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DISCRETE ASYMPTOTIC EQUATIONS FOR LONG WAVE PROPAGATION∗1

STEVAN BELLEC† , MATHIEU COLIN‡ , AND MARIO RICCHIUTO†2

Abstract. In this paper, we present a new systematic method to obtain some discrete numerical models3
for incompressible free-surface flows. The method consists in first discretizing the Euler equations with respect4
to one variable, keeping the other ones unchanged and then performing an asymptotic analysis on the resulting5
system. For the sake of simplicity, we choose to illustrate this method in the context of the Peregrine asymptotic6
regime, that is we propose an alternative numerical scheme for the so-called Peregrine equations. We then study7
the linear dispersion characteristics of our new scheme and present several numerical experiments to measure the8
relevance of the method.9

Key words. Euler equations, Boussinesq models, Numerical scheme, Finite element method, Asymptotic10
analysis.11

AMS subject classifications. 35Q31, 35Q35, 65M60.12

1. Introduction. Wave transformation in near shore zone is well-described by the incom-13

pressible Euler equations. Due to their three-dimensional character, these equations are often14

too costly if one wants to perform numerical experiments, and often replaced by asymptotic15

depth-averaged models known as Boussinesq equations. A major characteristic of these models16

is their ability to describe the dispersive behavior of wave propagation. Generally, the linear17

and nonlinear dispersion characteristics of the waves represented by Boussinesq models can be18

improved by including high order contributions in the double asymptotic expansion in terms of19

the ratios wave height over wave length (dispersion) and wave height over depth (nonlinearity)20

[18]. Other techniques to improve the linear dispersion characteristics involve the inclusion of21

extra dispersive differential terms, derived either from a linear wave equation [4, 20], or by re-22

placing depth-averaged values by point values at a properly chosen depth [23]. When numerically23

simulating the propagation of long waves, the physics represented by these continuous systems24

of Partial Differential Equations (PDE) is further filtered by the numerical scheme, and in par-25

ticular by the form of the truncation error. For most of Boussinesq models, the task of designing26

an accurate numerical discretization is a nontrivial one, due to the presence of dispersion terms.27

Several approaches exist in literature, each with its own advantages and drawbacks. For de-28

tails, the interested reader may refer to [8, 9, 13, 16, 22, 25], to the review [10], and references29

there in. The objective of this paper is to study the interaction scheme-PDE and to propose30

a framework to obtain new schemes with improved characteristics w.r.t. existing approaches.31

For this purpose, we introduce a new scheme reversing the model derivation procedure. More32

precisely, we propose to discretize partially the incompressible Euler equations with respect to33

one direction using a finite element method, and then follow Peregrine’s derivation procedure.34

This new paradigm leads to a very promising scheme with nice dispersion properties.35

36

The paper is organized as follows. In Section 2 we introduce some notation, the finite element37

discretization of a well known Boussinesq system, most of the algebraic operators involved and38

recall our main result. In Section 3, we detail the derivation of the new numerical scheme. The39

theoretical analysis of these discrete asymptotic models is presented in Section 4. Finally, Section40

5 presents a numerical evaluation of the performances of the schemes confirming our theoretical41

results. The paper is ended by an overlook of future developments related to the new approach42

∗
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2 S. BELLEC, M. COLIN, AND M. RICCHIUTO

proposed.43

2. Setting, notations and main result. Before going further, let us introduce some44

notations. For simplicity, in this article, we only deal with 2-D and 1-D problems. Denote by45

(x, z) respectively the horizontal and the vertical spatial dimension. Denote by d(x) the depth46

at still water and η(t, x) the surface elevation from its rest position. The total depth is then47

h(t, x) = d(x) + η(t, x) (see Figure 1).

Figure 1. Sketch of the free surface flow problem, main parameters description.

48
Let a be a typical wave amplitude, d0 a reference water depth and λ a typical wavelength.

In view of performing an asymptotic analysis, we introduce the nonlinearity parameter ε and the
dispersion parameter σ defined by

ε =
a

d0
, σ =

d0

λ
.

Under the Boussinesq hypothesis ε = O(σ2), Peregrine (see [24]) first derived, from the Euler49

equations, the following standard system of Boussinesq’s type50

(2.1)
ηt + (hū)x = 0,

ūt + ūūx + gηx + (d
2

6 ūtxx −
d
2 (dū)txx) = 0.

51

The model describes the evolution of the depth-averaged velocity ū and the surface elevation η
within an accuracy of O(εσ2, σ4) w.r.t. the Euler equations. The set of Equations (2.1) is now
well-understood from the computation point of view and a classical numerical scheme can be
obtained by using the finite element method in the following setting. On an interval [r, s], we
introduce a set of nodes

r = x0 < x1 < · · · < xN = s,

where, for simplicity, we take a constant space step ∆x = xi+1− xi, ∀i ∈ {0, . . . , N}. We denote52

by E, Ū , D and H the vectors of the nodal values of η, ū, d and h. Similarly to what has53

been done in [28, 27] (cf. also [25] and references therein), we apply the P1 Galerkin method to54

approximate the variational form of (2.1). In particular, we denote by {ϕi}0≤i≤N the standard55

piecewise linear continuous Lagrange basis, and introduce the discrete velocity, wave height and56

depth polynomials as follows57

(2.2) ū∆(t, x) =

N∑
i=0

ūi(t)ϕi(x), η∆(t, x) =

N∑
i=0

ηi(t)ϕi(x), d∆(x) =

N∑
i=0

diϕi(x).58

The Galerkin approximation of (2.1), under the hypothesis of exact integration w.r.t. all the59

discrete polynomials involved, can be written in a compact matrix form60

(2.3) MEt +
1

3

(
2N (H � Ū) +H � (N Ū) + Ū � (NH)

)
= 0,61

This manuscript is for review purposes only.



DISCRETE ASYMPTOTIC EQUATIONS FOR LONG WAVE PROPAGATION 3

62

(2.4) MŪt +
1

3

(
N (Ū2) + Ū � (N Ū)

)
+ gNE − 1

6
{D; Ūt} = 0,63

where the matrices M, N and Q are the usual mass, derivation, and stiffness matrices arising64

in the Galerkin discretization and are detailed in [5]. In addition, for given columns vectors65

A = (ai)0≤i≤N and B = (bi)0≤i≤N , we have introduced the operator � :66

RN × RN → RN67

(A,B) → A �B := (aibi)0≤i≤N6869

In the sequel, for simplicity A2 simplifies A � A. As an example, the vector (hi(N Ū)i)i∈{1,..,n}
can be rewritten as H � (N Ū). Moreover, for given columns vectors A and B, we set

{A;B} = Q(A2 �B) +A � (Q(A �B) + 2(A �B) � (QA)−B � (QA2).

Equations (2.3)-(2.4) will be taken in the sequel as the classical scheme for the Peregrine equa-70

tions and be used in Sections 4 and 5 to make some comparison with the new scheme introduced71

in the next section.72

The aim of this paper is to propose a systematic method to obtain new numerical models describ-73

ing free surface flows. It is based on the following idea : reverse the model derivation procedure74

and first discretize partially the incompressible Euler equations and then derive fully discrete75

asymptotic equations by performing an asymptotic analysis. To illustrate the potential of this76

idea, we apply this method to the couple Euler-Peregrine equations by applying the Galerkin77

method to the variable x and then performing the asymptotic analysis of Peregrine’s type to the78

resulting equations. Of course, when one deals with non-linear equations, this procedure does79

not commute with the classical one. In this paper, for simplicity, we deal with periodic boundary80

conditions. Note that the adaptation of our strategy with general boundary conditions is a full81

working that is going to be studied in future. The existence of solutions is not a trivial work82

even for Dirichlet conditions (see [2]). This strategy is similar to the one proposed for compress-83

ible multiphase flows in [1]. As shown in the detailed derivation of the next sections, the new84

procedure leads to the following discrete equations approximating the discretized Euler system85

within an accuracy of O(εσ2, σ4)86

(2.5) MEt +M[H; Ū ] = 0,87
88

(2.6) MŪt +
1

3

(
N (Ū2) + Ū � (N Ū)

)
+ gNE +M

(
D2

6
� (K2Ūt)−

D

2
� (K[D; Ūt])

)
= 0,89

having introduced the operator [· ; ·] defined by

[A;B] = A � (KB) +
1

3

(
K(A �B)−M−1(A � (NB)) + 2M−1(B � (NA))

)
,

with K =M−1N . We see that, while involving similar algebraic operations, the new discretiza-90

tion is different from the classical ones, even for a simple case like Peregrine equations. The91

main differences are found in the treatment of the third order derivatives terms as well as in92

the nonlinear ones in the continuity (wave height) equation. We will show that scheme (2.6)93

also converges to an approximation of the Peregrine equations. However, both the linear phase94

relation, and the linear shoaling gradient provided by (2.5)-(2.6) (see Section 4 and 5) are sub-95

stantially closer to the exact ones than those given by (2.3)-(2.4). In the sequel, we show how96

to derive the scheme (2.5)-(2.6) and prove that not only they are consistent with system (2.1),97

but that they represent a substantial improvement w.r.t. the scheme obtained by discretizing98

directly the asymptotic equations (2.1).99

This manuscript is for review purposes only.



4 S. BELLEC, M. COLIN, AND M. RICCHIUTO

3. A new setting for deriving discrete asymptotic models.100

3.1. Semi-discretization of the 2D-Euler equations in non-dimensional form. The101

aim of this section is to derive an alternative set of discrete equations, possibly having improved102

characteristics w.r.t. (2.3)-(2.4), for example a better evaluation of the shoaling gradient phe-103

nomenon. For that purpose, we propose to discretize the 2D-Euler equations with respect to one104

direction, x for example, and then to perform an asymptotic analysis on the resulting equation,105

similar to the one used to obtain the Peregrine equations (2.1). The Euler equations written in106

terms of velocity (u,w), pressure p, constant density ρ and vertical gravity acceleration g reads :107

(3.1) ut + uux + wuz +
px
ρ

= 0,108

109

(3.2) wt + uwx + wwz +
pz
ρ

+ g = 0,110

(3.3) ux + wz = 0,111

112

(3.4) uz − wx = 0,113

where the last equation represents the irrotationality condition. In this paper, since our aim is114

to obtain a new scheme for the Peregrine system, we restrict ourselves to the 2D version of the115

Euler equation. We deal with periodic boundary conditions in the x direction, while on the free116

surface and sea-bed level we use the classical conditions :117

• at the free surface z = η118

(3.5) w = ηt + uηx, p = 0,119

• on the seafloor z = −d120

(3.6) w = −udx.121

Let d0 be the averaged depth, a a typical wave amplitude, and λ a typical wavelength. The
following usual non-dimensional variables are introduced

x̃ =
x

λ
, z̃ =

z

d0
, t̃ =

√
gd0

λ
t, η̃ =

η

a
, ũ =

d0

a
√
gd0

u, w̃ =
λ

a

1√
gd0

w, p̃ =
p

gd0ρ
, ∆x̃ =

∆x

λ
.

Using the notation introduced above, the Euler equations and the irrotationality condition can122

be recast in a non-dimensional form as123

(3.7) εũt̃ + ε2ũũx̃ + ε2w̃ũz̃ + p̃x̃ = 0,124

125

(3.8) εσ2w̃t̃ + ε2σ2ũw̃x̃ + ε2σ2w̃w̃z̃ + p̃z̃ + 1 = 0,126

127

(3.9) ũx̃ + w̃z̃ = 0,128

129

(3.10) ũz̃ − σ2w̃x̃ = 0 (so ũz̃ = O(σ2)),130

The boundary conditions become :131

This manuscript is for review purposes only.



DISCRETE ASYMPTOTIC EQUATIONS FOR LONG WAVE PROPAGATION 5

• at the free surface z̃ = εη̃132

(3.11) w̃ = η̃t̃ + εũη̃x̃, p̃ = 0,133

• at the bed z̃ = −d̃134

(3.12) w̃ = −ũd̃x̃.135

Our goal is to obtain a Boussinesq’s type approximation of the Euler system (3.7)-(3.12), under136

the assumptions ε << 1, σ << 1, and in the specific regime ε = O(σ2), meaning that there exists137

constant C > 0 such that ε ≤ Cσ2. We now apply a Galerkin method on the variable x keeping138

t and z unchanged. It is assumed that ∆x̃ = O(σ) (it transpires that ∆x = O(d0)). In the sequel139

we drop the ”˜” and we introduce for all i ∈ {0, ..., N}, ui(t, z) = u(t, xi, z), wi(t, z) = w(t, xi, z),140

ηi(t, z) = η(t, xi, z), pi(t, z) = p(t, xi, z). In addition, the discrete horizontal velocity, wave141

height, depth, vertical velocity and pressure polynomials are written in the Galerkin basis as142

follows143

u∆(t, x, z) =

N∑
i=0

ui(t, z)ϕi(x), w∆(t, x, z) =

N∑
i=0

wi(t, z)ϕi(x), η∆(t, x) =

N∑
i=0

ηi(t)ϕi(x),

p∆(t, x, z) =

N∑
i=0

pi(t, z)ϕi(x), d∆(x) =

N∑
i=0

diϕi(x).

(3.13)144

We focus on periodic boundary condition that is we introduce x−1 = xN and xN+1 = x0. The145

finite element discrete equations corresponding to (3.7)-(3.8)-(3.9)-(3.10) can be written as, for146

all i ∈ {0, ..., N}147

ε
∆x

6

d

dt
(ui+1 + 4ui + ui−1)+

ε2

3

(
u2
i+1 − u2

i−1

2
+ ui

ui+1 − ui−1

2

)
+
pi+1 − pi−1

2

=− ε2σ2

3

(
w2
i+1 − w2

i−1

2
+ wi

wi+1 − wi−1

2

)
,

(3.14)148

εσ2 ∆x

6

d

dt
(wi+1 + 4wi + wi−1)+

∆x

6

d

dz
(pi+1 + 4pi + pi−1) + ∆x

=− ε2σ2
(
ui
wi+1 − wi−1

2
− wi

ui+1 − ui−1

2

)
,

(3.15)149

(3.16)
ui+1 − ui−1

2
+

∆x

6

d

dz
(wi+1 + 4wi + wi−1) = 0,150

151

(3.17)
∆x

6

d

dz
(ui+1 + 4ui + ui−1)− σ2wi+1 − wi−1

2
= 0.152

For the boundary conditions, we propose to integrate (3.11) along the curve z = εη and equation153

(3.12) along the curve z = −d. For that purpose, we choose to introduce154

ŵ∆ =

N∑
i=0

wi
(
t, εη(t, xi)

)
ϕi(x), w̌∆ =

N∑
i=0

wi
(
t,−d(xi)

)
ϕi(x),

û∆ =

N∑
i=0

ui
(
t, εη(t, xi)

)
ϕi(x), ǔ∆ =

N∑
i=0

ui
(
t,−d(xi)

)
ϕi(x).

(3.18)155

The boundary conditions (3.11)-(3.12) then write156

This manuscript is for review purposes only.



6 S. BELLEC, M. COLIN, AND M. RICCHIUTO

• at the free surface157

∆x

6

(
ŵi+1(t) + 4ŵi(t) + ŵi−1(t)

)
=

∆x

6

d

dt

(
ηi+1(t) + 4ηi(t) + ηi−1(t)

)
158

+
1

3

(
εηi+1(t)ûi+1(t)− εηi−1(t)ûi−1(t)

2
(3.19)159

−εηi(t)
ûi+1(t)− ûi−1(t)

2
+ 2ûi(t)

εηi+1(t)− εηi−1(t)

2

)
,160

161
162

(3.20)
∆x

6

(
pi+1(t, εηi+1) + 4pi(t, εηi) + pi−1(t, εηi−1)

)
= 0,163

• at the bed164

∆x

6

(
w̌i+1(t) + 4w̌i(t) + w̌i−1(t)

)
=165

− 1

3

(
di+1ǔi+1(t)− di−1ǔi−1(t)

2
− di

ǔi+1(t)− ǔi−1(t)

2
+ 2ǔi(t)

di+1 − di−1

2

)
.(3.21)166

167

Introducing the following column vector168

W = (wi)0≤i≤N , U = (ui)0≤i≤N , E = (ηi)0≤i≤N , P = (pi)0≤i≤N , D = (di)0≤i≤N , I =

1
...
1


Ŵ =

(
wi(εηi)

)
0≤i≤N

, Û =

(
ui(εηi)

)
0≤i≤N

, W̌ =

(
wi(−di)

)
0≤i≤N

, Ǔ =

(
ui(−di)

)
0≤i≤N

,

169

we can rewrite Equations (3.14)-(3.21) into the following matrix-form :170

(3.22) ε
d

dt
MU +

ε2

3

(
N (U2) + U � (NU)

)
+NP = −ε

2σ2

3

(
N (W 2) +W � (NW )

)
,171

(3.23) εσ2 d

dt
MW +

d

dz
MP + I = −ε2σ2 (U � (NW )−W � (NU)) ,172

(3.24) NU +M d

dz
W = 0,173

174

(3.25) M d

dz
U − σ2NW = 0.175

The boundary conditions become176

• at the free surface177

(3.26) MŴ =
d

dt
ME +

ε

3

(
N (E � Û)− E � (N Û) + 2Û � (NE)

)
, MP̂ = 0,178

• at the bottom179

(3.27) MW̌ = −1

3

(
N (D � Ǔ)−D � (N Ǔ) + 2Ǔ � (ND)

)
.180

System (3.22)-(3.27) represents the first step in our analysis. The next two sections are dedicated181

to the transformation of this system into an asymptotic set of equations.182
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3.2. Asymptotic expansions on the velocity U and the pressure p. In this section, we183

derive an asymptotic expansion in terms of σ for the semi-discrete horizontal velocity U = U(t, z)184

following the procedure presented by Peregrine in [24]. More precisely, we prove the following185

proposition.186

Proposition 1 (Consistency results). The pressure P and the velocity U satisfy expansion
of the form

P = εE − zI + εσ2

(
z2

2
KU0 + z[D;U0]

)
+O(ε2σ2, εσ4)

U = Ū + σ2

(
D2

6
� (K2Ū)− z2

2
K2Ū − zK[D; Ū ]− D

2
� (K[D; Ū ])

)
+O(εσ2, σ4),

where the averaged velocity is defined in (3.36).187

Proof. SinceM is invertible, we obtain from the integration of (3.25) between 0 and an arbitrary188

depth z,189

(3.28) U(t, z) = U0(t) +O(σ2),190

where U0(t) is a constant depending only on t and corresponds to the value of U at z = 0.191

Substituting relation (3.28) in equation (3.24) and setting K =M−1N , we derive192

(3.29)
d

dz
W = −KU0 +O(σ2).193

Integrating each line i ∈ {0, ..., N} of equation (3.29) with respect to z between −di and an194

arbitrary depth z (−di < z < εηi), using the boundary condition (3.27) and the estimates (3.28)195

on U , we obtain196

(3.30) W = −(zI+D)�(KU0)− 1

3

(
K(D�U0)−M−1(D�(NU0))+2M−1(U0�(ND))

)
+O(σ2).197

In view of (3.30), it is natural to introduce the following bracket198

(3.31) [A;B] = A � (KB) +
1

3

(
K(A �B)−M−1(A � (NB)) + 2M−1(B � (NA))

)
.199

Plugging (3.30) in (3.25) and integrating the resulting equation between 0 and z, one derives the200

following expansion on U201

U =U0 − σ2

(
z2

2
K2U0 + z[D;U0]

)
+O(σ4).(3.32)202

203

Looking for a similar expansion on the pressure array P , we substitute Equation (3.30) in Equa-204

tion (3.23).Using the fact that MI = I, we obtain205

d

dz
P = −I − εσ2 d

dt

(
zKU0 + [D;U0]

)
+O(ε2σ2, εσ4).(3.33)206

Furthermore, integrating each line i ∈ {0, ..., N} of equation (3.33) with respect to z from an207

arbitrary depth to the free surface εηi, we can write208

(3.34) P = εE − zI + εσ2

(
z2

2
KU0 + z[D;U0]

)
+O(ε2σ2, εσ4)209
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Substituting equations (3.34) and (3.32) in (3.22), we obtain an equation for the zero-th order210

velocity U0, equivalent to Equation 2.28 in [27], which reads :211

(3.35)
d

dt
MU0 +

ε

3

(
N (U0 � U0) + U0 � (NU0)

)
+NE = O(εσ2, σ4).212

Note that the choice of the constant of integration in (3.28) is not unique. However it transpires213

that the choice of U0 (which is the value of the horizontal velocity U at z = 0) is not optimal214

as observed in [27]. This is why, in the sequel, we are going to get rid of it by introducing the215

averaged velocity matrix Ū = (ūi)0≤i≤N where216

(3.36) ūi =
1

di + εηi

∫ εηi

−di
uidz,217

and by looking for the equation satisfied by Ū . In this direction, we first derive the relation
between U0 and Ū . Equation (3.32) provides, for all i ∈ {0, ..., N},

ui = u0
i − σ2

(
z2

2

(
K2U0

)
i
+ z

(
K[D;U0]

)
i

)
+O(σ4),

and by integration between −di and εηi, we immediately get, using Taylor expansion,218

ūi = u0
i −

σ2

εηi + di

(∫ εηi

−di

z2

2
dz
(
K2U0

)
i
+

∫ εηi

−di
zdz

(
K[D;U0]

)
i

)
+O(σ4),219

= u0
i −

σ2

(di + εηi)

(
d3
i

6

(
K2U0

)
i
− d2

i

2

(
K[D;U0]

)
i

)
+O(εσ2, σ4),220

= u0
i − σ2

(
d2
i

6

(
K2U0

)
i
− di

2

(
K[D;U0]

)
i

)
+O(εσ2, σ4).221

222

This furnishes the desired relation223

(3.37) Ū = U0 − σ2

(
D2

6
� (K2U0)− D

2
� (K[D;U0])

)
+O(εσ2, σ4),224

or equivalently225

(3.38) U0 = Ū + σ2

(
D2

6
� (K2U0)− D

2
� (K[D;U0])

)
+O(εσ2, σ4).226

Then it transpires that U0 = Ū +O(ε, σ2). Substituting in (3.38), we derive227

(3.39) U0 = Ū + σ2

(
D2

6
� (K2Ū)− D

2
� (K[D; Ū ])

)
+O(εσ2, σ4).228

Finally, plugging (3.39) into (3.32), one obtains the expansion of U as a function of the depth229

averaged velocity Ū230

(3.40) U = Ū + σ2

(
D2

6
� (K2Ū)− z2

2
K2Ū − zK[D; Ū ]− D

2
� (K[D; Ū ])

)
+O(εσ2, σ4).231
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3.3. Depth-averaged equations. The aim of this section is to provide the final new232

discrete numerical model of Peregrine’s type. In order to derive the equation on Ū (known as233

the momentum equation in the literature), we substitute (3.39) in (3.35) to obtain :234

d

dt
MŪ +

ε

3

(
N (Ū2) + Ū � (N Ū)

)
+NE + σ2M d

dt

(
D2

6
� (K2Ū)− D

2
� K[D; Ū ]

)
= O(εσ2, σ4)235

In addition, to derive an equation on E (that is the continuity equation), we combine (3.26) and236

(3.27) to get237

Ŵ − W̌ =
d

dt
E + ε

M−1

3
(N (E � Û)− E � (N Û) + 2Û � (NE))

+
M−1

3
(N (D � Ǔ)−D � (N Ǔ) + 2Ǔ � (ND)).

(3.41)238

We integrate each lines of (3.41) between −di and εηi, for all i ∈ {0, ..., N}, to obtain239 ∫ εηi

−di
(KU)idz + Ŵi − W̌i = 0,240

which can be recast as241

(3.42) Et + [H; Ū ] +B = 0,242

where243

B =

(∫ εηi

−di
(KU)idz

)
0≤i≤N

− [H; Ū ] +
ε

3
(K(E � Û)−M−1(E � (N Û)) + 2M−1(Û � (NE)))

−1

3
(K(−D � Ǔ)−M−1(−D � (N Ǔ)) + 2M−1(Ǔ � (N (−D))).

(3.43)

244

We can remark that the expressionB is no more than a discretized version of the so-called Leibniz’245

Rule1. As a consequence, it transpires that B has the same accuracy of order O(εσ2, σ4) than246

that of the equations and then can be neglected in the sequel. In order to be more precise, we247

compute explicitly B by taking successively z = εηi and z = −di in (3.40) to obtain the values248

of Û and Ǔ :249

Û =Ū + σ2

(
D2

6
� (K2Ū)− ε2E2

2
K2Ū − εE � K[D; Ū ]− D

2
� (K[D; Ū ])

)
+O(εσ2, σ4)

Ǔ =Ū + σ2

(
−D

2

3
� (K2Ū) +

D

2
� (K[D; Ū ])

)
+O(εσ2, σ4).

(3.44)250

1We recall the Leibniz’ Rule : Given f(x, z), a(x) and b(x), where f and ∂f
∂x

are continuous in x and z, and a
and b are differentiable functions of x,

∂

∂x

(∫ b(x)

a(x)
f(x, z)dz

)
=

∫ b(x)

a(x)

∂

∂x
f(x, z)dz + f(x, b(x))b′(x) − f(x, a(x))a′(x).
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By substituting Equations (3.40) and (3.44) into Equation (3.43), this provides the complete251

expression of B252

B = σ2

(
1

6
D � (K(D2 � (K2Ū)))− 1

6
D3 � (K3Ū)− 1

9
K(D3 � (K2Ū))253

+
1

9
M−1D � (N (D2 � (K2Ū))) +

1

2
D2 � (K2[D; Ū ])− 1

2
D � (K(D � (K[D; Ū ])))254

+
1

6
K(D2 � (K[D; Ū ]))− 1

6
M−1D � (ND � (K[D; Ū ]))255

− 2

9
M−1(ND) � (D2 � (K2Ū)) +

1

3
M−1((ND) � (D � (K[D; Ū ])))

)
+O(εσ2, σ4).256

257

Finally, our new non-dimensionalized system reads (note that we have multiply (3.42) by M)258

(3.45)
d

dt
ME +M[H; Ū ] +MB = 0.259

260
(3.46)
d

dt
MŪ +

ε

3

(
N (Ū2) + Ū � (N Ū)

)
+NE + σ2M d

dt

(
D2

6
� (K2Ū)− D

2
� K[D; Ū ]

)
= O(εσ2, σ4)261

To go further, we now investigate the behavior of the vector B by establishing the following262

proposition.263

Proposition 2 (Consistency results). For any bathymetry d, the additional term B in
Equation (3.45) satisfies

B = O(εσ2, σ4).

As a consequence, the numerical scheme (3.45)-(3.46) becomes264

(3.47)
d

dt
ME +M[H; Ū ] = O(εσ2, σ4),265

266

(3.48)
d

dt
MŪ +

1

3

(
N (Ū2) + Ū � (N Ū)

)
+NE − σ2 d

dt

(
d2

0

3
(NKŪ)

)
= O(εσ2, σ4),267

and is consistent with the Peregrine Equations (2.1).268

Proof. For a better understanding, we first assume that the bathymetry d = d0 is constant.269

In this setting, one has D = d0I and the operator D� is no more than the multiplication by the270

real d0, that is, for example, D � U = d0U . Hence B is equal to271

B = 0 +O(εσ2, σ4).272

More generally, assume now that the bathymetry d is not constant. For any regular function u273

and its discrete version (ui)0≤i≤N , a Taylor expansion provides274

(3.49) ui+1 = ui + ∆xux(xi) +
∆2
x

2
uxx(xi) +

∆3
x

6
uxxx(xi) + ...,275

and276

(3.50) ui−1 = ui −∆xux(xi) +
∆2
x

2
uxx(xi)−

∆3
x

6
uxxx(xi) + ...277
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Combining (3.49) and (3.50), we can prove that, for all i ∈ {0, ..., N}

(NU)i = ux(xi) +
∆2
x

6
uxxx(xi) +O(∆4

x),

(M−1U)i = u(xi)−
∆2
x

6
uxx(xi) +O(∆4

x), (KU)i = ux(xi) +O(∆4
x).

Plugging these expansions in Equations (3.45) and (3.46), we obtain278

ηt + (hū)x −
∆2
x

6

(
ηtxx + (hū)xxx + hxxūx + σ2(

d2dxxūxxx
6

+
7

6
ddxdxxūxx279

+ (
3

2
dd2
xxd

2
xdxx +

5

6
ddxdxxx)ūx + ddxxdxxxū)

)
+O(∆4

x) = O(εσ2, σ4),280
281
282

ūt + ūūx + ηx + σ2

(
d2

6
ūtxx −

d

2
(dū)txx

)
+

∆2
x

6

((
ūt + ūūx + ηx + σ2 d

2

6
ūtxx283

−σ2 d

2
(dū)txx

)
xx

− ūxūxx + σ2 d

2
(dxxūx)x

)
+O(∆4

x) = O(εσ2, σ4),284

285

proving that our numerical scheme is consistent with the continuous Peregrine equations(2.1).286

In addition, B is equal to287

B =− σ2 ∆2
x

6

(
d2dxxūxxx

6
+

7

6
ddxdxxūxx + (

3

2
dd2
xxd

2
xdxx +

5

6
ddxdxxx)ūx288

+ ddxxdxxxū+O(∆2
x)

)
+O(εσ2, σ4),289

290

from which it transpires that B contains only terms of order ∆2
xσ

2, εσ2 or σ4 (actually, B is
consistent with Leibniz’ Rule). Recalling that ∆x̃ = O(σ), one has

B = σ2O(∆2
x̃) +O(εσ2, σ4) = O(εσ2, σ4),

which ends the proof of Proposition 2.291

To end this section, we return to the physical variables and neglect the contribution of B in292

(3.45)-(3.46) to obtain our new numerical scheme for the Peregrine Equations (2.1)293

(3.51)
d

dt
ME +M[H; Ū ] = 0,294

295

d

dt
MŪ +

1

3

(
N (Ū2) + Ū � (N Ū)

)
+ gNE +M d

dt

(
D2

6
� (K2Ū)− D

2
� (K[D; Ū ])

)
= 0.(3.52)296

297

4. Study of the linear dispersion characteristics. The aim of this section is to give298

some insights to measure the accuracy of the new method developped in the previous sections.299

For that purpose, we exhibit the dispersion relation as well as the shoaling coefficients of the300

linearized version of the scheme (3.51)-(3.52). This study is widely inspired by the one proposed301

by Dingemans in [11] in the context of slowly-varying water depth, that is we assume that302

d = d(βx) with β << 1. For the sake of completness, we also compare our computations with303

the ones performed on the linearized version of the classical scheme (2.3)-(2.4).304
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4.1. Linear characteristics of the new numerical model. We first introduce the lin-305

earized version of the scheme (3.51)-(3.52) around the rest state which reads306

(4.1)
d

dt
ME +M[D; Ū ] = 0,307

308

(4.2)
d

dt
MŪ + gNE +M d

dt

(
D2

6
� (K2Ū)− D

2
� (K[D; Ū ])

)
= 0.309

As usual, when one deals with linear equations, a lot of computations can be performed explicitly.310

Indeed, differentiating (4.2) with respect to t, multiplying (4.1) by N and substituting the311

resulting equations, one obtains a decouple equation on the vector Ū :312

(4.3) MŪtt − gN [D; Ū ] +M
(
D2

6
� (K2Ū)− D

2
� (K[D; Ū ])

)
tt

= 0.313

In order to exhibit the dispersion relation associated with (4.1)-(4.2), we then look for a plane-314

wave solution under the form Ū =
(
ūi

)
0≤i≤N

, where315

(4.4) ūi = ū(t, xi) with ū(t, x) = U(βx) exp

(
−jωt+

j

β
K(βx)

)
, j2 = −1.316

Owning the solution Ū , it is pertinent to introduce the wave number k(βx) = ∂
∂x

(
1
βK(βx)

)
,317

and for all i = 0, ..., N , ki = k(βxi). Then, we determine conditions on k and U so that Ū is a318

solution to the linear system (4.3). A Taylor expansion around the point x = xi provides directly319

(4.5) ūi+1 =

(
1 + β(j

∆2
x

2
k′(βxi) + ∆x

U′(βxi)

Ui
)

)
ūie

jki∆x +O(β2),320

(4.6) ūi−1 =

(
1 + β(j

∆2
x

2
k′(βxi)−∆x

U′(βxi)

Ui
)

)
ūie
−jki∆x +O(β2).321

In view of (4.3), we deduce that, ∀i ∈ {1, .., n}322

(4.7)

(N Ū)i =

(
jkisinc(ki∆x)− β k

2
i∆2

x

2
sinc(ki∆x)

k′(βxi)

ki
+ β cos(ki∆x)

U′(βxi)

Ui

)
ūi +O(β2).323

324
(4.8)

(MŪ)i =

(
1

3
(2 + cos(ki∆x)) + jβ

ki∆
2
x

6
(cos(ki∆x)

k′(βxi)

ki
+ 2sinc(ki∆x)

U′(βxi)

Ui
)

)
ūi +O(β2).325

Note that it is not possible to plug directly (4.7)-(4.8) into (4.3), due to the presence of the326

vector (M−1Ū) in the bracket [D; Ū ]. Indeed, it is necessary to express each term (M−1Ū) with327

respect to ūi. To overcome this difficulty, the idea is to introduce the following new variables :328

V =M−1N
(
D � Ū

)
, X =M−1N Ū , Z =M−1

(
D � (N Ū)

)
, W =M−1(Ū � (ND)),329

Y =M−1NX, T =

(
D �X +

1

3
(V − Z + 2W )

)
, S =M−1NT.330

331
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To perform asymptotic expansions of order β2 on these variables. Using these new vectors, one332

can rewrite Equation (4.3) into333

(4.9) MŪtt − gNT +M
(
D2

6
� Ytt −

D

2
� Stt

)
= 0334

Note first that the vectors V , X, Z, W , Y and T depends only on Ū . It is then natural to335

introduce the following exponential functions (in the same form than ū) v, x, z, w, y,t and336

s where V(βx), X(βx), Z(βx), W(βx), Y(βx), T(βx) and S(βx) denote the amplitude of337

functions.It is possible to express these amplitude in function of U performing an asymptotic338

analysis with respect to the parameter β (see [5] for details).339

Using Equations (4.7) and (4.8) and these expansions, one can rewrite (4.9) for all i ∈340

{1, .., n}. Collecting in the resulting equation the term of order β0, one obtains the expression341

of ω, for all i = 0, ..., N ,342

(4.10)
ω2

gdik2
i

=
sinc(ki∆x)2

( 1
3 (2 + cos(ki∆x)))2 +

k2
i d

2
i

3 sinc(ki∆x)2
.343

Furthermore, collecting the term of order β, one obtains a relation between U, k, and the344

bathymetry d :345

(4.11) α
(1)
1,i

U′(βxi)

Ui
+ α

(1)
2,i

d′(βxi)

di
+ α

(1)
3,i

k′(βxi)

ki
= 0.346

Equation (4.11) describes the effect of linear shoaling since the numbers α
(1)
1,i , α

(1)
2,i and α

(1)
3,i are347

known as the linear shoaling coefficients. Using (4.10), one can compute these three coefficients348

(we omit the details for simplicity). Differentiating formally the dispersion relation (4.10) and349

assuming that ω is constant, we deduce that ki has to satisfy the following condition350

(4.12)
k′(βxi)

ki
= −α(1)

4

d′(βxi)

di
,351

This relation is used to compute formally ki for i = 0, ..., N and for a given bathymetry and352

therefore to obtain the coefficients α
(1)
1,i , α

(1)
2,i and α

(1)
3,i . Finally, following [11], we obtain an353

expression of the amplitude velocity Ui, for all i = 0, ..., N354

(4.13)
U′i
Ui

= −α(1)
s,i

d′i
di
, where α

(1)
s,i =

α
(1)
2,i − α

(1)
3,iα

(1)
4,i

α
(1)
1,i

.355

In order to find the theoretical amplitude of the surface elevation A, we assume that E =356

(ηi)0≤i≤N , where ηi = A(βxi) exp
(
−jωt+ j

βK(βxi)
)
. Substituting in Equation (4.1), we obtain357

an expression of Ai in function of Ui for all i = 0, ..., N358

(4.14) Ai =
di√
gdi

√
1 +

k2
i d

2
i

3

sinc(ki∆x)
1
3 (2 + cos(ki∆x))

Ui.359

4.2. Linear characteristics of the classical Peregrine model. We consider now the360

linear classical numerical model presented in Section 3.361
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(4.15) M d

dt
E +

1

3

(
2N (D � Ū) +D � (N Ū) + Ū � (ND)

)
= 0,362

363

d

dt
MŪ + gNE − 1

6
{D; Ūt} = 0,(4.16)364

We reproduce the same procedure as in Section 4.1. The terms of order of β0 gives the linear365

dispersion relation, for all i = 0, ..., N ,366

(4.17)
ω2

gdik2
i

=
sinc(ki∆x)2

1
3 (2 + cos(ki∆x))

(
1
3 (2 + cos(ki∆x)) + 1−cos(ki∆x)

k2
i
∆2
x

2

k2
i d

2
i

3

) ,367

whereas the terms of order of β provides the linear shoaling coefficients. Again, we obtain the368

relation between the amplitude Ui of the surface elevation and the bathymetry (see [5] for details).369

Finally for this numerical scheme,370

(4.18) Ai =
di√
gdi

√
1 +

(1− cos(ki∆x))
k2
i∆2

x

2

1
1
3 (2 + cos(ki∆x))

k2
i d

2
i

3
Ui.371

4.3. Analysis of the computations. In this section, we study the linear dispersion re-372

lations derived in Section 4.1 and 4.2. More precisely, we draw the phase velocity and the373

amplitude of the wave with respect to the dispersion parameter σ in shoaling conditions for each374

scheme and we compare the results with the ones predicted by the linear theory associated to375

the Peregrine equations (2.1).376

4.3.1. Phase velocity. The phase velocity is usually given by the relation C = ω/k. As377

observe in literature, we can consider k and d as constant functions (k = k0, and d = d0 see [27]378

for more details). Then, the phase velocity of our new numerical scheme (4.1)-(4.2) is given by379

(4.10) while that derived for the classical scheme (2.3)-(2.4) is given by (4.17). Our aim is to380

plot the two curves (4.10)-(4.17) and compare with the one predicted by the linear theory :381

(4.19) C2
P =

gd

1 + k2d2

3

.382

We first fix the wavelength λ and we put ∆x = λ
Nλ

where Nλ is the number of discretization

points by wavelength. A direct computation gives k∆x = 2π/Nλ. We recall that σ = d
λ , showing

that kd = 2πσ. In Figure 2, we draw the relative errors between (4.2) and (4.17) and the phase
velocity predicted by the linear theory. The error er is defined, for each scheme, by

er = 100

(
C − CP
CP

)
.
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Figure 2. Comparison of the phase velocity (Nλ = 5 on the left, Nλ = 10 on the right) of the classical and
the new numerical scheme with the one given by the linear theory w.r.t σ.

In Figure 2, one can observe that for Nλ = 5, the error coming from the new scheme is383

acceptable (less than 1.6%) whereas the one of the classical scheme is greater than 5% for depths384

bigger than 0.3. For Nλ = 10, although the error of the classical scheme is better than in the385

previous case (less than 2%), the one of the new scheme is much better and stay very close to386

0. We conclude here that our new numerical scheme seems to reproduce much better the linear387

dispersive effects.388

4.3.2. Linear shoaling test. We first recall the expression of the shoaling coefficients
given by the linear theory associated with the Peregrine equations (2.1) (see [11]):

α1 = 2, α2 = 2− k2d2

3
, α3 = 1, α4 =

1

2

(
1− k2d2

3

)
,

and the expression of the surface elevation amplitude389

(4.20) A =

√
1 +

k2d2

3

d√
gd
U.390

Our aim is to compare, for a given situation, the evolution of the amplitude of the waves
with respect to the space variable x given by the two relations (4.14) and (4.18) and the one
derived from the linear theory. To this end, we perform the following test proposed by Madsen
and Sorensen in [21]. We consider a periodic wave with an initial amplitude a = 0.05 and a
wavelength λ = 15 starting from the position x = 100. It propagates over an initial constant
water depth d0 = 13. The bottom is flat until x = 150 and it has a constant up-slope of 1

50 from
x = 150 to x = 790. We compute the evolution of the wave amplitude with respect to x. For
that, we propose the following procedure. Firstly, we integrate formally the relation between k
and d ((4.12) for the new scheme), given by the differential equation

k′

k
= −α4

d′

d
.

We use a Strongly Stability-Preserving Runge-Kutta method (SSP-RK) to compute the solution
k, using k0 = 2π

λ as initial condition. Then, we substitute this function k in the expression of
αs, and we compute the amplitude of the velocity U by integrating the relation

U′

U
= −αs

d′

d
.
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Again, we use a SSP-RK method and U(100) = a
√
gd0

d0
as initial condition. Then, we deduce391

the theoretical amplitude of the wave elevation using Equations (4.14) (for the new scheme) and392

(4.18) (for the classical one). Fixing the value of ∆x, it is possible to compute formally the393

surface elevation amplitude for each scheme. The results are presented in Figure 3.394
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Figure 3. Evolution of the wave amplitude for the two numerical schemes and for Peregrine equations. Left
: ∆x = 3 (Nλ = 5). Right : ∆x = 1.5 (Nλ = 10).

We observe that when ∆x is small, the curves of the two schemes matched the theoretical395

one, meaning that both schemes converges. However, when ∆x becomes larger, one can see396

that the curve computed with the new scheme stay closed to the theoretical one while the one397

computed with the classical scheme furnishes a bad behavior of the amplitude of the wave.398

5. Numerical experiments. This section is devoted to the investigation of the behavior399

of the two schemes (3.51)-(3.52) and (2.3)-(2.4). To this end, we present different test cases : the400

propagation of solitary waves over a flat bathymetry, the propagation of a periodic wave on a401

flat bottom and on a constant slope. These test cases bring to the fore major differences between402

the two numerical models and confirms the preliminary results of Section 4. The choice of these403

test cases are motivated by the fact that it is an exact theory. But other tests highlight other404

characteristics. The interest reader can refer to [3], [17], [19] or [26].405

5.1. Soliton propagation. We first consider the propagation of an exact solitary wave406

solution to the Peregrine equations, with an amplitude equal to 0.2 (details on the computation407

of this solution as well as mathematical conditions for the existence are given in [6]) over a flat408

bathymetry d0 = 1. The space interval is equal to [0, 200]. In order to check our implementations,409

we have performed a grid convergence analysis. Numerical results have been compared with the410

initial profile (which is the profile of the exact solution). The meshes used contain respectively411

1000, 2000, 4000 and 8000 points. In Figure 4, we have plotted the L2-norm of the error for412

each scheme. The scheme (3.51)-(3.52) provide an error 3 or 5 times less important than that413

corresponding to (2.3)-(2.4). We deduce that with the same initial finite elements method, the414

new procedure decreases the error.415
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Figure 4. Grid convergence results for a solitary wave propagating over a constant slope (on left) and of a
periodic traveling wave (on right) for the two numerical schemes.

5.2. Linear dispersion and linear shoaling test. In this section, we want to investigate416

the linear characteristics of the two numerical schemes. The idea is to confirm the study presented417

in section 4.418

Firstly, we remark that there exist exact periodic traveling wave for the linear Peregrine equations419

with constant bathymetry. These solutions can be writing under the form:420

(5.1) η(t, x) = A cos(k0x− ωt), ū(t, x) =
A

d0

ω

k0
cos(k0x− ωt),421

where k0 = 2π/λ, A is the amplitude of η, and ω2

k2
0

= gd0

1+
k2
0d

2
0

3

.422

5.2.1. Linear dispersion test. The first test case consists in the propagation of an exact423

periodic traveling wave solution to the linear Peregrine equations, with an amplitude equal to424

0.05 m over a flat bathymetry d0 = 13 m and a wavelength λ = 15 m (then σ = 0.87). The space425

interval is equal to [0, 150]. We have performed computations for the two schemes with meshes426

containing 50 points (5 points per wavelength, and ∆x = 3), using periodic boundary conditions.427
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Figure 5. Evolution of a traveling periodic wave for the two numerical schemes: Left : ∆x = 3 (Nλ = 5).
Right : ∆x = 1.5 (Nλ = 10).

In figure 5, we have plotted the results of the two schemes and the exact solution. One428
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can observe a difference in the phase behavior of the two schemes. The solution computed429

with the new scheme (4.1)-(4.2) matches very well the reference curve, while the scheme (4.15)-430

(4.16) is shifted. Furthermore, for Nλ = 5, the green curves exhibits some small amplitude431

defects. But for Nλ = 10, one can observe that the classical scheme provides better results432

without reaching the precision of the other scheme. It confirms the results presented in figure 2.433

Finally, to compare the accuracy of the two models in these conditions, we have performed a grid434

convergence analysis. In Figure 4, we have plotted the error in the L2-norm for each scheme,435

corresponding to successively 100, 300, 500 and 1000 points.436

The slope obtained for the scheme (3.51)-(3.52) shows a convergence of order 3.4 while that437

corresponding to (2.3)-(2.4) is equal to 1.5. Furthermore, it is clear that the new model gives438

better results with 100 points that the classical scheme with 1000 points. We can deduce from439

this analysis that the new numerical scheme better reproduces linear dispersion effects.440

5.2.2. Linear shoaling test. To further verify the results of section 4, we have performed441

the test case described in this section. Let us recall the procedure. A periodic wave of amplitude442

A = 0.05 m and wavelength λ = 15 m propagates over an initial constant bottom d0 = 13. The443

periodic wave has been generated using a relaxation zone method [7]. The bottom is flat for the444

first 150 m , it has a constant slope of 1/50 from x = 150 m to x = 800 m. A wide absorbing445

sponge layers of 60 m long have been used at x = 790 m. The wave propagates during a time of446

500 s, in order to stabilize the solution.447
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Figure 6. Left: Shoaling wave profiles of Peregrine schemes (∆x = 0.85). Right: Theoretical envelope of
the two numerical schemes (∆x = 0.85).

Note that, to our knowledge, it is not possible to give an analytical solution in this configu-448

ration. We then decide to compute a reference solution using a very refined mesh of 10000 points449

(∆x = 0.085) and the scheme (4.15)-(4.16). This solution is used as a standard in the sequel to450

make the comparisons. The conclusion doesn’t changed if one computes the reference solution451

with the scheme (4.1)-(4.2).452

In Figure 6, we have plotted the linear shoaling wave profile using a mesh containing 1000453

(∆x = 0.85) points for the two numerical schemes as well as the reference solution, and the454

theoretical envelope given by the analysis of the Section 4.3.2. Clearly, one can observe a major455

difference in the behavior of the two schemes. The solution emanating from the linear new scheme456

(4.1)-(4.2) matches very well the reference curve, showing that the convergence as already occurs457

with a few numbers of points while it is obviously not the case for the linear classical scheme458

(4.15)-(4.16). Indeed, the green curve exhibit some amplitude and phase defects. This test case459

confirms results given in Section 4, presented on Figure 6 on the right.460
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6. Conclusions and perspectives. We have presented a new systematic method to obtain461

discrete numerical model in the study of incompressible free surface flows. In order to evaluate462

the power of this method, we have considered the case of the so-called Peregrine equations and463

performed the computations in this academic situation. We have compared our new numerical464

scheme with the one obtained by performing directly a Galerkin method on the Peregrine equa-465

tions. Finally, by the use of several numerical experiments, we have shown the efficiency of our466

new scheme to reproduce the linear effects although it is similar to the classical one in a nonlinear467

regime. Moreover, we claim that the method does not give a unique model. The choice of the468

initial scheme applied on Euler equations is an extra degree of freedom.469

In the future, we plan to apply this new procedure to derive numerical schemes for Extended470

Boussinesq’s models as well as for the Green-Naghdi equations. By this procedure, one of our471

goal is, for example, to enhance the linear dispersion characteristics of these models.472
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