including the dispersive terms for which (34) is an exact solution if α = 1. In both

cases, we perform a grid convergence with centered numerical fluxes, as well as with the full upwind flux.
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We perform the computations up to time t = 0.1 on 7 unstructured meshes starting with a triangulation

with 328 triangles, and then halving the mesh size. The results are reported in figure 8 for the second order

(left), and third order (right) polynomial reconstruction in the hyperbolic fluxes. For the shallow water

equations all configurations converge. The centered fluxes fail to provide third order of accuracy, at least

on the meshes considered, however full second order is observed. For the GN system, the error obtained

with centered fluxes quickly stalls, and error or even solution blow-up is observed on the last meshes for the

final time considered. Full convergence is restored with the upwind fluxes, confirming our heuristics that

numerical dissipation is sufficient to control the growth of spurious modes.
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Figure 8: Solitary wave. Left: second order successive correction. Right: third order successive correction. Blue: shallow water with

upwind fluxes and manufactured solution. Orange: shallow water with centered fluxes and manufactured solution. Yellow: Green-

Naghdi with upwind fluxes. Magenta: Green-Naghdi with ventered fluxes.

7. Time continuous spectral analysis: dispersion error and stability

To further characterize the scheme proposed, we briefly discuss the results of a time continuous spectral

analysis in the 1D case. We recall that the exact enhanced Green-Naghdi equations have a phase defined by:

ω2
gn = gh0k2 1 + α−1

3 k2h2
0

1 + α
3 k2h2

0

, (45)

having denoted by k the wavenumber. To characterise the dispersion error, we need to replace a Fourier

mode into our scheme. So we assume that for a wavenumber k, the solution has the form U = U0eνht+ jkx,
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with j the imaginary unit, and where νh = ξh + jωh and ξh, ωh represent the discrete amplification rate and

phase. As done to couple the FV and FE method, one has to be careful here not to confuse cell averages with

nodal values. We can indeed find that

Ūi =

∫ xi+1/2

xi−1/2

U0eνt+ jkx =
Ui

jµh
(e j µh

2 − e− j µh
2 ) =

Ui

jµh
2 sin(

µh

2
) (46)

with Ui = U0eνht+ jkxi , and µh = kh. Using this relation consistently, and replacing in the one-dimensional

version of the scheme we obtain

j (νhC − B) ηi + h0Aui = 0

gAηi + j (νhC − B) ui = −µh
1
h0

MFV Dηi.
(47)

The right hand side of the second equation is the inverse of the Fourier symbol of the finite element dis-

cretization of the elliptic equation reducing in 1D to a Poisson equation (cf. e.g. [31]). The coefficients

A, B, C D are reported in Appendix B for completeness. The impact of the definition of the matrix MFV

arising depending on the quadrature of Φ is also provided. Only the best results are left here for clarity.

These are obtained when all matrices are evaluated exactly. Straightforward computations show that

ω2
h = (ghA2 + µMFV AD)/C2. (48)

Figure 9 plots the relative dispersion errors (rde) |ωs − ωgn|/ωgn with respect to the dispersion relation of

the eGN equations (45). For comparison, we also plot the dispersion errors of sake of reference we are also

plotting the relative dispersion errors that comes when using 1. a second and fourth order finite difference

schemes (see [31, 64] for the full expressions). The pictures show that dispersion error of the scheme

presented in this paper is smaller or close to the one of FD4 depending the number of nodes per wavelength.

For completeness we also plot on figure 10 the error |ωs − ωairy|/ωairy with respect to the exact dispersion

relation ω2
airy = gk2 tanh(kh0)). We observe a compensation between discretization error and modelling error

so that the scheme has a lower error w.r.t the exact dispersion relation than it has wrt the Green-Naghdi one.

This is related to the interaction of the phase advance/lag error of the scheme and the form of the phase of the

Boussinesq model. This could be in the future a design criterion for low order (second and third) schemes.

7.1. Stability and dissipation

While the well-posedness in 2D can be justified with the arguments of section §6.2, in one dimension

the Fourier analysis provides a characterization of the linear stability of monochromatic waves in terms of
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Figure 9: Dispersion error with respect to ωgn for nodes per wave length N = 5 and N = 15
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Figure 10: Dispersion error with respect to ωairy for nodes per wave length N = 5 and N = 15

the discrete wave amplification rate ξh. In particular, for the upwind schemes we can obtain from system

(47) the relation

ξh =
B
C

(49)

where the coefficients B and C are reported in Appendix B for the case of third and second order successive

recontructions. Figure 11 plots the numerical wave amplification for three different choices of number

of points per wavelength. We can see that the amplification rate is negative, which means the schemes
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Figure 11: Numerical amplification rate as a function of the reduced wavenumer kh when using the second (left) and the third (right)

order reconstruction in the hyperbolic part, for different choices of the number of points per wavelength Nλ

are stable. Of course the presence of damping constrains somewhat the number of nodes per wavelength

required to resolve long time/distance propagation, although considerably less for the third order scheme, as

the plot suggests. For the fully centered discretizations, the spectral analysis provides systematically ξh = 0.

8. Boundary conditions, wave generation, and wave breaking closure

8.1. Wave breaking detection and closure

A hybrid strategy for wave breaking treatment is implemented in the scheme. We first estimate the

location of breaking waves using explicit criteria, then we apply the NLSW equations to solve the flow in

breaking regions and the GN ones elsewhere. Following the work of [42], we use the combination of the

two above phase-resolving criteria for the triggering mechanism:

• the surface variation criterion: |ηt | ≥ γ
√

gh with γ ∈ [0.35, 0.65]

• the local slope angle criterion: ||∇η|| ≥ tan φc with φc the critical angle value.

The values of γ and φc are depending on the type of the breaker. The first criterion flags for breaking

when ηt is positive, since breaking starts on the front face of the wave, while the second criterion, acting

complementary to the first, is useful for the detection of hydraulic jumps. In this work the value of φc = 30o

is used. Moreover, the estimation of the Froude number of the wave is used to established when to switch of
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the breaking and to detect non-breaking bores. A practical implementation of the breaking mechanism can

be found in [42, 31, 29].

8.2. Wave generation and boundary conditions

In this work, we have implemented periodic, fully reflective/wall and absorbing boundary conditions.

For the walls for all boundary nodes we modify the elliptic solver to set the conditions

Φ · n = 0⇒ Ψ · n = −h
∇η · n
α

∂nΦ · τ = 0⇒ ∂n(Ψ · τ + h
∇η · τ

α
) = 0

For straight walls the first condition is a consequence of u · n = 0, while the second forces the rotational

components of Φ to zero at the walls, which is consistent with the condition ∇ ∧Φ = 0 which can be easily

proved for the continuous equation used in the bulk. In practice we modify both the RHS and matrix of the

elliptic system to account for these conditions. In the hyperbolic solver we also make sure that u · n = 0 by

modifying the hyperbolic fluxes and source and removing the normal component.

Absorbing boundaries are also applied in order to dissipate completely the energy of the incoming waves,

trying at the same time to eliminate any non-physical reflection. This kind of boundaries requires the defi-

nition of a sponge layer in which the surface elevation and the momentum are damped by multiplying their

values by the coefficient:

m(x) =

√
1 −

(
x − d(x)

Ls

)2

.

where Ls is the sponge layer width and d(x) is the normal distance between the cell center with coordinates

x and the absorbing boundary. Typical values of the sponge width are related to the wave length λ of the

incoming wave and usually are: λ ≤ Ls ≤ 1.5λ.

A large number of numerical tests demand the generation of monochromatic waves. One very common

approach is to use an internal wave generator. This means, generating the waves in the computational

domain avoiding complications that boundaries can create. In this work we, thus, make use of an internal

wave generator, first described in [77]. It is obtained by adding a source term to the mass equation. More

details on the topic can be found in [64].
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9. Numerical validation and benchmarking

9.1. Grid convergence for the solitary wave

We return to the exact solitary wave to compare on figure 12 the errors obtained when using the sec-

ond (blue lines) and third order (orange lines) reconstructions. Convergence plots are reported for the free

surface, and for Φ. We observe that using the third order scheme in the hyperbolic step, thus passing from

O(h2) to O(µh2), allows a more or less consistent reduction of the error by a factor between 3 and 5.
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Figure 12: Error decay for second and third order schemes for h and Φ .

9.2. Circular shoal

Whalin [78] studied the focusing effected induced by a semi-circular shoal on wave trains of different

periods. The wave tank used is of 6.096m wide and 25.6m long. A semi-circular shoal was placed at the

middle portion of the tank leading the water depth to decrease from 0.4572m at the wave maker region to

0.1524m to the end of the tank. This test case has been used by many authors in order to test the dispersive

properties of their models, see for example [50, 6, 72, 28, 70, 41, 64] were a detailed description of the set

up of the case can be found. The three test cases that have been reproduced here are:

(a) T = 1s, A = 0.039m, h0/λ=0.306 and ε = 0.085

(b) T = 2s, A = 0.015m, h0/λ=0.117 and ε = 0.033

(c) T = 3s, A = 0.0136m, h0/λ=0.075 and ε = 0.030
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where T is the wave period, A the wave height and λ the wave length. Wave gauges are placed along the

center line to record the time series of the free surface elevation, which are analysed in the frequency domain

using a Discrete Fourier Transform (DFT) to obtain the first three harmonic amplitudes. The computational

domain used is [−10, 36] × [0, 6.096]m. Periodic waves are generated using the internal generator placed

at x = 4m and sponge layers of 6m are placed at the left and right end of the domain. Reflective boundary

conditions are imposed at the remaining boundaries. For the computation of the first case a triangular grid

was used, consisting of triangles with side lengths hx = 0.05m and hy = 0.1m leading to a mesh of N = 56211

nodes. For the last two cases the grid consists of equilateral triangles, with hN = 0.01m leading to a mesh of

N = 28151 nodes. The CFL value used was 0.5.

For all the test cases the incoming waves are linear in the deeper portion of the tank and they are steep-

ening due to the wave shoaling. Wave energy gradually spreads out to higher harmonics, which increase in

amplitude in the shoaling region. For both case (a) and (b) the agreement between the numerical and ex-

perimental data is quite satisfactory for all the harmonics while in the last test case (c) the numerical results

overestimates the first harmonic and underestimates the other two. This behavior has also been observed

by other authors [50, 6, 70, 48] and the discrepancies are attributed to the shorter evolution distance of this

test case or to the presence of free reflected waves. We compare the numerical solution obtained using the

third order scheme (continuous line) and the second order scheme (dashed line) in the hyperbolic part. The

difference, as expected, is more pronounced in the first two cases were the waves are shorter.

9.3. Elliptic shoal

This test case studies the refraction and diffraction of a regular wave over a complex bathymetry and it

is a reproduction of the experiment of [7]. It is mainly used to verify models based on mild-slope equations

but also the extended Boussinesq-type equations. The numerical domain is 20m wide and 22m long, with

x ∈ [−10, 10] and y ∈ [−17, 15]. The bathymetry consists of an elliptic shoal placed on a ramp of constant

slope forming a 20o angle with the x axis. The maximum water depth is h0 = 0.45m at the wave maker’s

position which is placed at y = −13m. The bathymetry set up can be found in [41, 64] and references therein.

The monochromatic wave’s characteristics are: period T = 1s and amplitude a = 0.0232m corresponding

to a non linearity degree ε = a/h = 0.3. The normalized time average wave height was measured in eight

different sections (see figure ). Wall boundary conditions are imposed on the left and right boundaries, while

sponge layers of 4m are placed and the bottom and top ends of the domain. In this test case an unstructured

grid was used, which is refined in the region of the shoal. In particular the grid size in the y direction varies
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Figure 13: Wave diffraction over a semi-circular shoal. Case (a): Left: Computed free surface data along the centerline of the domain.

Right: comparison of the DFT of the numerical data over the centerline with experimental data. Dashed line second order scheme,

continuous line third order scheme.

from hy ≈ 0.1m on the top and bottom boundaries to hy = 0.05m in the region around the shoal. The

simulation period is 50s. and the CLF used is 0.5. A three dimensional view of the water elevation at the

final time is reported on figure 16. In order to compare the numerical results with the experimental data [7],

time dependent data have been extracted, the last 25sec of the simulation, from the sections 1-8. The time

series of the surface elevation are analysed using the zero-up crossing technique to isolate single waves and

to compute the averaged wave height. The results are normalised by the incoming wave height 2a = 0.0464m

and are reported on figures 17 and 18. The agreement on the numerical results and the experimental data are

satisfactory and comparable to the results given by the literature ([64],[70], [72]).
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Figure 14: Wave diffraction over a semi-circular shoal. Case (b): Left: Computed free surface elevation at time t = 40sec. Right:

comparison of the DFT of numerical data over the center-line with experimental data. Dashed line second order scheme, continuous

line third order scheme.

9.4. Solitary interacting with a cylinder

In this test case we examine numerically the propagation and scattering of a solitary wave with a vertical

cylinder. The laboratory experiment [24] investigates the interaction of the wave with the cylinder and

it has been used by [40, 41] and references therein to validate their numerical models. The numerical

domain used here is x × y ∈ [0, 14m] × [0, 0.55m] . A vertical cylinder of diameter 0.16m was placed at

(x0, y0) = (8.5, 0.275). The solitary has amplitude A = 0.0375m and placed at x = 4m. The undisturbed

water depth is h0 = 0.15m so the nonlinearity of the wave is ε = 0.25. Six wave gauges were recording

the free surface elevation located at: wg1 = (8.4, 0.275), wg2 = (8.5, 0.170),wg3 = (8.5, 0.045),wg4 =
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Figure 15: Wave diffraction over a semi-circular shoal. Case (b): Left: Computed free surface elevation at time t = 40sec. Right:

comparison of the DFT of the numerical data over the center-line with experimental data. Dashed line second order scheme, continuous

line third order scheme.

(8.6, 0.275),wg5 = (8.975, 0.275),wg6 = (9.375, 0.275). The mesh has 11345 nodes and is refined

around the cylinder. Figure 19 presents the 3d view of the free surface elevation after 4 sec, when the

solitary interacts with the cylinder. This interaction causes the generation of scattering waves that propagate

downstream while the rest of the wave recovers to a solitary wave and propagates upstream. The first

wave that interacts with the cylinder and propagates upstream is computed quite accurately compared to the

experimental data as seen in figures 20-22. The reflected waves, even though are better resolved compared

to the ones that can be found in the bibliography [40, 41] , presents some discrepancy compered to the

experimental data. This may indicates that a fully dispersive model is needed for this case.
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Figure 16: Wave diffraction over an elliptic shoal: 3D view of the free surface elevation at time t = 50sec.

9.5. Solitary wave breaking on a 3D reef

Swigler et Lynett (2011) performed laboratory experiments at the O.H. Hinsdale Wave Research Labo-

ratory of Oregon State University to study the specific phenomena which occurs when a tsunami like wave

approaches the coast, such as shoaling, refraction, breaking and run-up. Many authors have used this case to

validate their codes, since it is quite demanding and involves multiple physical phenomena. The computa-

tional domain is 48.8m long and 26.5m wide. Figure 23 shows the test set up along with the position of the

wave gauges. The topography is determined from a laser scan and it consists of a slope of 1:30 connected

with a triangular reef flat submerged between 0.75m and 0.9m below the still water level. The offshore shelf

edge has an elevation of 0.71m with the apex located at x=12.6m. The steepest slope of the shelf is at the

apex and becomes milder moving along the shelf edge toward the basin side walls. A concrete cone is also

placed at the apex of the reef between x=14m and 20m. It has a diameter of 6m and a height of 0.45m

The planar beach continues up to x=31m and then becomes level until the back of the basin. Nine wave

gauges were placed into the basin in order to measure the variation of the free surface elevation: gauges

1, 2, 3, 7 were located at y = 0m and x = 7.5, 13, 21, 25m gauges 4, 5, 6, 8 were located at y = 5m and

x = 7.5, 13, 21, 25m, while gauge 10 have been set at y = 10m and x = 25m.

Compared to the experimental case, the computational domain has been extended from x = 0m to x = 5m

in order to be able to completely contain the initial solitary wave. It has been discretized by means of two
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Figure 17: Wave diffraction over an elliptic shoal: Normalised wave height from sections 1 to 4.

non-uniform unstructured grids. The first one is adapted to the bed curvature, as shown in 23, and charac-

terized by reference maximum and minimum size respectively: max(hK) = 0.3m and min(hK) = 0.125m.

The second one is a triangular, non-refined grid of hk = 0.3 A solitary wave of amplitude A = 0.39m, cor-

responding to ε = 0.5, is initially placed in x = 0 and wall reflecting boundary conditions are imposed in

each boundary of the domain. We used a Manning coefficient Nm = 0.014 for representing bed roughness.

A CFL number of 0.5 was used, together with γ = 0.6 for the breaking detection criterion.

Figure 24 shows the computed free water surface at different time instants, using the refined mesh. With

white color we denote the time evolution of the breaking regions detected by the criteria of the breaking

mechanism. As the solitary wave propagates towards the beach it shoal, increases its steepness and nonlin-
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Figure 18: Wave diffraction over an elliptic shoal: Normalised wave height from sections 5 to 8.

earity, up to reaching a breaking point at t = 5 on the center line of the domain, when it reaches the apex of

the triangular shelf. At t = 6.5s the central part of the wave has completely overtopped the concrete cone,

while on the two sides, the surge continues to shoal, diffracting around the base of the cone. By t = 8.5s, the

refracted and diffracted waves collide on the lee side of the shelf. After t = 9s, the water starts to withdraw

from the con top and a bore-front forms, from the combined waves after the diffraction, and propagates on

the shelf behind the cone and then onshore. After t = 15s, a new bore is creates from the the drawn-down of

the water and collides with the refracted waves.

The next figure 25 plots the computed free surface time series on the wave gauges 1- 9 against the

experimental data using the two grids. Green color represents the numerical results obtained using the
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Figure 19: 3D view of the free surface elevation. Interaction of the solitary wave with the vertical cylinder.
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Figure 20: Free surface elevation at wave gauges 1 and 2
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Figure 21: Free surface elevation at wave gauges 3 and 4

coarser mesh and blue color the ones obtained using the refined mesh. Both cases show the same behavior,

although the results obtained with the coarser mesh are more diffusive in the secondary waves, as expected.
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Figure 22: Free surface elevation at wave gauges 5 and 6

Figure 23: Solitary wave propagation over a three dimensional reef: Close up view of the adapted mesh used for the computation(right)

and positioning of wave gauges (left)

The arrival of the first incoming wave is correctly captured in gauges 1 and 2, as it is for the refracted and

diffracted waves at the lee side of the cone, as can be seen from gauge 3. The signal at the gauges located at

the north side of the cone indicates that wave shoaling, breaking and propagation on the shelf is accurately

predicted, together with the complex nonlinear interaction between diffracted and refracted waves.

9.6. The seaside experiment

This final test case examines the impact of a tsunami on an urban area. The laboratory benchmark

took place in the Oregon State University and has been served as a blind benchmark test case for the

NTHMP Mapping and Modeling Benchmarking Workshop: Tsunami Currents (http://coastal.usc.

edu/currents_workshop/index.html). A physical and numerical comparison presented in [58]. It has

also been used in the project TANDEM (http://www-tandem.cea.fr) as a benchmark test case. It in-

volves a complex topography including a seawall and several buildings inspired of the real city of Oregon
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at 1:50 scale. It is a very demanding test case since it tests the ability of the model to simulate flows in

complex and real topography. It involves wave propagation , shoaling wave breaking and flooding in an

urban area involving wet/dry fronts. The rectangular basin was 48.8m long 26.5m wide, 2.1m deep and was

equipped with a piston type wave maker with a maximum stroke of 2.1m and maximum velocity of 2 m/sec.

Details in the physical experiment can be found in [58]. The data available involves a detailed topography,

the forcing signal the positions as well as the time histories of water height and velocity in a large number

of wave gauges in the streets of the city model. The numerical wave tank is x × y ∈ and an unstructured

triangular mesh of N = 172854 is used with a min hre f = 0.03. The mesh is refined in the region where the

buildings are placed. The individual structures and buildings are approximated as steep-sided topography

and a manning coefficient of 0.01 is used. The CFL number is set to 0.3 and the the breaking parameters are

γ = 0.3 and tan(φc) = 0.37.

The incoming wave enters from the left boundary and wall boundary conditions are imposed in the

remaining boundaries. In the domain, 31 wave gauges measure the free surface elevation and the velocity

. Figure 26 sows the measurement locations in the onshore region. Furthermore, four surface wave gauges

were fixed in the basin at the following locations: wg1 = (2.086, −0.515),wg2 = (2.068 4.065m),wg3 =

(18.618, 0.000m) and wg4 = (18.618, 2.860m). Time series comparison of the free surface elevation

between the experimental data and the numerical ones at Locations A, B, C, D are shown in figures 28, 29,

30, 31 respectively. In all figures we perform comparison for the GN equations (blue line) and the NSWE

(black line). Figure 32 presents the comparison of the free surface elevation between the experimental and

numerical data in the wave gauges WG1-WG4.

10. Conclusions

In this work we presented a hybrid numerical approach for the solution of the Green-Naghdi equations

on unstructured meshes. We split the original system in a hyperbolic and an elliptic part. For the hyperbolic

part, we used a a third order in space, node centered FV scheme. We achieve a third order reconstruction

of the physical variables by means of a successive correction method which iteratively improves derivatives

computed by means of the standard Green-Gauss formula. This approach guarantees third order accuracy

even on unstructured meshes. In order to prevent oscillations on non smooth solutions we used a slope limiter

[54] applied for a first time on a node centered scheme using the derivative reconstruction via the successive

correction. We coupled the non-dispersive hyperbolic solver to a second order solver for the physical weakly

dispersive effects. We used the standard P1 FE method. We ensured compatible data representation in the
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two phases of the computations since both methods evolve unknowns associated to the nodes, but with a

totally different meaning.

We examined the impact of those data representation on the theoretical accuracy by writing an estimate of

the local truncation error for constant bathymetry concluding that providing a second order accurate gradient

on general meshes the consistency of the scheme is of order O(µh2). The importance of accounting for the

meaning of the data in the FE/FV coupling has also been confirmed by performing a convergence test.

An other conclusion of this work is related to the choice of the numerical fluxes in the hyperbolic step.

It turns out that we have to use dissipative/upwind fluxes in order to stabilize the incomplete norm generated

by the variational formulation, since we use H1 finite elements, in the elliptic step. We provided numerical

evidences to confirm this fact by studying again grid convergence.

Finally we showed that when using the third order scheme in the hyperbolic step, allows a consistent

reduction of the error by a factor between 3 and 5.
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Appendix A.

For a Ci a computational cell the geometric tensor of order k is given by

1
Ci

∫ ∫
Ci

(x − xGi )
⊗k dS

with ⊗ the tensor product. This means for a third order scheme (k = 2) we will have to define before the

beginning of our computations the geometric moments:

(XY)i =
1
|Ci|

∫
Ci

(x − xGi )(y − yGi )dS ,

(X2)i =
1
|Ci|

∫
Ci

(x − xGi )
2dS ,

(Y2)i =
1
|Ci|

∫
Ci

(y − yGi )
2dS .
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The construction of the M2 matrix is based on the calculation of three specific mesh depended variables

αi =
x2

Gi
+ (X2)i

2
,

βi =
y2

Gi
+ (Y2)i

2
,

γi = xGi yGi + (XY)i

where G is the cell’s center of gravity and X2
i , Y2

i , XYi are the second order momentum of the cell Ci. Then,

M−1
2 is a 3 × 3 matrix and is computed using the second derivatives of the moments. It is defined as:

M2 =


(αi)xx (βi)xx (γi)xx

(αi)yy (βi)yy (γi)yy

((αi)xy + (αi)yx)/2 ((βi)xy + (βi)yx)/2 ((γi)xy + (γi)yx)/2


Appendix B.

We report here the coefficients of system (47) presented in section 7 and involved in the dispersion

properties of the scheme. From the discretization of the hyperbolic part using the FV scheme with the third

order reconstruction we easily obtain system (47) with :

A =
k
µ

(
81
48

cos(
3µ
2

) −
69
48

cos(
µ

2
) −

13
48

cos(
5µ
2

) +
1
48

cos(
7µ
2

)
)

(B.1)

B =
ck
µ

(
−

115
48

sin(
µ

2
) +

61
48

sin(
3µ
2

) −
15
48

sin(
5µ
2

) +
1

48
sin(

7µ
2

)
)

(B.2)

C = 2 sin(
µ

2
). (B.3)

When we use the second order reconstruction then the coefficients are:

A =
k
µ

(
−

6
4

cos(
µ

2
) +

7
4

cos(
3µ
2

) −
1
4

cos(
5µ
2

)
)

(B.4)

B =
ck
µ

(
−

10
4

sin(
µ

2
) +

5
4

sin(
3µ
2

) −
1
4

sin(
5µ
2

)
)

(B.5)

and C is the same as before.

From the solution of the elliptic problem we get:

D =
−gh3

3
TG

(
MG

)−1
(
MG −

ah2

3
S G

)−1

and (B.6)

MFV =
1
8

(6 + 2 cos(µ)) (B.7)

where
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• The galerkin mass matrix: MG = 1
6 (4 + 2 cos(µ))

• second order space derivatives: S G = k2

µ2 (2 cos(µ) − 2)

• third order space derivatives: TG = k3

2µ3 (2 sin(2µ) − 4 sin(µ)).

In a similar way to [31], we analyse in figure B.33 different discretization possibilities with or without

mass lumping on MFV and MG matrices in figure B.33. Now the curves are obtained for two values kh = 0.5

and kh = 2.5, corresponding to a long and to a shorter wave (or shallow and deep waters respectively)

and plotted against the inverse number of the number of nodes per wavelength. The optimum choice that

minimizes the rde is not to lump any matrix, which was also the case for the 1DH scheme of [31]. This

choice is thus employed in this work.
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Figure 24: Solitary wave propagation over a three dimensional reef: evolution of fee surface solution. The white area represents the

region where wave breaking is detected and the NLSW equations are solved.
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Figure 25: Solitary wave propagation over a three dimensional reef: computed time series of the free surface elevation on gauges
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Figure 26: Left: Contour lines of the topography. Right: Measurement locations. Picture taken form [58]

Figure 27: 3D view snapshots of the evolution of the wave after 14sec.
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Figure 28: Free surface elevation measured in locations A

52



10 20 30 40 50 60 70
0

0.1

0.2

LocationB1

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB2

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB3

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB4

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB5

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB6

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB7

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB8

Exp.
GN
SW

10 20 30 40 50 60 70
0

0.1

0.2

LocationB9

Exp.
GN
SW

Figure 29: Free surface elevation measured in locations B
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Figure 30: Free surface elevation measured in locations C
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Figure 31: Free surface elevation measured in locations D
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Figure 32: Free surface elevation measured in wave gauges 1-4
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Figure B.33: Dispersion error for FV with respect to ωairy. kh = 0.5 and 2.5: impact of lumping strategy
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