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We consider the numerical approximation of the Shallow Water Equations (SWEs) in 
spherical geometry for oceanographic applications. To provide enhanced resolution of 
moving fronts present in the flow we consider adaptive discrete approximations on 
moving triangulations of the sphere. To this end, we re-state all Arbitrary Lagrangian 
Eulerian (ALE) transport formulas, as well as the volume transformation laws, for a 
2D manifold. Using these results, we write the set of ALE-SWEs on the sphere. We 
then propose a Residual Distribution discrete approximation of the governing equations. 
Classical properties as the DGCL and the C-property (well balancedness) are reformulated 
in this more general context. An adaptive mesh movement strategy is proposed. The 
discrete framework obtained is thoroughly tested on standard benchmarks in large scale 
oceanography to prove their potential as well as the advantage brought by the adaptive 
mesh movement.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The Earth’s curvature has a strong impact on wave propagation at large scales. For this reason, efficient and accurate 
techniques to solve flow equations on the sphere are of interest in many fields, such as ocean modeling, weather prediction 
as well as coastal hazards. Our objective is to explore the possibility of improving the discrete resolution of flows relevant 
to large-scale oceanographic applications by adaptively deforming an initial mesh, possibly already adapted to some of the 
data (e.g. initial depth or depth at rest). Indeed, mesh adaptation is useful to handle not only complex wave patterns, 
but also complex bathymetries and coastlines. In this respect, the possibility of working on triangular grids may be useful 
especially when approaching shallow areas. On these triangulations, in the spirit of the work done in [1], we aim to assess 
the potential of adaptive mesh deformation, as well as its limitations for complex multi-scale computations.

To achieve this objective, there are several aspects to be dealt with. The first one is the discrete formulation of the 
Shallow Water Equations (SWEs) on the sphere. The literature on the topic is quite large. On structured quadrilateral grids, 
it is common to formulate the SWEs in covariant curvilinear coordinates (with the set of covariant coordinates identified 
by a patchwise parametrization of the sphere). In the finite volume context, a thorough analysis is discussed in [2,3] and 
other formulations are proposed e.g. in [4,5]. On triangular meshes most works focus on high order local finite element-like 
mappings as in e.g. [6,7], or on a fully 3D formulation with Lagrange multipliers to locally re-project vectors on the appro-
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priate basis. A compromise is the initial work of [8], in which covariant coordinates are combined with triangular grids and 
with a Residual Distribution (RD) discretization. An ad-hoc patching at the poles guarantees the C0 continuity of the solu-
tion. This provides us with an initial framework to extend our previous work. In particular, we have shown in [9–11] that 
RD method allows to handle very naturally source terms with a simple design of schemes preserving many known steady 
equilibria on unstructured triangulations. This is relevant when considering the SWEs in curvilinear coordinates which em-
bed several geometrical and physical forcing terms. The RD method also allows to combine high order with monotonicity 
and positivity preservation principles. The work of [8] however is limited to steady state problems, on fixed grids, with 
constant bathymetry, and linear schemes. Here we present a more general development of nonlinear second order discrete 
approximations, for steady and time dependent problems on complex bathymetries.

Another important aspect is the design of the adaptation strategy on the sphere. The geophysics community has focused 
on quad-tree AMR techniques based on cell subdivision, see for example [12] or [13,14], and [15,16] for tsunami propa-
gation. Here we consider a different approach, consisting in generating an initial grid adapted to the problem’s data (e.g. 
topography) and then using mesh deformation to track more accurately the flow features. An elegant way to deal with the 
underlying moving mesh is to formulate balance laws directly in an Arbitrary Lagrangian Eulerian (ALE) moving reference 
framework attached to the grid, see the original work of [17] and [18–20,1] for application in geophysics. Given an ALE map 
x = A(χ, t) between a reference (fixed) domain and an actual (moving) one, there are two ways to formulate the PDEs in 
ALE form: either with respect to the reference coordinates χ or the actual ones x. In the former case, the derivation of the 
ALE equations in the reference domain becomes immediate in a spacetime setting: the transformation of the 4-divergence 
differential operator under the ALE map introduces an additional ALE transport term. An overview of the fundamental re-
lations necessary to achieve this in a spacetime setting are discussed in e.g. [21] (or chapter 2 in the book [22]), see [19]
for applications in geophysics, and [23–26] for finite volume/element formulations on curved meshes based on similar prin-
ciples. There is certainly a similarity in the use of the reference coordinates X to represent the mesh movement and the 
aforementioned use of curvilinear coordinates to represent a geometrical manifold. Such analogy between the ALE form of 
balance laws and e.g. the governing equations of relativistic hydrodynamics, which are written in a time-dependent curved 
spacetime, is discussed in [27].

In moving mesh applications, another strategy used very often is to express the differential operators in the actual 
configuration, and thus discretize them on the actual (moving) mesh. Within such approach, a special role is played by 
the Geometric Conservation Law (GCL), which enforces conservation of the total volume of the moving domain [28–30]. In 
[28] it was proposed to replace the GCL with the constraint of reproducing exactly uniform flows, and in [30] it has been 
shown that satisfying the Geometric Conservation Law (GCL) is a sufficient condition for first order time accuracy on moving 
meshes. The compliance of the GCL at a discrete level is referred to as Discrete GCL (DGCL). Although rooted in fundamental 
relations of continuous mechanics [21,22], the practical importance/benefit of the GCL and of its discrete counterpart is 
sometimes controversial, see e.g. [31].

The approach that we use is of mixed type [32]. The spherical map in written with respect to the curvilinear covariant 
coordinates. This means that the parametrization of the sphere is embedded in the PDE system with the appropriate metric 
and source terms as in e.g. [2–4,8,5]. The ALE map, on the contrary is written in the actual configuration, which does not 
require the computation of the ALE Jacobian matrix. In this setting, the ALE-SWEs on a 2D manifold will be derived using 
classical transport formulas and volume conservation statement. A derivation of the governing equations in spacetime is 
also given in the Appendix. It will be shown that, for the SWEs on the sphere, the satisfaction of a DGCL is a necessary 
condition to retain well-balancedness. To this end, a new ALE closure for RD schemes is proposed, since the one of [33]
does not extend to the sphere, and more in general to manifolds.

The schemes obtained are thoroughly tested both on fixed and moving adaptive meshes on classical applications for the 
shallow water on the sphere, and on a realistic computation of relevance in oceanography: the regional propagation and 
coastal impact of the 2011 Tohoku-Honsu tsunami.

The paper is organized as follows. The standard SWEs in spherical geometry are recalled in section 2. Sections 3 and 4
are then devoted to the ALE-SWEs formulation on the sphere. The main notation and ingredients required for the discrete 
approximation are the introduced in section 5. These are used in section 6 to construct well balanced second order residual 
distribution. The mesh movement strategy is discussed in section 7, and section 8 discusses an extensive evaluation of the 
schemes. The paper is ended by a summary and an outlook on future developments.

2. SWEs on the sphere

In this section we recall the Shallow Water Equations (SWEs) on the sphere in covariant curvilinear coordinates. At every 
point of the sphere S2 we fix an orthogonal but not orthonormal reference system with covariant basis vectors {g1, g2}
together with local curvilinear coordinates {x1, x2}. The vectors g1 and g2 define the tangent plane to the sphere and are 
used to construct all quantities allowing to locally describe the manifold. For completeness, in Appendix A.1 we recall some 
basic concepts from differential geometry, as well as many definitions used throughout the following sections. We will 
consider the evolution of the fluid depth h(x, t) measured along the radial axis. The bathymetry/topography height with 
respect to a given reference level is denoted by b(x). The fluid free surface is defined here as η = h + b. We denote hui the 
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components of the discharge vector hu = hui g i . We remark that the velocity components are not defined in a unitary basis. 
The SWEs in covariant curvilinear coordinates write1:

∂h

∂t
+ 1√

G

∂

∂x j

(√
G hu j

)
= 0

∂hui

∂t
+ 1√

G

∂

∂x j

(√
G T ij

)
+ Si = 0

(1)

G denotes the determinant of the metric tensor defined in (A.3) in Appendix A, and T ij = huuij + 1
2 Gij gh2 are the compo-

nents of the momentum flux T = T ij g i g j , involving the inverse metric tensor, also defined in the appendix.
The source term in the momentum balance reads

Si = Gij gh
∂b

∂x j
+ cF hui + Si

γ + Si
c (2)

Besides the effects of bathymetry and friction (first two terms), the source includes also a geometrical force due to Earth 
curvature Si

γ , and Coriolis term Si
c . The geometric source arises from the space variation of the covariant basis vectors and 

reads

Si
γ = �i

jk T jk (3)

with �i
jk being the Christoffel symbols. The Coriolis term is associated to the rotation of the Earth, which plays an important 

role in ocean dynamics. It reads

Si
c = − f Gi jε jkhuk (4)

with the parameter f = 2� sin λ with λ the latitude and � the Earth rotation rate, always taken as � = 7.292 × 10−5 s−1

unless differently specified, and having denoted by ε the 2D Levi-Civita symbol.
The SWEs system can also be expressed in a compact vector form

∂u

∂t
+ 1√

G

∂F j

∂x j
+ S(x,u) = 0, (5)

u =
[

h
hui

]
, F j = √

G

[
hu j

T i j

]
, (6)

S =
[

0
Gij gh ∂b

∂x j

]
︸ ︷︷ ︸

Sb

+
[

0
cF hui

]
︸ ︷︷ ︸

S f

+
[

0
�i

jk T jk

]
︸ ︷︷ ︸

Sγ

+
[

0
f Gi jε jkhuk

]
︸ ︷︷ ︸

Sc

(7)

Equations (5)-(7) constitute a non-homogeneous hyperbolic system of PDEs. As in [34] we remark that the flux vector 
depends explicitly on the position making the system non-autonomous.

3. Arbitrary Lagrangian Eulerian framework on the sphere

We now introduce an independent configuration A, the Arbitrary Lagrangian Eulerian (ALE) configuration, which we 
assume to belong to a differentiable manifold (the sphere). For us A will be the configuration the mesh is attached to. 
A is composed of points Q identified by the vector x which can be expressed in the local curvilinear coordinate system 
x(Q ) = xi g i , with i = 1, 2. The initial or reference configuration of the continuous mesh is denoted by A0 and the reference 
position of the points is denoted by greek letters χ(Q̂ ). For this configuration we assign a local covariant vector basis 
{γ 1, γ 2} and local chart {χ1, χ2} of the tangent plane so that χ (Q̂ ) = χ iγ i . As the mesh moves, also A does. We assume 
to be able to uniquely map the initial configuration to the reference one via the mapping:

A : A0 → A x = A(χ , t) (8)

The function A is assumed to be continuously differentiable, with a smooth Jacobian J A = ∂x
∂χ . Classical requirements on 

the Jacobian J A are invertibility ∃ J −1
A , and the positivity of its determinant J A = det J A > 0. For a spacetime definition of 

the ALE transformation see (Appendix A.2).
The fluid is endowed with various physical properties which may be represented by scalar, vector and tensor fields. These 

fields and their rate of change in time and space may be defined in the reference configuration or in the actual one. Here 

1 Standard summation convention is used, for the notation we refer again to Appendix A.
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we choose the actual description: that is, in the following, all spatial derivatives are expressed with respect to the actual 
coordinates. The ALE time derivative of a scalar φ is its time rate of change measured by an observer which moves with the 
mesh point labeled with χ , where χ (Q̂ ) is the particle’s position in the reference configuration. We will shorten it ∂φ

∂t

∣∣∣
χ

. 

The ALE/mesh velocity of a point Q in the actual vector basis, σ (Q ) = σ j g j is calculated by applying the aforementioned 
definition of ALE derivative, to the position x(Q ). Its components write

σ j = ∂x j

∂t

∣∣∣∣∣
χ

(9)

Using chain rule, we can define relations between Eulerian and ALE time derivatives for these properties:

∂φ

∂t

∣∣∣∣
χ

= ∂φ

∂t
+ ∂φ

∂x j
σ j (10)

Finally, taking the ALE time derivative of an infinitesimal area on the sphere we obtain the Geometric Conservation Law on 
the manifold [35]:

∂

∂t

∣∣∣∣
χ

(√
G J A

)
= J A

∂

∂x j

(√
Gσ j

)
(11)

or, more compactly ∂t |χ (
√

G J A) − J A
√

G∇ · σ = 0.
The GCL (11) is a geometrical relation between the ALE Jacobian and the ALE velocity. One can check that the integral 

of (11) over the whole computational domain states the conservation of the total area. At a discrete level this corresponds 
to preserve the total area of the mesh during the simulation. For this reason in section 5.3 we will discuss how to preserve 
also its discrete counterpart.

4. ALE-SWEs on the sphere

Using the relations derived in the previous sections, and more particularly (10) and (11), we can easily recast the SWEs 
(1) in an ALE form, obtaining the ALE-SWEs on a 2D manifold with respect to the actual parametric coordinates:

∂
√

G J Ah

∂t

∣∣∣∣∣
χ

+ J A
∂

∂x j

(√
Ghu j − √

Ghσ j
)

= 0 (12)

∂
√

G J Ahui

∂t

∣∣∣∣∣
χ

+ J A
∂

∂x j

(√
GT ij − √

Ghuiσ j
)

+ √
G J A Si = 0 (13)

As before, the system can be also cast in compact vector form as

∂

∂t

∣∣∣∣
χ

(√
G J Au

)
+ J A

∂

∂x j

(
F j − √

Gσ ju
)

+ √
G J AS(x,u) = 0 (14)

Finally, it is useful for the following to recall that the bathymetry, which does not depend explicitly on time b = b(x), verifies 
the following identity:

∂b

∂t

∣∣∣∣
χ

= ∂b

∂x j
σ j (15)

multiplying by J A
√

G and summing it to the GCL (11) (multiplied by b) we obtain the ALE remap on the 2D manifold

∂
√

G J Ab

∂t

∣∣∣∣∣
χ

− J A
∂

∂x j

(√
Gbσ j

)
= 0 (16)

Please note that scalar, vector, tensor fields and spatial derivatives are written w.r.t. the actual coordinates x, in all the 
expressions above. For completeness in (Appendix B) we report an alternative derivation of the governing equations (14)
with a spacetime approach.

5. Discretization: parametrization and constraints

In this section we discuss the basic aspects of the discretization. These involve the main geometrical notations as well 
as the form of the equation used for the discretization. We will introduce an appropriate form of the ALE-SWEs allowing to 
combine well-balancedness with geometric conservation. We then show how to embed discrete analogs of these constraints 
in a residual distribution setting.
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5.1. Unstructured grid representations: main notation

Points on a manifold are represented by a proper parametrization through the use of geometrical mappings. In particular, 
when working in ALE formalism, a point i will be expressed in the parametrization of the initial configuration by a vector 
χ i = {χ1, χ2}i , while xi = {x1, x2}i will refer to the configuration attached to the mesh. Note that the discussion here is 
general, even though the numerical applications will only consider a latitude longitude parametrization of the sphere. This 
particular choice is known to introduce a singularity at the poles, which is nowadays well handled by meteorologists [36]. 
Since we are interested in oceanic applications we circumvent this issue by adopting a simple fix. A patch-wise parametriza-
tion of the sphere (see e.g. [37][38] and references therein) is deployed, namely a polar cap defined by a limiting latitude 
λlim, in which we use a rotated reference system (x′, y′, z′) = (x, z, −y). To account for this “patching”, a rotation opera-
tor needs to be applied when updating vectors in elements crossing the patch boundary. In our case, this applies both to 
physical velocities, as well as mesh nodes velocities and position. In all right hand side evaluations this is accounted for 
following [8] to which we refer for details.

We consider a discretization of S2 composed by non overlapping triangular elements K. To each element K we can 
associate an element defined in the parametric space, which we denote by K . For each element, we define the spherical 
area and median dual cell of a node as

|K(t)| =
∫

K (t)

√
Gdx, |Ci | =

∑
K∈Di

|K|
3

(17)

For moving meshes we also have:

|K(t)| =
∫
K0

J A(t)
√

G dχ , (18)

denoting by K0 the element in the initial parametric space. Please note that, after the change of coordinates, we assume 
in the above expression that 

√
G(x(χ , t)). This duality of integral formulas via the ALE mapping applies to all integrals and 

will not be recalled explicitly unless necessary.
For a given mesh, we label by h the largest element diameter in the parameter space M2. For a smooth enough initial 

mesh, and on a smooth manifold, we unduly assume that the number of elements NK verifies

NK |K | ≤ c|M2| (19)

for some bounded constant. We also denote by uh the P 1 approximation of a quantity u

uh(x) =
∑

i

uiϕi(x) (20)

having denoted by ϕi the standard P 1 bases. We now define elemental contributions to the Galerkin mass matrix

(mG AL
i j )K :=

∫
K

ϕiϕ j

√
G(x)dx , (21)

as well as to the lumped mass matrix

(mG AL
i j )L,K := Kiδi j , Ki :=

∫
K

√
G(x) ϕidx . (22)

5.2. Well-balancedness and GCL on the sphere

For shallow water flows, a very important role is played by the lake-at-rest steady state:

hu = 0, h + b = η0 = const (23)

The exact preservation of this (initial) steady state at the discrete level is referred to as the C-property, or Well-Balancedness
[39]. In other words, well-balanced schemes provide a discrete analog of the balance (cf. equation (5))

∂F j

∂x j
+ √

GS = 0. (24)

Written in the form (14), the ALE-SWEs require the simultaneous satisfaction of several compatibility constraints in order 
to devise well-balanced schemes. These constraints include:
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1. well-balancedness for the Cartesian SWEs on fixed grids: ∂xi (gh2/2) + gh∂xi b = 0, ∀ i;
2. a discrete analog of the GCL on moving grids (11);
3. the ALE remap of the bathymetry (16);
4. the metric relations (A.6) given in (Appendix A);

We will show in the following of the paper how we can embed exactly the first two constraints at a discrete level. Concern-
ing the third, replacing u = 0 in the first of (14) we get

0 = ∂t(
√

G J A h)

∣∣∣
χ

− J A∂x j (
√

G σ j h)

0 = ∂t(
√

G J A η)

∣∣∣
χ

− J A∂x j (
√

G σ j η) −
[
∂t(

√
G J A b)

∣∣∣
χ

− J A∂x j (
√

G σ j b)

] (25)

If η = η0 we see that a necessary condition for the lake-at-rest to be a solution for system (14) is to verify both the GCL, 
and the ALE remap of the bathymetry. Some authors [40] have proposed to directly use a discretization of (16) to evolve 
the topography on a moving mesh. The drawback of this approach is that it significantly modifies the bathymetry during 
the computation, which cannot be accepted in practical applications. For this reason, here we follow [1] and modify (14) by 
solving instead the system obtained by adding to the first equation the ALE remap of the bathymetry:

∂

∂t

∣∣∣∣
χ

(√
G J Aw

)
+ J A

∂

∂x j

(
F j − √

Gσ jw
)

+ √
G J AS(x,u) = 0 , w =

[
η

hu

]
(26)

Note that, with this notation, we have F j(u) = F j(w; b), as the bathymetry is required to evaluate the flux starting from 
the w array. Concerning now the fourth requirement, we consider the momentum balance obtained when replacing the 
lake-at-rest solution in (26). Setting � = gh2/2 for short, we have

0 = J A

{
∂x j (

√
GGij�) + √

G�i
jkG jk� + gh

√
GGij∂x j b

}
0 = J A

{√
GGij

(
gh∂x j b + ∂x j �

)+ �
[
∂x j (

√
GGij) + √

G�i
jkG jk

]} (27)

The first group in parentheses vanishes if the first property (well-balancedness for Cartesian SWEs on fixed grids) is satisfied. 
The remainder is nothing else that the combination of the two metric relations. Indeed just by replacing the second relation 
of (A.6) into Ricci’s Lemma we obtain

0 = √
G

(
∂Gij

∂x j
+ Gij�m

mj + �i
jmGmj

)

0 = √
G

∂Gij

∂x j
+ Gij ∂

√
G

∂x j
+ √

G�i
jmGmj = ∂

√
GGij

∂x j
+ √

G�i
jmGmj

(28)

The symmetry of the Christoffel symbols [41] allows to recover exactly the last expression in parentheses in (27). The above 
relation is thus necessary for the lake-at-rest solution to be verified. At the discrete level, the easiest way to make sure this 
condition is embedded is to combine high order quadrature with the direct use of the analytical formulas. Even though low 
quadrature errors can be obtained with relatively few quadrature points, due to the smoothness of the functions involved, in 
this way the C-property would be satisfied within this quadrature error. Also, compared to the Cartesian case, the necessity 
of using higher order quadrature would still give a considerable overhead. For this reason we have chosen to embed the 
metric relations analytically. Whenever possible we discretize the momentum balance in the following form:

∂

∂t

∣∣∣∣
χ

(√
G J Ahui

)
+ J A

∂

∂x j

(√
Ghui(u j − σ j)

)
+ J A

√
G Gij

(
∂

∂x j
(gh2/2) + gh

∂

∂x j
b

)
+ J A

√
G Si = 0 .

(29)

where Si contains Coriolis, friction and curvature terms.
For later use in the paper, we introduce the short notation

∂( J A
√

Gw)

∂t

∣∣∣
χ

+ J AR(w,b) = 0 (30)

for the system obtained with the first in (26), plus (29).
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Fig. 1. Swept area decomposition of area variations for mesh element K .

5.3. DGCL on the sphere

We consider now the satisfaction of the discrete analog of the GCL an a 2D manifold (11). As already said, differently 
from the Cartesian case, a uniform flow is not an exact solution of (14) embedded with the GCL (11), even for constant 
bathymetries and in absence of friction and Coriolis force. As a consequence we cannot define the DGCL through the original 
characterization of [28], i.e. the preservation of a uniform flow. On the sphere, we could replace the preservation of uniform 
flow with some other particular cases, as e.g. the preservation of zonal or meridional flows. However, the most relevant 
characterization of the GCL for the applications of this paper is the one we have introduced in the previous section, namely 
the satisfaction of the lake-at-rest state.

It is thus in the perspective of obtaining well balanced schemes on moving grids that we consider the issue of mimicking 
(11) at the discrete level. As we will shortly see, the main issue is properly defining the components of the mesh velocity 
σ j along certain directions, as well as an approximation of the divergence operator ∂x j (

√
Gσ j). The DGCL closure used in 

previous works by the authors [33,1], and inspired by [29,30], is based on a piecewise linear P 1 interpolation of the mesh 
displacements. This definition allows to recover naturally an element-by-element DGCL when integrating the divergence of 
the displacements over the half time step average element K n+1/2 = (K n+1 + K n)/2. Due to the presence of the coefficient √

G , the extension of this approach is not at all straightforward. We have thus chosen to use a generalization of the closure 
originally proposed in [42].

To describe this closure, we consider an element K of the mesh, or equivalently its projection in the parametric space 
K . We study the discrete approximation of the area variation

|Kn+1| − |Kn| =
⎡
⎢⎣∫

K0

J A

√
Gdχ

⎤
⎥⎦

n+1

−
⎡
⎢⎣∫

K0

J A

√
Gdχ

⎤
⎥⎦

n

We decompose this variation in components associated to the area swept by each face, as illustrated in Fig. 1. We have in 
particular

|Kn+1| − |Kn| = �t
∑
j∈K

υ f j . (31)

Denoting by Q j the quadrilateral ({xi, xk}n ; {xi, xk}n+1) (cf. Fig. 1), υ f j is the average edge velocity tangent to the manifold 
and normal to the edge defined by

υ f j := 1

�t

∫
Q j

√
Gdx (32)

In practice, the integral is computed by a high order quadrature formula∫
Q

√
Gdx = |Q j|

∑
xq

ωq

√
G(xq) (33)
j
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where the quadrature grid is built simply by tensorizing 1D quadrature points over each edge, and the signed volume |Q j |
is evaluated using the surveyor’s (or shoelace) area formula [43].

To discretize the ALE-SWEs we now need to provide a discrete approximation of the curvilinear divergence appearing in 
the GCL. For the purposes of the paper we would like this definition to be compatible with the following relations

Kn+1 −Kn =
tn+1∫
tn

∫
K0

J A
∂

∂x j
(
√

Gσ j)

∣∣∣
K

dχ dt (34)

Kn+1
i −Kn

i =
tn+1∫
tn

∫
K0

J A ϕi
∂

∂x j
(
√

Gσ j)

∣∣∣
K

dχ dt (35)

∫
K0

Jn+1
A

√
Gϕiwh −

∫
K0

Jn
A

√
Gϕiwh =

tn+1∫
tn

∫
K0

J A ϕi
∂

∂x j
(
√

Gσ j)

∣∣∣
K

wh dχ dt (36)

with wh the approximation of the same data on the different meshes associated to the mappings with Jacobians Jn+1
A

and Jn
A . The first relation is the spacetime integral of the GCL while the second and the third relations are useful to 

derive a consistent finite element method, and mass lumping. The practical evaluation of each of the integrals on the left 
hand side plays here a fundamental role in our ability to satisfy exactly the three relations above. We have the following 
characterization.

Proposition 1 (Approximate quadrature on the manifold and DGCL). Consider a one point quadrature approximating the integral over 
a time step as

tn+1∫
tn

∫
K0

J A f (χ)dχ dt = �t

∫
K0

J̄ A f (χ)dχ dt = �t

∫
K̄

f (x̄)dx̄ dt

and the constant-by-element approximation of the divergence

∂

∂x j
(
√

Gσ j)

∣∣∣
K̄

:= 1

|K̄|
∑
j∈K̄

υ f j . (37)

Consider also the approximate quadrature defining full and lumped mass matrices (22) and (21) given by

(mG AL
i j )K ≈ |K|

3

1 + δi j

4
, (mG AL

i j )L,K = Kiδi j ≈ |K|
3

δi j . (38)

We have the following properties:

1. Relations (34), (35) and (36) are verified exactly;
2. For a smooth Cr function, with r ≥ 1, if (19) is true, the projection associated to (38) is at least second order accurate.

Proof. See (Appendix C). �
Remark 1 (Higher order quadrature in mass matrices). The approximate quadrature (38) is only required to embed exactly the 
GCL in the scheme. In absence of mesh movement, higher order (or exact) quadrature can be used to define the mass 
matrix entries, which will differ from (38) within the quadrature error just proved. In practice we have seen no advantage 
in using more accurate quadrature in these formulas. For completeness, the modifications necessary to account (on fixed 
meshes) for the exact evaluation of the mass matrices for Residual Distribution and stabilized finite elements are provided 
in (Appendix D).

Note that in practice, when using the sphere with lat-lon parametrization, the gradient of 
√

G appearing in the error 
estimate in the appendix is given by R2 sin λ with λ the latitude, which is clearly bounded.

Finally, note that the choice of J̄ A is arbitrary and has no impact on the satisfaction of the DGCL. For accuracy rea-
sons, here we have kept a mid-point approximation J̄ A = ( Jn

A + Jn+1
A )/2. This means that, most geometrical quantities are 

evaluated as averages on the elements Kn+1 and Kn . This is implicitly assumed in all the formulas which will follow. For 
simplicity, in the text we will drop the superscript altogether, unless necessary in the formula.
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6. ALE residual distribution on the sphere

A first extension of Residual Distribution (RD) to general covariant coordinates has been proposed by [8]. The work of 
the reference is limited to steady state computations, with linear schemes and without bathymetry. This paper presents 
a general second order and well balanced formulation allowing time dependent computations on moving meshes. The 
construction proposed here is a generalization of the work done in Cartesian coordinates in [1]. We refer the interested 
reader to [44,45] and references therein for a thorough discussion of the properties of residual distribution.

The RD discretization of unsteady problems can be described starting with an analogy with stabilized continuous finite 
elements. Given a triangulation of the parametric domain S2, to solve L(wh) = 0, one can formally recast a RD scheme as∫

S2

wiL(wh)dχ = 0 (39)

where wi = ϕi + γi is a Petrov-Galerkin test function, with γi an appropriately defined bubble function. For consistency, on 
each element K∑

j∈K

w j = 1 , (40)

which implies 
∑

j γ j = 0. We define the element residual associated to (26) as the area integral over the element of the full 
differential operator:

�K =
∫
K0

L(wh)dχ . (41)

The consistency (40) allows to define the distributed residuals

�K
i :=

∫
K0

wiL(wh)dχ (42)

which verify the consistency condition∑
j∈K

�K
j = �K . (43)

In actual computations, the main component of the distributed residuals is evaluated by means of distribution matrices β K
i

which also verify consistency∑
j∈K

βK
j = I . (44)

The bridge with finite elements is completed by the requirement

βK
i = 1

|K0|
∫
K0

wi dχ = w̄ K
i , (45)

which leads to form of the distribution used in practice:

�K
i = βK

i �K +
∫
K0

(wi − w̄ K
i )L(wh)dχ (46)

The formula above shows the key design elements of the method which are the integration strategy used to evaluate �K , 
and the definition of the distribution matrices and of the associated test functions. Note that the first term in the above 
formula is enough to have a consistent and conservative method (in the sense of (44)). The second term has an impact on 
the accuracy and stability, but none on consistency as clearly 

∑
j(w j − w̄ K

j ) = 0.

6.1. Two-step explicit method

Concerning the time marching technique, we consider here a fully explicit multi-stage strategy, relying on the ideas 
discussed in [46,11]. For recent implicit space-time strategies we refer to [47–49].

Concerning the scheme used here, we recall for completeness in (Appendix D) its construction which, starting from (39), 
relies on the following steps:
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1. replacing L(wh) by (30);
2. mapping integrals on the reference domain and their evaluation on the current configuration (mesh);
3. use of a simplified residual based stabilization involving an extrapolation of the time derivative;
4. use of Proposition 1, as well as of (34), (35), and (36);
5. lumping of the Galerkin mass-matrix.

In its final form, the scheme evolves nodal values of the state vector w with a two-step procedure, in which the new 
solution value is obtained from:

|Cn+1
i |(wn+1

i − w∗
i ) = −�t

∑
Ki

�K
i (47)

where the nodal residuals �K
i are a splitting of the element residual

∑
j∈K

�K
j = �K = 1

�t

∫
K0

( Jn+1
A

√
Gw∗

h − Jn
A

√
Gwn

h)dχ + 1

2
ΦK (w∗

h,bn+1
h ) + 1

2
ΦK (wn

h,bn
h) (48)

with ΦK (w, b) the fluctuation (the area integral over the element K of only advective and source terms)

ΦK =
∮
∂ K

√
G

[
(hu j − ησ j)

hui(u j − σ j)

]
h

n j ds+
∫
K

√
G

[
0

Gij(∂x j (gh2/2) + gh∂x j b)

]
h

dx

+
∫
K

√
G

[
0

S f + Sγ + Sc

]
h

dx

(49)

Please note that the fluctuation integral is evaluated with respect to the actual parametric coordinates after using dx =
J̄ Adχ . The predicted nodal values w∗

i are computed from

|Cn+1
i |(w∗

i − wn
i ) = −�t

∑
Ki

Φ̃K
i (wn

h,bn
h) (50)

with the Φ̃K
i defining a splitting of the geometrically non-conservative fluctuation (cf. (Appendix D))

∑
j∈K

Φ̃K
j = Φ̃K =

∮
∂ K

√
G

[
hu j

huiu j

]
h

n j ds +
∫
K

√
G

[
0

Gij(∂x j (gh2/2) + gh∂x j b)

]
h

dx

−
∫
K

√
Gσ j ∂wh

∂x j
dx +

∫
K

√
G

[
0

S f + Sγ + Sc

]
h

dx

(51)

6.2. Evaluation of the integrals

To begin with, unless explicitly specified, in all quadrature formulas we have used analytical expressions for both the 
Jacobian 

√
G , and the metric tensor Gij . At the quadrature points, the mass flux components (hui)h are evaluated simply 

using the P 1 expansion, while velocity components are obtained from the interpolated values of momentum (hui)h and 
depth hh. The wet/dry region is handled as discussed in [9,11]. Consistently with the approximation (38) of Proposition 1, 
volume integrals of the unknown are computed as∫

K0

Jn+1
A

√
Gwh dχ =

∑
j∈K

|Kn+1
j |w j = |Kn+1|

3

∑
j∈K

w j (52)

In all boundary integrals, scaled constant-by-face values of the normal mesh velocity σ jn j are computed consistently with 
the DGCL closure (32) and (37), namely

(
√

Gσ j n j) f := υ f (53)

Concerning the non-conservative ALE term in Φ̃K , this has been evaluated as∫ √
Gσ j ∂wh

∂x j
dx =

∮ √
Gwhσ

jn jds −
∫

wh
∂
√

Gσ j

∂x j
dx (54)
K ∂ K K
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where the face values (53) are used in the boundary integral, while the element integral is evaluated by means of the 
constant divergence of the DGCL (37):∫

K

√
Gσ j ∂wh

∂x j
dx =

∑
i∈K

υ f i w f i − wK
|Kn+1| − |Kn|

�t
=
∑
i∈K

υ f i (w f i − wK ) (55)

where the average values w f and wK are simple arithmetic averages over the faces and over the element. The integrals of 
the source terms in (49) and (51) are computed as∫

K

√
GS dx ≈ |K|

3

∑
j∈K

S j (56)

Finally, the hydrostatic term is computed as

∫
K

√
GGij(∂x j (gh2

h/2) + ghh∂x j bh)dx =
∫
K

√
GGij ghh(

∂x j ηh︷ ︸︸ ︷
∂x j hh + ∂x j bh)dx

=
(∫

K

√
GGij ghhdx

)
∂x j ηh

∣∣
K ≈ |K |

(∑
q

ωq

√
GGij(xq)ghh(xq)

)
∂x j ηh

∣∣
K

(57)

Several (second or higher order) quadrature formulas have been tested for the term in parentheses without any visible 
impact on the results.

6.3. Distribution of the residual and main properties

In RD schemes stability and accuracy properties depends on how the residual is distributed. The computation of the 
split residuals for the two RK steps �K

i and Φ̃K
i is performed following exactly the steps discussed in [11]. In particular, 

following the construction in the reference, the residual splitting (46) can be more explicitly written as

�K
i = βK

i �K + δ(wh)βSD
i �K + δ(wh)

∑
j∈K

m∗
i j

w∗
j − wn

j

�t (58)

In the above expression, the first term is the consistent one, namely the one satisfying 
∑

j β
K
j = 1. The last two terms do 

not contribute to the consistency of the method, as indeed one can show that [11,46]∑
j∈K

βSD
j∈K �K +

∑
j∈K

∑
k∈K

m∗
jk

w∗
k − wn

k

�t
= 0 (59)

These additional terms are essentially stabilization terms allowing to avoid spurious modes appearing in smooth regions (cf. 
[50,9] for details), and can be embedded in the last integral in (46). The first one is a streamline upwind type stabilization, 
the second is a correction to a mass-lumping operator. These terms are in practice evaluated exactly as discussed in [50,9,11]
to which we refer for details. Concerning the first term, as in [11] it is a distribution based on a blending, via the smoothness 
sensor δ(wh), between a central splitting and a limited nonlinear splitting. The latter is obtained using a standard procedure 
in RD schemes involving the application of a bounded and sign-preserving mapping to a first order and positivity preserving 
Lax-Friedrich’s like distribution (see for example [50] or the chapters [45,44]). This allows to combine formal second order 
of accuracy with depth non-negativity preservation.

Finally note that the distribution functions for the predictor step (50) are easily deduced from (58) setting w∗ = wn , and 
replacing �K by Φ̃K .

Remark 2 (Metric terms treatment, accuracy, stability). It is worth noting that the scheme is formally identical to the one 
obtained in the planar case. The treatment of the geometric source term boils down to the modification of the cell residual. 
This is a substantial simplification when conceiving and coding the scheme compared to other methods (e.g. Finite Volume).

Concerning the properties of the final discretization, the two main tools of analysis are a consistency property w.r.t. 
a variational form evaluated for smooth solutions, and a positivity preserving property rooted in the positive coefficient 
schemes theory (see [45,44] and references therein). For the schemes used here, high order of accuracy is formally ensured 
by the boundedness of the distribution matrices, and more generally of the test functions {w j} j∈K in (46). For the analysis 
of the depth positivity-preservation property of this Lax-Friedrich’s-type scheme (as well as of the one obtained applying 
the limiter), the interested reader can refer to [11] for the Eulerian case. In the ALE case, an additional limiting step is 
required, as proposed in [1]. This is to control the mismatch between the update in the mass equation, performed in terms 
of η, and the one of the bathymetry based on (65) and not on the ALE remap.
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6.3.1. Well-balancedness, DGCL and mass conservation
The first property we can easily show is the following.

Proposition 2 (DGCL and well-balanced on the sphere). For any given mesh displacement on the sphere, the residual distribution 
prototype (47)-(51), with the quadrature strategy defined in Proposition 1 and by (55) and (57), and with the distribution functions 
(58) verifies the C-property on moving and fixed meshes, as well as for Cartesian and curvilinear coordinates.

Proof. The proof is obtained by applying the scheme to the initial solution w0 = [η0, 0, 0]t . With the hypotheses made, and 
by virtue of (55) combined with (31), and using (57) with η constant over the mesh, we deduce immediately that Φ̃K = 0, 
thus Φ̃K

i = 0, and w∗
i = w0

i .
In the corrector step the element residual, evaluated with constant η and invoking (57), reduces to

�K = |K|n+1 − |K|n
�t

w0 −
∑
j∈K

υ f j w
0 = 0 (60)

due to the definition of υ f . Combined with the previous results and (58) this implies wn+1 = w0. �
This proposition corroborates the choices made in the previous sections concerning the form of the SWEs. As already 

mentioned, however, the choice of w as a main unknown has a drawback concerning mass conservation. Indeed if we sum 
both (47) and (50) over all the mesh nodes we obtain∑

i

|Cn+1
i |wn+1

i −
∑

i

|Cn+1
i |w∗

i = −�t
∑

i

∑
Ki

�K
i = −�t

∑
K

∑
i∈K

�K
i = −�t

∑
K

�K (61)

Using (48) and (52) we can further modify the mass balance to∑
i

|Cn+1
i |wn+1

i −
∑

i

|Cn
i |wn

i = −�t

2

∑
K

ΦK (wn
h,bn

h) − �t

2

∑
K

ΦK (w∗
h,bn+1

h ) (62)

If we only consider the mass equation, the right hand side gives

−�t

2

[∑
K

(∮
∂ K

√
G(hu j − ησ j)n

hn j +
∮
∂ K

√
G(hu j − ησ j)∗hn j

)]
= 0 (63)

face integrals of neighbor elements canceling each other. As a consequence we end with∑
i

|Cn+1
i |hn+1

i =
∑

i

|Cn
i |hn

i −
(∑

i

|Cn+1
i |bn+1

i −
∑

i

|Cn
i |bn

i

)
(64)

As remarked in [1] the error in total mas conservation is related to the error in satisfying a discrete ALE remap of the bed. 
To minimize the mass error, we use here the same technique proposed in [1]. We set:

|Cn+1
i |bn+1

i :=
∫
C0

i

J n+1
A

√
Gb̂(χ)dχ (65)

where b̂(χ) is a high resolution (analytical, or reconstructed using a finer mesh) description of the topography. We then 
evaluate the last integral using a higher order quadrature as done in [1]. In particular, if the quadrature is of order κ we 
have, considering a smooth enough manifold:∑

i

|Cn+1
i |bn+1

i =
∑

i

∫
Ci

Jn+1
A

√
Gb̂(χ)dχ +

∑
i

O(hκ+3) =
∫

M2

√
Gb(x)dx +O(hκ+1) (66)

where the O(hκ+3) is the local error modeled as a polynomial of degree (at least) κ + 1, readily obtained using e.g. a 
truncated Taylor series, and accounting for the fact that |K| = O(h2). The second equality uses (19). Note now that the first 
term in the final expression is actually time independent as long as M2 = M2

0, which is in practice the case. Since also the 
integrand is a time independent quantity, we have∣∣∣∑

i

|Cn+1
i |bn+1

i −
∑

i

|Cn
i |bn

i

∣∣∣= O(hκ+1) (67)

which combined with (64) shows that we can conserve h within an arbitrary accuracy.
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7. Adaptive mesh movement strategy

The mesh adaptation technique used here is based on an error dependent mesh movement. The main principle is to 
define a mapping A(χ , t) from a reference/initial configuration, described by the coordinate χ , to a physical mesh described 
by coordinate x, such that the error associated to a certain density is equi-distributed. The error density is often referred 
to as a monitor function m(x) [51]. The differential form of this principle is referred to as Moving Mesh Partial Differential 
Equation or MMPDE for short. The simplest method in the multidimensional case is the elliptic generator based on the 
MMPDE:

∂

∂χ i

(
m

∂xα

∂χ i

)
= 0 α = 1,2 (68)

This PDE is the Euler-Lagrange equation corresponding to the minimization of the energy functional [52]:

E(x) = 1

2

∫
�χ

m||∇x||2 dχ = 1

2

∫
�χ

m
∂xα

∂χ i

∂xα

∂χ i
dχ . (69)

It consists in a set of decoupled quasi-linear elliptic equations mapping each coordinate. Many efficient numerical methods 
are available to solve (68). The counterpart of its simplicity is that special care must be taken to avoid the degeneration 
of the quality of the mesh, or mesh tangling. If carefully implemented, the MMPDE (68) can be quite effective (see, e.g. 
[53–56,20,40,57] and references therein).

The design of moving mesh methods on the sphere is a relatively recent subject of research. Optimal transport method 
have been discussed in [58,59] using finite differences or finite-elements to solve the Monge-Ampere type nonlinear PDEs 
involved. The results shown in terms of mesh quality and mesh refinement are very interesting. It is however unclear 
whether the error reduction compensates the CPU time overhead of mesh adaptation. Based on our previous experience, 
here we have opted for a simpler version of mesh movement on the sphere, trying to remain as much as possible close to 
the simplicity of (68). It is known that functional (69) can be generalized to model a mapping A : S2

A0
→ S2

A x = A(χ , t), 
from a computational sphere with metric tensor Gij and local coordinates χ to a physical sphere with metric Hαβ and local 
coordinates x:

E(x) = 1

2

∫
�χ

mGij Hαβ

∂xα

∂χ i

∂xβ

∂χ j

√
Gdχ . (70)

Unfortunately, the above functional is similar to the harmonic map energy of [60] where it is shown that the minimization 
problem associated may lack a unique solution. This is what has led several authors to consider more complex techniques 
[60,58,59] To obtain a simpler formulation, we propose to use a mapping form the reference sphere to the parametrization 
of the adapted one. So we map the sphere to a plane A : SA0 → E2 x = A(χ , t). This corresponds to a flat target metric is 
Hαβ = δαβ and to an energy functional:

E(x) = 1

2

∫
�χ

mGij ∂xα

∂χ i

∂xα

∂χ j

√
Gdχ = 1

2

∫
�χ

mGii ∂xα

∂χ i

∂xα

∂χ i

√
Gdχ (71)

having used the fact that Gij is diagonal. In practice, all goes similarly to when mapping two planes. The catch is that when 
minimizing (71), we will obtain an adapted mesh which will depend on the parametrization. In our opinion this is not a 
problem as long as the same parametrization is used for the flow equations. The MMPDE obtained in this case is

1√
G

∂

∂χ i

(
m

√
GGii ∂xα

∂χ i

)
= 0 (72)

which, as in the Cartesian case, constitutes a decoupled system of PDEs in which the only non-linearity is associated to the 
monitor function m = m(x) which will depend on the solution (as in the Cartesian case). We use a straightforward P 1 Finite 
Element method to discretize the MMPDE, and a Newton-Jacobi iteration to update nodal displacements reading

δk+1
i = δk

i −
(∑

Ki

aK
ii

)−1∑
Ki

∑
j∈K

aK
ij (xk

j)K , xk+1
i = xn

i + δk+1
i , (73)

with aK
ij the entries of the stiffness matrix arising from a straightforward finite element approximation of (72), with the 

only source of nonlinearity being the monitor function m = m(x). In some of the computations a standard Laplacian mesh 
smoothing step is also added [61,62].
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Fig. 2. Adaptation to the monitor function (74). Left: computational (icosahedral) mesh. Center: adaptation without smoothing. Right: adaptation with 
Laplacian smoothing with smoothing coefficient 1/2.

To test the moving mesh algorithm we use a benchmark from [59]. The monitor function is:

m = 1 + 10 sech2
(

5

(
||x − x1||2 − π2

4

))
+ 10 sech2

(
5

(
||x − x2||2 − π2

4

))
(74)

with x1,2 = (±
√

3
2 , 0, − 1

2 ). The resulting mesh in shown in Fig. 2. The mesh is highly compressed around the bands. The 
result is quite close to those presented in [59], although clearly the optimal transport method of the reference gives a 
smoother mesh. Somewhat nicer results are obtained when including Laplacian smoothing, as shown on the right picture 
on the same figure.

7.1. Monitor function

In this paper we use the arc-length type monitor function of [63]:

m =
√

1 + αi f 2
i∗, f i∗ = min

(
1,

f i

β maxx∈� f i

)
(75)

In the tests of section 8, the physical quantities f i have been chosen depending on the phenomenon under study. For 
gravity waves, we have selected, as in [40], only one term f1 = ||∇η|| the free surface gradient, in order to detect free 
surface wave patterns and bore development. In presence of wet/dry transitions as in [1] we have added a second term 
f2 = F (h) where the function F is a regularized Heaviside function going from 1 to zero in vicinity of dry regions. When 
considering barotropic instability we have taken f1 = ||∇ × u|| and f2 = ||∇∇ × u|| in order to follow roll-up of the vorticity 
field. For all other details on our implementation of the MMPDE method please refer to [1] and references therein. The 
values of the tuning coefficients αi, β are given for each test in section 8.

7.2. Moving mesh PDE-ALE algorithm

For adaptive computations, the MMPDE-ALE algorithm starts with a triangulation at time n and the solution wn
h. Setting 

the initial conditions for the MMPDE m1
h = mn

h and x1 = xn , where mn
h is the monitor function evaluated with wn

h, we 
proceed as follows.

DO k=1,kmax
Step 1. Move the mesh according to the Newton-Jacobi iteration (69).
Step 2. Use the ALE schemes to get a remap on the new mesh as discussed e.g. in [1] and re-evaluate the monitor 
function using the new solution
ENDDO
Step 3 Let xn+1 = xkmax+1 define the new triangulation, evolve the underlying balance law in ALE framework on the half 
time step mesh as discussed in section 6
Step 5. IF (t = Tfinal) EXIT ELSE GO TO Step 1.

As remarked in [1], the remap from one mesh to the new one here is only needed to evaluate the error function. This 
allows to simplify the mapping if necessary. The interested reader can refer to [1] for a discussion.

8. Numerical experiments

In all computations presented hereafter we have set, unless otherwise stated, R = 6371.22 × 103 m, g = 9.80616 m2s−1

and � = 7.295 × 10−5 s−1. Meshes with two topologies have been tested: one generated with the unstructured mesh gen-
erator Gmsh [64], and more regular icosahedral grids. The typical mesh topologies are illustrated on Fig. 3. Adaptation 
is performed with 5 iteration of the Newton-Jacobi method (73). Whenever additional smoothing steps are used, this is 
explicitly said.
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Fig. 3. Computational grids on the sphere. Top row: mesh #1 generated with gmsh. Bottom row: third level of refinement for icosahedral mesh.

8.1. Fixed grid: zonal flows of Williamson et al.

In this paragraph we test only the Eulerian (fixed grid) RD on some classical benchmarks taken from the test suite of 
[65]. Grid convergence studies gave been conducted on 5 meshes generated with Gmsh and with reference sizes starting 
from hK R−1 = 0.16 and halved from one mesh to the other. The meshes thus obtained are composed of 1306, 4990, 19568, 
75478, and 300426 triangles respectively.

Relative errors are evaluated following [65] as:

l2 = ||e||L2

||hex||L2
(76)

with hex the exact solution and

||e||L2 =

√√√√√√
2π∫
0

π/2∫
−π/2

(h(x) − hex)
2
√

G dx (77)

Case #2 is an exact steady geostrophic equilibrium allowing to measure the order of accuracy in presence of Earth rotation. 
The velocity (given directly in covariant basis) and height fields are initially given by:

h(x,0) = h0 − 1

g

(
�R u0 + u2

0

2

)
(− cos λ cosϕ sinα + sinλ cosα)2

u1(x,0) = u0 (cosα + cosϕ tanλ sinα) (78)

u2(x,0) = −u0 sinϕ sinα

with gh0 = 2.94 × 104 m2s−2 and u0 = 2π R
12days . Two orientations are tested α = 0 and α = π/4. The errors obtained at day 

5 are reported on Table 1. The total error obtained on unstructured triangulations is comparable to previous results such as 
the Lax-Wendroff scheme on a cubed staggered grid of [3]. The expected second order of accuracy is obtained.

As it is customary we report on Fig. 4 the error maps after 5 days of simulation on the fourth grid (hK R−1 = 0.02). 
Particular attention should be put along the interface line (it is a discontinuity for the coordinates). Error iso-countours 
are very smooth for the RD scheme proposed, with seemingly no effect of the patching treatment used for the poles. For 
comparison we also report on Fig. 5 the error plot relative to the computation on the fourth-level icosahedral mesh (81920 
nodes) which has roughly the same reference size. The error (||e||L2 = 4.084761e − 05 for α = 0, ||e||L2 = 2.634469e − 04
for α = π

4 ) result is very close, showing no impact of the mesh topology.
Case #5 is a perturbation of the previous one. The initial velocity and height fields are given by (78) with α = 0, h0 =

5960 m and u0 = 20 m/s. An isolated mountain is now added with the profile:
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Table 1
Steady zonal flow. l2 error.

grid # (α = 0) RD grid # (α = π
4 ) RD

1 4.176589e-03 1 1.656259e-02
2 9.286403e-04 2 3.496469e-03
3 1.846086e-04 3 9.512542e-04
4 4.462182e-05 4 2.466671e-04
5 1.028603e-05 5 6.292595e-05
Order 2.17 Order 2.00

Fig. 4. Steady zonal flow. Absolute value of local error on gmsh grid hK R−1 = 0.02. Black areas correspond to 2 m error, white areas to zero error. Left: 
α = 0. Right: α = π/4.

Fig. 5. Steady zonal flow. Absolute value of local error on icosahedral grid (fourth-level refinement) hK R−1 ≈ 0.02. Black areas correspond to 2 m error, 
white areas to zero error. Left: α = 0. Right: α = π/4.

b = b0

(
1 − r

R

)
(79)

with b0 = 2000 m, R = π/9, r2 = min(R2, (ϕ − ϕ0)
2 + (λ − λ0)

2) and with the center of the cone in (ϕ0, λ0) = (3/2π, π/6). 
Simulations are performed on the fourth mesh of the gmsh suite (hK R−1 = 0.02). Fig. 6 provides the contour lines of the 
water height after 5, 10, and 15 days of physical time. For this case one typically checks the conservation of total mass and 
energy:

E = h

(
1

2
||u||2 + g

h

2
+ gb

)
. (80)

Note that mass error is only related to the change of the coordinate system across the edges that delimit the polar cap. 
Regarding energy, none of the schemes proposed have provable energy conservation properties, which makes the definition 
of the actual discrete evaluation of the energy somewhat arbitrary. In practice, here the energy is computed directly from 
nodal quantities, and then integrated using a linear approximation. The resulting error evolution is reported on Fig. 7. The 
evolution obtained, as well as errors obtained, for the mass and energy are comparable to or better than those typically 
reported in literature for computations on structured grids, and with the high resolution results by the German Weather 
Service (DWD) http://icon .enes .org /swm /stswm /node5 .html.

8.2. Advection of cosine bell

To assess the numerical accuracy of our algorithm for unsteady problems and in presence of mesh movement, we revisit 
test #1 of the Williamson suite [65]. For this test, the advective component is tested in isolation: only the mass equation is 
a prognostic equation while the wind (always expressed in covariant components) is constant and given by

http://icon.enes.org/swm/stswm/node5.html
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Fig. 6. Zonal flow over an isolated mountain. Snapshot of the numerical solution for fixed grid simulation on gmsh mesh hK R−1 = 0.02 at day 5,10 and 15. 
Contour levels are from 5050 m to 5950 m in intervals of 50 m.

Fig. 7. Zonal flow over an isolated mountain. Relative conservation error for mass (left) and energy (right) on gmsh mesh hK R−1 = 0.02.

Fig. 8. Advection of cosine bell. Transformed meshes number 2 at three different instants. At day 12 (final time) the transformed mesh coincides with the 
computational mesh.

u1(x,0) = u0 (cosα + cosϕ tanλ sinα) (81)

u2(x,0) = −u0 sinϕ sinα (82)

We compute the transport of a cosine bell given by:

h(x,0) =
⎧⎨
⎩

h0

2
(1 + cos(3r)) + h0 if r < π/3

h0 otherwise
(83)

where h0 = 1000, u0 = 2π R
12days , and r is the great circle distance from the center of the bell (ϕC , λC ):

r = R arccos (sinλC sinλ + cosλC cosλ cos(ϕ − ϕC )) (84)

We have tested two different wind directions α = 0, and α = π/2 for which the bell is transported through the north 
and south poles, crossing four times a polar cap interface. To test the accuracy of the ALE formulations we have added an 
independent unsteady motion of the mesh nodes according to the transformation:

ϕ(t) = � + 0.5 cos (�) cos (�) sin

(
4πt

T

)
(85)

λ(t) = � + 0.5 cos (�) cos (�) sin

(
4πt

T

)
(86)

with �, � the computational or reference coordinates. The typical deformations obtained can be seen on Fig. 8. This motion 
will act as a background perturbation to the cosine bell advection.
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Fig. 9. Advection of cosine bell: grid convergence. Left: α = 0. Right: α = π/2.

Fig. 10. Circular hump on a sphere: depth iso-contours (RD solutions, 20 levels between 0 and 0.55) at times t = 0.6 (top) and t = 0.9 (bottom). From left 
to right: fixed coarse mesh solution, fixed fine mesh solution, ALE adaptive mesh solution, adaptive mesh.

The mesh convergence for fixed and moving meshes is reported on Fig. 9. The expected second order of accuracy is 
recovered. Moreover, we see roughly the same level of error for the two configurations (zonal and meridional advection). 
This suggests that the polar patching does not affect significantly the error constant, nor the slope. We also observe that the 
unsteady mesh distortion does not spoil neither the order of accuracy nor the error level. This validates the ALE formulation, 
at least in terms of accuracy

8.3. Circular hump

This is a test proposed in [2]. The initial condition is a circular depth disturbance at the equator:

h(x,0) =
{

2 if arccos(cos(x1) cos(x2)) ≤ 0.2
0.2 otherwise

, u(x,0) = 0 (87)

This initial condition is symmetric about the point (x1, x2) = (0◦, 0◦), and should remain symmetric in absence of rotation. 
We run computations on two half sphere meshes generated with gmsh: a coarse one with 7122 points and 14034 elements; 
a fine one with 39699 and 78900 elements. Adaptive computations on the coarse grid are performed using the MMPDE of 
section 7 and the ALE formulation. We report the solution contours obtained with the RD scheme on Fig. 10. We can see 
on all meshes good shock capturing and good symmetry in all radial directions. We can observe that the mesh adaptation 
itself also preserves a good symmetry of the grid, and allows an extremely sharp resolution of the inner and outer shocks.

To further evaluate the results on Fig. 11 we plot the line cuts of the fluid depth along the equator. In the same figure 
our RD implementation is compared against the numerical solution of [2], obtained with high-resolution FV (Lax-Wendroff 
flux with MC limiter) on a Cartesian grid composed of 34680 points. We can see the sharp capturing of the discontinuities 
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Fig. 11. Circular hump on a sphere. Solution along the equator.

Table 2
Circular hump on a non rotating sphere. CPU times.

ALG Mesh (nodes) RD[s] (%MMPDE)

FIX-COARSE 7122 46.89
FIX-FINE 39699 674.66
ADAPT-ALE 7122 368.57 (51.5%)

Fig. 12. Circular hump on a rotating sphere: depth iso-contours (RD solutions, 20 levels between 0 and 0.55) at times t = 0.8 (top) and t = 1.2 (bottom). 
From left to right: fixed coarse mesh solution, fixed fine mesh solution, ALE adaptive mesh solution, adaptive mesh.

on all grids, and the improvement brought by the MMPDE adaptation on the coarse one. In these plots the adaptive mesh 
solution is indistinguishable from the fine mesh one.

Finally on Table 2 we report the CPU times for all computations. We compute the overall time and also isolate the 
time associated to the MMPDE part (both mesh equation, and solution projections). We can see that the moving adaptive 
mesh computations are twice less expensive than the fine mesh ones, and also that even with our simplified formulation 
adaptation counts for non-negligible component of the simulation, mode than half for the RD scheme.

We repeat the same test adding the effects of the rotation. We set the dimensionless rotation rate to � = 5. In Fig. 12
we report snapshots of the depth contour lines on fixed (coarse and fine) and adaptive meshes. As in the previous case, we 
see the higher resolution obtained with the adaptive moving mesh and the ALE formulation (Fig. 13). This time mesh nodes 
are clustered both around the shock waves and also in correspondence of smoother features where high gradients appear. 
On Table 3 we report the CPU times.
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Fig. 13. Circular hump on a rotating sphere. Solution along the equator.

Table 3
Circular hump on a rotating sphere. CPU times.

ALG Mesh (nodes) RD[s] (%MMPDE)

FIX-COARSE 7122 81.39
FIX-FINE 39699 1056.39
ADAPT-ALE 7122 638.22 (50.2%)

8.4. Barotropic instability

This test, contained in [66], consists of a geostrophically balanced mid-latitude jet, to which a small perturbation is added 
to initiate an instability. Here we test the RD scheme on a fine mesh with reference size of hK R−1 = 0.01, and compare with 
adaptive simulations on coarse grids with hK R−1 ≈ 0.02. The fine mesh has roughly 300k triangles, while the coarse ones 
have approximately 80k triangles. For the adaptive simulations we compare results on the icosphere as well as on a gmsh
mesh. In particular, adaptation has been performed using in the monitor function relative vorticity and its gradient through 
the formula of section 7.1 with α1 = 10, α2 = 40, β = 0.1. One iteration of Laplacian smoothing (smoothing coefficient 0.25) 
is used.

In Fig. 14 we show the vorticity field corresponding to a physical time of 6 days. The top figure reports the field obtained 
with the fine mesh, which is very similar to the results typically reported in literature (e.g. see the high-order FV of [4]) 
and it is considered here as a reference solution. The last row on the bottom show the same fixed mesh computation on the 
coarse grid. We can clearly see that the onset of the instability as well as its evolution are wrongly reproduced on this mesh 
level. Note that the result is the same independently on the mesh topology, the icosahedral mesh providing very similar 
results to the one generated with gmsh.

Second and third rows report the adaptive simulations on the coarse meshes. We can clearly see that the adaptive mesh 
movement allows to correctly reproduce the global instability process, with a slight smoothing of last part of the instability 
(ϕ ≤∼ −180◦) for the gmsh mesh, while the result on the coarse adaptive icosahedral is almost identical to the fine mesh 
one. 3D visualization of the vorticity fields on the adaptive meshes and the corresponding meshes obtained are reported 
on Fig. 15, showing a nice capturing of the instability. Finally, we report the computational times on Table 4: adaptive 
computations cost more then one third of the fine mesh simulation. This is an encouraging result confirming the potential 
of the schemes and of the mesh adaptation technique proposed here.

8.5. Adaptive simulation of the Tohoku 2011 tsunami

As a last application we consider the simulation of the 2011 Tohoku-Honsu tsunami with the RD scheme and the 
MMPDE-ALE approach proposed. The computational domain is a relatively large chunk of the Pacific ocean (650 [km] ×
650 [km]), on which an initial waveform computed in [67] with the approach of [68] is imposed. To assess the potential of 
the MMPDE-ALE approach on a multiscale problem, we consider the initial propagation from the source to the coast, and the 
runup and flooding of the complex bathymetry of the coast. Both topographic data and initial wave elevation and currents 
are provided by BRGM within the research program TANDEM (see http://www-tandem .cea .fr). A sketch of the domain and 
of the initial solution is reported on Fig. 16. Friction is based on a constant Manning coefficient of n = 0.03125 [sm−1/3]
[69].

A reference computation has been run on a fine unstructured mesh strongly refined in proximity of the coast, where 
the mesh size is reduced from 5 km used offshore to 120 [m]. The coarse mesh used for the MMPDE-ALE method has local 
mesh size respectively of 360 [m] in the proximity of the coast, and an offshore size of 15 km. This allows to cut by a half 

http://www-tandem.cea.fr
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Fig. 14. Barotropic instability. Vorticity field at day 6. Contour lines are from −1.1e − 4 s−1 to −1.5e − 4 s−1 in intervals of 2e − 5 s−1. Top: fixed fine mesh. 
Second and third rows: adaptive (respectively icosahedral and gmsh) coarse mesh. Bottom: fixed coarse.

Fig. 15. Barotropic instability. Relative vorticity field with corresponding adapted mesh at day 5, 5.5 and 6.

the number of mesh elements resulting in a mesh composed by 364864 nodes and 728874 elements. Mesh adaptation is 
performed as discussed in section 7.1 with tuning parameters α1 = 20, α2 = 60 and β = 0.1.

Figs. 17, 18, and 19 provide visualizations of the first 10, 20, and 30 minutes of propagation, showing water height and 
the adaptive meshes obtained in vicinity of the Japanese coast. We can see how the mesh adapts to the complex tsunami 
wave pattern. This becomes visible especially when the wave shoals and the mesh points gather in correspondence of the 
largest gradients of the incoming waves train. To further evaluate the quality of the adaptive computations we compare on 
Fig. 20 the time series of the water elevation in the GPS gauges. Both the fine mesh and the adaptive ones agree quite 
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Table 4
Barotropic instability. CPU times.

ALG Mesh (nodes) RD [s] (%MMPDE)

FIX-FINE gmsh 150215 246629.4
ADAPT-ALE gmsh 41681 116126 (53.3%)
ADAPT-ALE icosahedral 40962 86642.7 (52.8%)

Fig. 16. Tohoku-Honsu tsunami: domain with position of the GPS probes (left) and initial wave height (right). Colour legend in meters. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 17. Tohoku tsunami. Snapshot of the free surface level (close up of the Iwate and north of the Miyagi prefectures, same colour legend of previous 
figures) at t = 0:10’ (time origin is 11 March 2011 14:51:18 LT).

Fig. 18. Tohoku tsunami. Snapshot of moving mesh (close up of the Iwate and north of the Miyagi prefectures, same colour legend of previous figures) at 
t = 0:20’ (time origin is 11 March 2011 14:51:18 LT).
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Fig. 19. Tohoku tsunami. Snapshot of the free surface level (close up of the Iwate and north of the Miyagi prefectures, same colour legend of previous 
figures) at t = 0:30’ (time origin is 11 March 2011 14:51:18 LT).

well with the GPS observations, with an accurate computation of the arrival time and of the peak of the leading wave. 
The complex interaction between incoming and trapped waves that follows is also well reproduced, see others published 
results [70–72]. We remark that the adaptive computations allow to reproduce the fine mesh results with half of the mesh 
elements.

We now consider the approximation of the flooding of the Japan coastal prefectures. We focus on three bays in the south 
of the Iwate prefecture: they are the Kesennuma, Hirota and Ofunato bay, as they appear in Fig. 21, from south to north. 
The figure shows on the left the fine mesh with the initial coastline superimposed, a visualization of the initial coastline in 
the middle and the position of the inundation front after 40 minutes from the beginning of the event. The figures give an 
idea of the geometrical complexity of the front line, with inundation scales of the order of magnitude of 10 meters, which 
can be compared with the propagation scales of several hundreds of kilometers.

The handling of this complexity with the MMPDE is represented on Fig. 22 showing the meshes adapted to the initial 
coastline and to the coastline after 40 minutes. We can see here the limitations of the moving mesh approach which is 
stretched here to its maximum. For some of the features, as for example the thinner lands close to the Osimaseto Strait and 
those around Hirota bay, clearly the density of mesh nodes is not enough to allow a capturing of all the interfaces present. 
This results in parts of the emerged coast to be represented essentially with one stretched element. This is especially true 
for the mesh at 40 minutes (right picture), and has of course an impact on the approximation of the moving wet dry front 
in these areas. From the same picture we can also already see that the mesh follows well the inundation front obtained on 
the fine mesh, and visible on the rightmost picture on Fig. 21.

To go further in the comparison, we consider the runup plot in the same area. On Fig. 23 we report the runup obtained 
on the fine mesh (left picture), and with the adaptive computation (right picture). In both pictures the flooded computa-
tional areas are represented in green, while red symbols denote the surveyed inundation in the real event. The fixed fine 
mesh computation gives a good prediction of the runup process, with exception of some fine detail as the inundation of 
two narrow channels at the end of Hirota bay, which remain dry throughout the simulation.

The result of the MMPDE-ALE scheme is acceptable as it does cover most of the surveyed inundation areas. However, 
there is no improvement w.r.t. the fine mesh, and we clearly see the main limitation of the approach: the effect of the mesh 
stretching introduced in the dry region close to the wet/dry areas (cf. right picture on Fig. 22) is that as soon as a point 
becomes wet, the inundated region covered geographically is unrealistically large. To cope with this phenomenon one could 
either look for a recipe to a-priori tune the density of mesh nodes, so that all features may be resolved. One may also try 
to move more points in the dry region to improve the resolution, however for such multi scale problems, a more realistic 
path is to combine the MMPDE with a re-meshing step. We think the result obtained here is a good example of the how 
much MMPDE can be stretched for this type of problems.

9. Conclusions and outlook

We have discussed approximations of the rotating shallow water equations on the sphere using fixed and moving meshes. 
The main principles of the ALE form of the equations have been derived, and the relations between the GCL and well bal-
ancedness have been shown. A numerical approximation based on residual distribution has been proposed, with a numerical 
closure allowing to combine DGCL and C-property. A simplified elliptic PDE for mesh adaptation has been proposed and 
tested as a basis for a time dependent MMPDE-ALE method. The numerical results have shown that on fixed unstructured 
meshes the RD scheme proposed achieves accuracy close to the one usually presented in literature on structured grids. 
For flows with discontinuities and unstable fronts the MMPDE-ALE adaptation allows to enhance this accuracy, allowing in 
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Fig. 20. Simulated sea level displacement recorded at GPS buoys with fixed embedded mesh and moving embedded mesh.

Fig. 21. Tohoku tsunami. Flooding of the Iwate prefecture computed with RD scheme on fine fixed grid mesh. Left: zoom of the mesh, Right: snapshot of 
the inundated areas at t = 0:00’ and t = 0:40’ (time origin is 11 March 2011 14:51:18 LT).
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Fig. 22. Tohoku tsunami. Flooding of the Iwate prefecture computed with RD scheme. Snapshot of the mesh at t = 0:00’ and t = 0:40’ (time origin is 11 
March 2011 14:51:18 LT).

Fig. 23. Tohoku tsunami. Green zones are flooded areas in Iwate prefecture. Left: fix coarse simulation. Middle: fix fine simulation. Right: adaptive ALE 
simulation on coarse mesh. Red dots denote surveyed points, from [70].

principle a considerable reduction in CPU time. For the cases considered here this reduction goes from 30% to 50%. We 
have also shown that for genuinely multi-scale problems, as the Tohoku-Honsu tsunami computation of section 8.5, this 
technique reaches its limitations and a re-meshing phase is clearly necessary.

This work is a first step toward several generalizations which will involve both higher order approximations based on 
stabilized continuous polynomial approximations, an ad hoc combination of mesh movement and local remeshing, and 
possibly improved treatments of the pole problem, following e.g. the finite element mixed 3D/2D approximation proposed 
in [7].
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Appendix A. Notation and concepts from differential geometry

This appendix recalls some basic concepts from differential geometry, and used in the main body of the paper. We adopt 
a spacetime formalism which is better suited to a time-deforming frame of reference. In particular, we work with spacetime 
coordinates {x0, x1, x2}, where the first component is understood to be the time x0 = t , while {x j} j=1,2 are purely spatial 
ones. In all the formulas that will follow, standard summation convention is implied, unless otherwise stated.

A.1. Spherical transformation

We consider a steady transformation from the set of Cartesian coordinates r = {r1, r2, r3} to a set of curvilinear coor-
dinates x = {x1, x2}. The curvilinear coordinates describe a sphere embedded in R3 with covariant vector basis which are 
tangent to the sphere {g1, g2}. The transformation reads:

r = F (x) (A.1)

We can define the Jacobian matrix of this mapping, and of the inverse mapping, as

J F =
[

∂ri

∂x j

]
, J −1

F =
[

∂xi

∂r j

]
(A.2)

An important role is played by the metric tensor G , which is a symmetric tensor that allows to define a measure of length 
on the sphere ds = Gijdxidx j , with

Gij = g i · g j (A.3)

The metric tensor can also be evaluated directly from the mapping Jacobian using the relation

G = J T
F J F (A.4)

The determinant of G will be denoted by G = det G . The determinant of the transformation then reads J F = √
G . We use 

the inverse metric tensor G−1 whose entries are denoted by Gij . We also introduce for later use the second-kind Christoffel 
symbols:

�i
jk = g i · ∂ g j

∂xk
(A.5)

with g i the contravariant vector basis. We recall two important properties of the Christoffel symbols:

∂Gij

∂x j
+ Gij�m

mj + �i
jmGmj = 0 (Ricci’s Lemma), and

√
G�i

i j = ∂
√

G

∂x j
(A.6)

for the demonstration, see [41].
Even though the above relations are valid on general 2D manifolds, all the numerical results in this paper are obtained 

for a latitude longitude (lat-lon or λ-ϕ) parametrization of the sphere for which the metric tensor and Christoffel symbols 
of second kind write respectively as:

G =
[

R2 cos2 λ 0

0 R2

]
, �1 = g1 · ∂ g i

∂z j
=
[

0 − tanλ

− tanλ 0

]
, �2 = g2 · ∂ g i

∂z j
=
[

sinλ cosλ 0

0 0

]
(A.7)

with R the sphere radius.

A.2. ALE transformation

In section 3 we have considered an ALE transformation in the parametric domain from the actual curvilinear coordinates 
x = {x1, x2} with covariant basis {g1, g2} to a set of reference/ALE curvilinear coordinates χ = {χ1, χ2} with covariant basis 
{γ 1, γ 2}:

x = A(χ , t) (A.8)

Two different time derivatives have been introduced: the Eulerian time derivative ∂
∂t and the ALE one ∂

∂t

∣∣
χ

. Then, the 
spacetime Jacobian matrix and its inverse for the ALE transformation are
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J A =
⎡
⎣ 1 ∂t

∂χ j

∂xi

∂t

∣∣∣
χ

∂xi

∂χ j

⎤
⎦=

[
1 0

σ i ∂xi

∂χ j

]
, J −1

A =
[

1 ∂t
∂x j

∂χ i

∂t
∂χ i

∂x j

]
=
[

1 0

−�i ∂χ i

∂x j

]
(A.9)

In the above expression we have used the definitions of covariant mesh velocity, in actual covariant components σ i and in 
reference ones �i . The relationships between the two is given by �i = ∂χ i

∂x j σ
j . One can show that the determinant of the 

ALE Jacobian reduces to the determinant of the spatial Jacobian J A = det( ∂χ i

∂x j ).
For the time-dependent ALE transformation, Christoffel symbols change with time. We can express them with respect to 

the actual components such as in (A.5) or with respect to the reference/ALE components:

�̄i
jk = g i · ∂ g j(A(χ , t))

∂χk
(A.10)

the relationship between the two being

�i
jm = g i · ∂ g j

∂xm
= g i · ∂ g j(A(χ , t))

∂χk

∂χk

∂xm
(A.11)

= �̄i
jk

∂χk

∂xm
(A.12)

Moreover Christoffel symbols relative to the time derivative (denoted by the index 0) can be expressed by chain rule

�̄i
j0 = g i · ∂ g j(A(χ , t))

∂t

∣∣∣∣
χ

= g i · ∂ g j

∂xm

∂xm

∂t

∣∣∣∣
χ

= �i
jmσm = �̄i

jk
∂χk

∂xm
σm = �̄i

jk�
k (A.13)

Finally we distinguish tensor quantities in actual covariant components T = T ij g i g j from tensor quantities in reference 
covariant components T = T̄ i jγ iγ j .

Appendix B. ALE-SWEs on a 2D manifold derived with a spacetime approach

With the definitions of (Appendix A), the derivation of the ALE-SWEs in curvilinear coordinates is immediate. We con-
sider only momentum conservation since the mass equation is a particular case. Momentum conservation is expressed in 
terms of the 4-divergence of a second order tensor T . We denote, as it is custom, the first row of the tensor as the mo-
mentum vector which represents the conserved quantity, e.g. T i0 = hui . Then the divergence in curvilinear reference/ALE 
coordinates writes

∇ · T = 1

J

∂

∂t

∣∣∣∣
χ

(
J h̄u

i
)

+ 1

J

∂

∂χ j

(
J T̄ i j

)
+ �̄i

j0h̄u
j + �̄i

jk T̄ jk (B.1)

Note that the total Jacobian J comes from the composition of the spherical and of the ALE transformations, J = J A J F with 
determinant J = J A

√
G . Moreover we have separated the Christoffel symbols related to time and space variation of the 

basis vectors.
The last step consists in transforming each {h̄u

i
, T̄ i1, T̄ i2} into actual components {hui, T i1, T i2} through the inverse 

Jacobian J −1
A (A.9)

h̄u
i = hui (B.2)

T̄ i j = ∂χ j

∂xk
T ik − � jhui (B.3)

If we replace the transformed variables (B.3) into (B.1) we note that ALE terms related to Christoffel symbols cancel out. 
This leads to the ALE-SWEs in the reference parametric coordinates:

1

J A
√

G

∂

∂t

∣∣∣∣
χ

(
J A

√
G hui

)
+ 1

J A
√

G

∂

∂χ j

(
J A

√
G

∂χ j

∂xk
T ik − J A

√
G � jhui

)
+ �̄i

jk
∂χk

∂xm
T jm = 0 (B.4)

which appear in the same form of [18] except that momentum components are covariant and not physical.
To get the counterpart of (B.4) into actual components it suffices to apply chain rule to each term. The advective term 

then reads

∂

∂χ j

(
J A

√
G

∂χ j

∂xk
T ik

)
= J A

∂χ j

∂xk

∂

∂χ j

(√
GT ik

)
+ √

GT ik ∂

∂χ j

(
J A

∂χ j

∂xk

)

= J A
∂

k

(√
G T ik

)
(B.5)
∂x
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The second term on the right hand side is set to zero thanks to the metric identity. The ALE term goes similarly:

∂

∂χ j

(
J A

√
G � jhui

)
= J A

∂χ j

∂xk

∂

∂χ j

(√
G σ khui

)
+ √

Gσ khui ∂

∂χ j

(
J A

∂χ j

∂xk

)

= J A
∂

∂xk

(√
G σ khui

)
(B.6)

Replacing (B.5), (B.6) and (A.12) in (B.4) we get the ALE-SWEs on a 2D manifold with respect to the actual parametric 
coordinates:

∂

∂t

∣∣∣∣
χ

(√
G J A hui

)
+ J A

∂

∂x j

(√
G T ij − √

G huiσ j
)

+ √
G J A �i

jk T jk = 0 (B.7)

Except for the physical source terms, the above set of equations coincides with (13) which is the momentum equation 
discretized in this article. In section 4 it has been obtained by a more classical procedure combining transport formulas and 
the GCL.

Appendix C. Proof of Proposition 1

The validity of (34), (35) and (36) as a consequence of the constant definition (37) is trivially shown using (31) and the 
definition of the integrated edge velocities (32)-(33). Concerning the accuracy of the projection, we remark that by virtue of 
the mean value theorem

|K̄| =
∫
K̄

√
G(x̄)dx̄ = |K̄ |√G(x̄∗) →

∫
K̄

(√
G(x̄) − √

G(x̄∗)
)
dx̄ = 0 (C.1)

for some x̄∗ within the element. Estimating the error of (38) is equivalent to estimating the error of∫
K̄

ϕi(x̄) fh(x̄)
√

G(x̄)dx̄ ≈
∫
K̄

ϕi(x̄) fh(x̄)
√

G(x̄∗)dx̄

To this end, we follow the consistency analysis used e.g. in [45,44]: we take the difference between the two expressions, 
sum over all the elements, multiply by the sampled nodal values of an arbitrary test function ψ ∈ Cr (r ≥ 1), and sum over 
all the nodes. We end up with the following global error

ε :=
∣∣∣∑

K

∑
j∈K̄

∫
K̄

ψ jϕ j(x̄) fh(x̄)
(√

G(x̄) − √
G(x̄∗)

)
dx̄
∣∣∣= ∣∣∣∑

K

∫
K̄

ψh(x̄) fh(x̄)
(√

G(x̄) − √
G(x̄∗)

)
dx̄
∣∣∣

The trick is now to use (C.1) to remove nodal values ψ j f j , leading to

ε =
∣∣∣∑

K

∑
j∈K

∫
K̄

ψh(x̄) fh(x̄) − ψ j f j

3

(√
G(x̄) − √

G(x̄∗)
)
dx̄
∣∣∣

We now use the relation (ab)2 − (ab)1 = (a2 + a1)(b2 − b1)/2 + (a2 − a1)(b2 + b1)/2 and recast the error as

ε =
∣∣∣∑

K

∑
j∈K

∫
K̄

(ψh + ψ j

6
( fh(x̄) − f j) + (ψh − ψ j)

fh(x̄) + f j

6

)(√
G(x̄) − √

G(x̄∗)
)
dx̄
∣∣∣

We can now use standard arguments to bound this quantity as

ε ≤
∑

K

∑
j∈K

∫
K̄

( |ψh + ψ j|
6

| fh(x̄) − f j| + |ψh − ψ j| | fh(x̄) + f j|
6

)∣∣∣√G(x̄) − √
G(x̄∗)

∣∣∣dx̄

≤ c1|S2|
(
‖ψ‖L∞ sup

j
‖∂x j f ‖L∞ + sup

j
‖∂x j ψ‖L∞‖ f ‖L∞

)
sup

j
‖∂x j

√
G‖L∞ h2
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Appendix D. Stabilized FEM and RD in moving curvilinear coordinates

We sketch here the derivation of the predictor corrector scheme (50)-(58), and provide some details concerning the 
computation of the mass matrices with and without the simplified quadrature of Proposition 1.

We start with the following explicit unstabilized predictor:

∫
S2

ϕi

√
G Jn+1

A w∗dχ −
∫
S2

ϕi

√
G Jn

Awndχ + �t

∫
S2

ϕi J̄ A

{
∂x j (F j − √

Gσ jw)n + √
GSn

}
dχ = 0 (D.1)

which we recast as

∫
S2

ϕi

√
G Jn+1

A (w∗ − wn)dχ+�t

∫
S2

ϕi

√
G

Jn+1
A − Jn

A

�t
wndχ

+�t

∫
S2

ϕi J̄ A

{
∂x j (F j − √

Gσ jw)n + √
GSn

}
dχ = 0 .

(D.2)

For a fixed mesh, J A = 1 and σ j = 0. For a moving mesh (and only for a moving mesh) we assume that the mass 
matrices are computed following Proposition 1. Otherwise, on fixed meshes we can either use the approximate quadrature 
of the proposition, or exact (or higher order) quadrature of (17), (21) and (22). In any case, either by cancellation, or by 
virtue of (36), we can recast the scheme as

∫
S2

ϕi

√
G Jn+1

A (w∗ − wn)dχ + �t

∫
S2

ϕi J̄ A

{
∂x j (F j)n − √

Gσ j∂x j wn + √
GSn

}
dχ = 0 . (D.3)

As in [33] we 1) stabilize the predictor step using an incomplete residual which does not involve the time increment, 
and 2) lump the Galerkin mass matrix to obtain:

(
∑
Ki

Ki)(w
∗
i − wn

i )+�t

∫
S2

ϕi J̄ A

{
∂x j (F j)n − √

Gσ j∂x j wn + √
GSn

}
dχ

+�t
∑
Ki

∫
K0

γi J̄ A

{
∂x j (F j)n − √

Gσ j∂x j wn + √
GSn

}
dχ = 0 ,

(D.4)

where γi is a properly defined stabilization bubble. In particular, following [46,33] it is assumed that for RD schemes the 
definition of the right hand side is such that

∫
K0

(ϕi + γi) J̄ A

{
∂x j (F j)n − √

Gσ j∂x j wn + √
GSn

}
dχ = Φ̃K

i

To recover (50) we use the second in (38), to replace the lumped mass matrix with |Ci |.
The corrector step is derived in a similar manner. We start from the second stage Runge-Kutta iteration for the unstabi-

lized Galerkin scheme:

∫
S2

ϕi

√
G Jn+1

A wn+1dχ −
∫
S2

ϕi

√
G Jn

Awndχ + �t

2

∫
S2

ϕi J̄ A

{
∂x j (F j − √

Gσ jw)n + √
GSn

}
dχ

+�t

2

∫
2

ϕi J̄ A

{
∂x j (F j − √

Gσ jw)∗ + √
GS∗}dχ = 0

(D.5)
S
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As proposed in [46,33], we stabilize the scheme using the approximate shifted residual in which wn+1 is replaced by w∗:∫
S2

ϕi

√
G Jn+1

A wn+1dχ −
∫
S2

ϕi

√
G Jn

Awndχ+�t

2
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}
dχ

+�t

2
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∂x j (F j − √

Gσ jw)∗ + √
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+
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∫
K0

γi

{√
G Jn+1
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G Jn
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2
J̄ A

[
∂x j (F j − √
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GS
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+�t

2
J̄ A

[
∂x j (F j − √

Gσ jw) + √
GS
]∗ }

dχ = 0

(D.6)

We now add and remove the term 
∫

S2 ϕi
√

G Jn+1
A w∗dχ to obtain the following error correction form of the stabilized 

scheme [46]∫
S2

ϕi

√
G Jn+1

A (wn+1 − w∗)dχ = −
∑
Ki

∫
K0

(ϕi + γi)
{√
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G Jn
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2
J̄ A
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GS
]n
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2
J̄ A

[
∂x j (F j − √

Gσ jw) + √
GS
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dχ

(D.7)

For piecewise constant (per element) values of γi , we can see that in general the form of the full mass matrix on a manifold 
is

mK
ij = (mG AL

i j )K +K jγi

If Proposition 1 is valid, the last expression becomes

mK
ij = |K|δi j + 1

12
+ |K|

3
γi

The standard RD mass matrix corrections are obtained by setting γi = βK
i − I/3, while the final form (47) of the scheme is 

obtained by recalling the hypothesis [46]:

�K
i = ∫K0

(ϕi + γi)
{√

G Jn+1
A w∗−√

G Jn
A wn

�t + 1

2
J̄ A

[
∂x j (F j − √

Gσ jw) + √
GS
]n

+1

2
J̄ A

[
∂x j (F j − √

Gσ jw) + √
GS
]∗ }

dχ
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