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Shallow Water Equations in spherical geometry

Shallow Water equations:

∂h

∂t
+∇ · hu = 0

∂hu
∂t

+∇ · T = S

Momentum and flux can be expressed
in 3D Cartesian basis
or 2D covariant basis:

hu = huxex + huyey + huzez

= hu1g∗1 + hu2g∗2
T = T ije ie j

= Tαβg∗αg
∗
β Cartesian and covariant tangent

reference systems



2D approach in ocean models
Divergence operator:

∇ · hu =
1

J

(
∂

∂x1
(
Jhu1

)
+

∂

∂x2
(
Jhu2

))
with J = det J and Jacobian J = ∂x i

∂xα .

> latitude-longitude parametrization
is typically used for structured grids
and high order finite differences:

J =
√
G , x1 = ϕ, x2 = λ.

> a local finite element map is typi-
cally used for unstructured grids and
high order finite elements:

J = JA, x1 = ξ, x2 = η.



3D approach in ocean models

Divergence operator:

∇ · hu =
∂hux

∂x
+
∂huy

∂y
+
∂huz

∂z

+ Lagrange multiplier to constrain the currents to remain tangent
to the sphere [Cote et al., 1988; Bonev et al. 2018]:

∂hu
∂t

+∇ · T = S + µx



Mixed 2D/3D formulation (with finite element map)

[Bernard et al., 2008] local finite
element map for tangent space :
reference 7→ spherical triangle

hu = huξt∗ξ + huηt∗η

Differently from the 2D approach, momentum is treated in a
hybrid manner:

1) Projection on the tangent plane (t∗ξ · t∗ξ = 1, t∗ξ · t∗η 6= 0):

∂

∂t
(hu · t∗α) + (∇ · T ) · t∗α = S · t∗α , α = ξ, η



Mixed 2D/3D formulation (with finite element map)

2) Time derivative is expressed in 2D while right-hand side is
expressed in 3D.

e.g. for component α = ξ:

∂

∂t
(huξ t∗ξ · t∗ξ︸ ︷︷ ︸

=1

+huη t∗η · t∗ξ︸ ︷︷ ︸
6=0

) +

(
∂T xx

∂x
+
∂T xy

∂y
+
∂T xz

∂z

)
t∗xξ

+

(
∂T yx

∂x
+
∂T yy

∂y
+
∂T yz

∂z

)
t∗yξ

+

(
∂T zx

∂x
+
∂T zy

∂y
+
∂T zz

∂z

)
t∗zξ = S j t∗jξ



Mixed 2D/3D formulation (with finite element map)

Combines some of the the advantages of 2D and 3D methods:

> number of unknowns kept at a minimum

> differential oerators are kept in Cartesian form:

> no need of complex manifold differential transformations

> 3D line integrals are invariant under coordinate
transformation, thus independent on the parametrization

> Riemann solvers are formulated easily in 3D Cartesian
framework.



NEW: Mixed 2D/3D formulation with exact map



NEW: Mixed 2D/3D formulation with exact map

Covariant basis for tangent space:

hu = hu1g∗1 + hu2g∗2

1) Projection on the tangent plane (g∗1 · g∗1 = 1, g∗1 · g∗2 = 0):

∂

∂t
(hu · g∗α) + (∇ · T ) · g∗α = S · g∗α , α = 1, 2

2) As before: time derivative in 2D, right-hand side in 3D

e.g. α = 1,
∂

∂t
(hu1 g∗1 · g∗1︸ ︷︷ ︸

=1

+hu2 g∗2 · g∗1︸ ︷︷ ︸
=0

) + ... =
∂

∂t
(hu1) + ...



NEW: Mixed 2D/3D formulation with exact map

Improvements:

> Exact geometrical representation of the sphere: no need for
high order elements

> Local mass matrices are block-diagonal: no coupling between
flux components

> Continuity of the normals at elements edges:

> Uniquely reference system
for Riemann Problem

> Trivial extension to con-
tinuous finite elements

Exact sphere P1 piecewise sphere 



Discontinuous Galerkin in weak form

Some notation

> momentum flux T = huu + PI , with pressure P =
1

2
gh2

> topography and Coriolis source terms: S = gh∇b + Ωk × hu

> numerical flux Tg · n = H(UL,UR)

Momentum equation for spherical element K:

∂

∂t

∫
K
huh ·g∗αϕi︸ ︷︷ ︸

v i

dx +

∫
∂K

Tg
h · n · g∗αϕi ds −

∫
K

T h : ∇ (g∗αϕi ) dx

=

∫
K

Sh · g∗αϕi dx



On Well Balancing

For the lake at rest state (h + b = const, u = 0) ⇒ T h = PhI .
The DG method reduces to:∫
∂K

Pg
h I g∗αϕi ·n ds−

∫
K
PhI : ∇ (g∗αϕi ) dx = −

∫
K
ghh∇b·g∗αϕi dx

Previous work on well balanced DG:
Well balanced is lost

> Cartesian well-walanced DG with Lax-Friedrich’s Flux
[Xing and Shu, 2005]

> 3D well-balanced DG with Lax-Friedrich’s Flux + strong form
[Bonev et al, 2018]
Well balanced is lost

Well balanced is lost



On Well Balancing

For the lake at rest state (h + b = const, u = 0) ⇒ T h = PhI .
The DG method reduces to:∫
∂K

Pg
h I g∗αϕi ·n ds−

∫
K
PhI : ∇ (g∗αϕi ) dx = −

∫
K
ghh∇b·g∗αϕi dx

Pb. with hybrid approach: projection on the tangent basis involves
non-algebraic functions in all of the above integrals

> Well balanced fluxes of [Xing and Shu, 2005] necessary but
not enough

> Exact integration of the metric terms impossible: lack of
discrete analogs of differential relations allowing to prove well
balanced (e.g. pass from weak to strong form)

Well balanced is lost



Well Balanced Discontinuous Galerkin

First remark: the strong form of the system is better suited for
well-balancedness as discussed in [Bonev et al, 2018]:∫

∂K

(
Pg
h − Ph

)
I g∗αϕi · n ds +

∫
K

(∇ · PhI ) · g∗αϕi dx =

−
∫
K
ghh∇bh · g∗αϕi dx

This is equivalent to add to the weak form the integration by parts
error (high order well-balanced correction)

εK =

∫
K
PhI : ∇ (g∗αϕi ) dx−

∫
∂K

PhI g∗αϕi ·n ds+

∫
K

(∇ · PhI )·g∗αϕi dx



Well Balanced Discontinuous Galerkin

Second remark: a well balanced numerical flux verifies Pg
h = Ph in

the lake at rest case. This means that

> The surface term vanishes:∫
∂K

(
Pg
h − Ph

)
I g∗αϕi · n ds = 0

> For well balanced to be verified, the volume terms must verify

∇ · PhI = −ghh∇bh
on the lake at rest state h + b =const.



Well Balanced Discontinuous Galerkin

We can achieve this condition in two ways

> Approach 1 : write Ph = P(hh) and compute divergence as

∇ · PhI = ghh∇hh

For the the lake at rest h + b = η =const. , hence

∇ · PhI = −ghh∇bh
Well balanced recovered as in [Bonev et al, 2018] for any
quadrature strategy



Well Balanced Discontinuous Galerkin

We can achieve this condition in two ways

> Approach 2: Set Ph = g
(h2)h

2
, allowing direct intepolation of

the fluxes, and compute

ghh∇bh = gηh∇bh −∇ ·
(
g
b2

2
I
)
h

On the lake at rest

∇ · PhI =
∑
σ

h2σ
2
∇ϕσ =

∑
σ

η20 − 2η0bσ + b2σ
2

∇ϕσ

= −η0∇bh +∇ ·
(
g
b2

2
I
)
h

= ghh∇bh

Well balanced recovered for any quadrature strategy



Implementation used here

> Riemann Problem solved in 3D with velocity rotation/change
of basis to pass from 2D to 3D

> Strong form for pressure, approximation Ph := P(hh) for WB

> Rotated lat-lon for elements in polar regions with element
based flagging exploiting DG setting

> Entropy viscosity for shock capturing [Guermond, 2009]



W92 tests: zonal flow
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W92 tests: zonal flow over mountain

Mass is conserved to machine accuracy.
Energy conservation: relative error in left column



Well Balancing test

North boundary: inlet → small amplitude (A = 0.01m) M2 tide.
West boundary: wall. East/South boundary: outflow.

aaaaaaaahK = 100 kmaaaaaaaaaaaaaaaaahK = 50 km
————————————aaaaaa————————————

aaaaWB DGaaaaaaaweak DGaaaaaaWB DGaaaaaaaweak DG



Realistic tsunami example

> The initial tsunami waveform is obtained from a random
rupture of the Lesser Antilles subduction zone. Randomness is
associated with the heterogeneity of the fault slip which is
computed by a Karhunen-Loeve expansion.

> The mesh has variable mesh size hK = 10 km − 300m.

> CFL = 0.5, only P1 tested, entropy viscosity is active

> Validation against FUNWAVE on a structured grid with
∆x = 800m.



Realistic tsunami example



Conclusions and Questions

These developments have been done within the free-surface code
Uhaina (INRIA, UPPA, IMB, IMAG, BRGM) [Filippini et al.,
2018] which relies on the Aerosol HPC finite element library
(INRIA, UPPA).

> Improvement of the mixed 2D/3D form of [Bernard et
al.,2008] in terms of accuracy and implementation simplicity.

> Well-balancing.

> Validation against a realistic tsunami.

Perspectives:

> Effect of inexact quadrature on: accuracy, well balanced

> Extension to CG


