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Shallow Water Equations in spherical geometry

Shallow Water equations:
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Momentum and flux can be expressed
in 3D Cartesian basis
or 2D covariant basis:

hu = hu*e,+ hu'e, + hu’e,
= hu'gi + higs

T = Tije;ej
= Tg.8)

Cartesian and covariant tangent
reference systems



2D approach in ocean models
Divergence operator:
1/ 0 N, )

with J = det J and Jacobian J = g)f;.

> latitude-longitude parametrization
is typically used for structured grids
and high order finite differences:

J=VG, xt=p, x?2=A\ 2

> a local finite element map is typi-
cally used for unstructured grids and

high order finite elements: tn\>n
te

J = Ja, X1:€7 X2:77' [/




3D approach in ocean models

Divergence operator:

ohuv*  Ohuw”  Ohu?
+ +

V- hu = Ox dy 0z

+ Lagrange multiplier to constrain the currents to remain tangent
to the sphere [Cote et al., 1988; Bonev et al. 2018]:
Ohu



Mixed 2D /3D formulation (with finite element map)

[Bernard et al., 2008] local finite ton e 7
element map for tangent space : .
reference — spherical triangle i
hu = hut te + hu't; ¢

Differently from the 2D approach, momentum is treated in a
hybrid manner:

1) Projection on the tangent plane (t{ - t; = 1, t; - t;, # 0):

Ol )+ (V-T) 6, = St a=to



Mixed 2D /3D formulation (with finite element map)

2) Time derivative is expressed in 2D while right-hand side is

expressed in 3D.

e.g. for component o« = &:
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Mixed 2D /3D formulation (with finite element map)

Combines some of the the advantages of 2D and 3D methods:

> number of unknowns kept at a minimum
> differential oerators are kept in Cartesian form:

> no need of complex manifold differential transformations

> 3D line integrals are invariant under coordinate
transformation, thus independent on the parametrization

> Riemann solvers are formulated easily in 3D Cartesian
framework.



NEW: Mixed 2D /3D formulation with exact map



NEW: Mixed 2D /3D formulation with exact map

Covariant basis for tangent space:

hu = hu'g} + hu’g)

1) Projection on the tangent plane (g7 -87 =1, g8} -85 =0):
0 X %
o (hugl)+(V-T) g, = S-g,, a=12
2) As before: time derivative in 2D, right-hand side in 3D

0 0
eg. a=1, at(h” gi-gi+hi’gs-gi)+ .. =3 —(hu') +
——— —— t
-1 =0



NEW: Mixed 2D /3D formulation with exact map

Improvements:

> Exact geometrical representation of the sphere: no need for
high order elements

> Local mass matrices are block-diagonal: no coupling between
flux components

> Continuity of the normals at elements edges:

> Uniquely reference system
for Riemann Problem

> Trivial extension to con-
tinuous finite elements

Exact sphere P1 piecewise sphere



Discontinuous Galerkin in weak form

Some notation

1
> momentum flux T = huu + PI, with pressure P = Egh2

> topography and Coriolis source terms: S = ghVb + Qk x hu
> numerical flux T - n = H(U., Ug)

Momentum equation for spherical element I:

0
/ hup, g% dx —|—/ T, n-gioids — / Th:V(ghe) dx
ot Jx =~ oK K

Vi

= / Sh-g(’;cp,-dx
K



On Well Balancing

For the lake at rest state (h+ b = const, u = 0) = Tp = P4l.
The DG method reduces to:

/ Pl lgtpi-n ds—/ Pl -V (ghpi) dx = —/ ghyVb-gh i dx
oK K K
Previous work on well balanced DG:

> Cartesian well-walanced DG with Lax-Friedrich's Flux
[Xing and Shu, 2005]

> 3D well-balanced DG with Lax-Friedrich’'s Flux + strong form
[Bonev et al, 2018]



On Well Balancing

For the lake at rest state (h+ b = const, u =0) = T) = Pyl.
The DG method reduces to:

/ P,TIanp,--n ds—/ Phl . V(g;;cp,-) dx = —/ gthb.ngo,- dx
oK K K

Pb. with hybrid approach: projection on the tangent basis involves
non-algebraic functions in all of the above integrals

> Well balanced fluxes of [Xing and Shu, 2005] necessary but
not enough

> Exact integration of the metric terms impossible: lack of
discrete analogs of differential relations allowing to prove well
balanced (e.g. pass from weak to strong form)

Well balanced is lost



Well Balanced Discontinuous Galerkin

First remark: the strong form of the system is better suited for
well-balancedness as discussed in [Bonev et al, 2018]:

/ (P,;(—Ph) Igggo;-nds + / (V-Phl)-gzgp,-dx:
oK K
- /gthbh ~g:;cp,- dx
K

This is equivalent to add to the weak form the integration by parts
error (high order well-balanced correction)

K :/ Pul -V (gLvi) dX—/ PhIgZSOi‘"dS"‘/ (V- Ppl)-goepidx
K oK K



Well Balanced Discontinuous Galerkin

Second remark: a well balanced numerical flux verifies PhY = Py in
the lake at rest case. This means that

> The surface term vanishes:

/ (P — Py) Ighpi-nds =0
oK

> For well balanced to be verified, the volume terms must verify

V- Phl == —gthbh

on the lake at rest state h + b =const.



Well Balanced Discontinuous Galerkin

We can achieve this condition in two ways

> Approach 1 : write P, = P(hp) and compute divergence as
V- Phl = gthhh
For the the lake at rest h+ b = 1 =const. , hence

V- Phl == —gthbh

Well balanced recovered as in [Bonev et al, 2018] for any
quadrature strategy



Well Balanced Discontinuous Galerkin

We can achieve this condition in two ways

h2
> Approach 2: Set P, = g(2)h, allowing direct intepolation of
the fluxes, and compute

b2
ghnV by = gnaVbp — V - (g?l)h

On the lake at rest

R 2 2oy + B2
V-Pul = Y2V, =Y BBy,
ag ag 5

b
= —noVb,+V - (g?l)h = ghyVby

Well balanced recovered for any quadrature strategy



Implementation used here

> Riemann Problem solved in 3D with velocity rotation/change
of basis to pass from 2D to 3D

> Strong form for pressure, approximation Py := P(hj) for WB

> Rotated lat-lon for elements in polar regions with element
based flagging exploiting DG setting

> Entropy viscosity for shock capturing [Guermond, 2009]



W92 tests: zonal flow Error for hx = 446 km
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W92 tests: zonal flow over mountain

Mass is conserved to machine accuracy.

Energy conservation: relative error in left column
Time: 5 days

relative energy error, P1
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Well Balancing test

North boundary: inlet — small amplitude (A = 0.01 m) M2 tide.
West boundary: wall. East/South boundary: outflow.

hK = 100 km hK =50 km

Time: 17 h Time: 17 h Time: 17 h
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Time: 23h

Time: 23h Time: 23 h
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weak DG WB DG




Realistic tsunami example

> The initial tsunami waveform is obtained from a random
rupture of the Lesser Antilles subduction zone. Randomness is
associated with the heterogeneity of the fault slip which is
computed by a Karhunen-Loeve expansion.

> The mesh has variable mesh size hx = 10 km — 300 m.
> CFL = 0.5, only P1 tested, entropy viscosity is active

> Validation against FUNWAVE on a structured grid with
Ax = 800m.




Realistic tsunami example
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Conclusions and Questions

These developments have been done within the free-surface code
Uhaina (INRIA, UPPA, IMB, IMAG, BRGM) [Filippini et al.,
2018] which relies on the Aerosol HPC finite element library
(INRIA, UPPA).

> Improvement of the mixed 2D/3D form of [Bernard et
al.,2008] in terms of accuracy and implementation simplicity.

> Well-balancing.

> Validation against a realistic tsunami.

Perspectives:

> Effect of inexact quadrature on: accuracy, well balanced

> Extension to CG



